专业外文翻译(范例)

更新时间:2023-10-01 21:27:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2011 届毕业设计专业外文翻译

题 目 Reading Reading

Text

Structure of Buildings Material A Structural Planning and design

Material B Types of Loads and Types of Stress

专 业 土木工程 姓 名 王康建 班 级 07土Y4 学 号 07124620 指导教师 郭献芳 李雄威

2011 年 1 月 16 日

Contents

UNIT ONE

Text Introduction to Mechanics of Materials Reading Material A Shear Center

B Allowable Stress Design and Strength Design UNIT TWO

Text The Tensile Test

Reading Material A Comparative Study of the Mechanical Properties of Ductile and Brittle Materials B Strength Theories UNIT THREE

Text Application of Mechanics of Materials and Its Study Method Reading Material A Stress B Method of Sections UNIT FOUR

Text Description of the Force and Displacement Method Reading Material A Types of Beams

B Methods of Joints and Sections for Analyzing a Truss UNIT FIVE

Text Structure of Buildings

Reading Material A Structural Planning and Design B Types of Loads and Types of Stress UNIT SIX

Text Purpose of Structural Analysis, Modeling of Structures and Relation of Analysis and Design

Reading Material A Matrix Analysis of Structures by the Stiffness Method B Equilibrium of Single Members UNIT SEVEN

Text Properties of Concrete and Reinforced Concrete Reading Material A Property of Structural Steel B Nature of Wood and Masonry UNIT EIGHT

Text Building Code (Ⅰ)

Reading Material A Building Code (Ⅱ) B Building Code (Ⅲ) UNIT NINE

Text Early History of Cement and Concrete Reading Material A The Hydration Reaction B Distress and Failure of Concrete UNIT TEN

Text Advantages and Disadvantages of Concrete and Its Water-Cement Ratio Reading Material A Slump Test and Concrete Proportioning B Curing Concrete

UNIT ELEVEN Text Mortar

Reading Material A Water Retentively B Cement Mortar and Lime Mortar UNIT TWELVE

Text General Planning Considerations Reading Material A Housing B House

UNIT THIRTEEN Text Factory Design

Reading Material A Modern Building Construction B Building UNIT FOURTEEN

Text Fundamental Objective of Structural Dynamics Analysis Reading Material A Organization of the Text B Methods of Discretization UNIT FIFTEEN

Text Contents of Theory of Elasticity

Reading Material A Basic Assumptions in Classical Elasticity B Members in a State of Two-Dimensional Stress UNIT SIXTEEN

Text Historical Development of Finite Element Method

Reading Material A General Description of the Finite Element Method B Introduction of Displacement Approach Appendix Ⅰ Vocabulary

Appendix Ⅱ Translation for Reference Appendix Ⅲ Key to Exercises

目 录

一、Foreign original UNIT FIVE

1. Text Structure of Buildings··········································1-3 2. Reading Material A Structural Planning and

design·················································································4-5

3. Reading Material B Types of Loads and Types of

Stress·················································································6-8 ⑴Types of Loads································································6-7 ⑵Types of stress ····························································7-8

二、外文译文 第五单元

1. 课文 建筑物的结构···························································9-10 2. 阅读材料 A 结构的规划和设计···········································11 3. 阅读材料 B 荷载类型及应力类型··································12-13

⑴负载类型············································································12 ⑵应力类型 ··········································································13

Reading Material B

Types of Loads and Types of Stress

Types of Loads

In general, loads that act on building structures can be divided into two groups; those due to gravitational attraction and those resulting from other natural causes and elements. Gravity loads can be further classified into two groups: live load and dead load. Building live loads include people and most movable objects within the structure or on top of it. Snow is a live load. So is a grand piano, a safe, or a water bed. Appendix O provides some typically recommended live loads for various types of occupancy within building structures. Research bears out that these figures represent probable maximum values for live loads during the lifetime of a structure. Such loads are seldom realized. What is more likely is an unexpected change in the use of the space. One can sense the problems that might result if an abandoned school is purchased for use as a warehouse (to store bowling balls). Dead loads, on the other hand, generally include the immovable objects in a building. The walls (both interior and exterior), floors, mechanical and electrical equipment, and the structural elements themselves are examples of dead loads.

The snow map of Appendix N gives the maximum snow load that can reasonably be expected in various parts of the United States. Like the live-load values, such large snowfalls seldom occur. Nevertheless, we must design for some level of probability and should not forget such occurrences as the more than-500-millimeter snowfall that hit the southeastern United States in 1974, resulting in many small building failures.

Natural forces not due to gravity that act on buildings are provided by wind and earth-quakes. Wind load is a lateral load that varies in intensity with height. (Hurricanes and tornadoes present special design problems, and local building codes often require certain types of resistive construction.) A probable wind pressure map is given in Appendix

第6页

N.

Earthquakes are also treated as lateral loads (at least for preliminary design purposes), but it is well known that buildings in earthquakes are subjected to vertical forces as well. De-sign methods are not fully developed for disaster loadings such as tornadoes and

One final type of load is an impact load, usually due to moving equipment, which occurs within or on the structure. Most structural materials can withstand a sudden and temporary load of higher magnitude than a load that is applied slowly. For this reason, the specified permissible stress magnitudes are substantially increased when such loads govern the design. No permanent damage is done by moderate impact load provided that it does not occur repeatedly. (An earthquake is a good example of a severe and repeating impact load.)

All the tables and maps referred to in this text, as part of the appendices, provide rough data only. The designer should consult local building codes, which always take precedence. The designer also bears the Professional responsibility for increasing any recommended design loads when the situation warrants it.

Types of stress

A fundamental concept in the structural analysis of buildings is that objects are in a state of equilibrium. This means there are no unbalanced forces acting on the structure or its parts at any point. All forces counteract one another, and this results in equilibrium. The structural element or object does not accelerate because the net force acting on it is zero, but it does respond to these forces internally. It is pushed or pulled and otherwise deformed, giving off energy as heat as it resists the forces. Internal stresses of varying types and magnitudes accompany the deformations to provide this resistance.

These stresses are named by their action or behavior (i.e., tension, compression, shear, and bending). Tensile and compressive stresses which act through the axis or center of mass of an object are evenly distributed

earthquakes, and research continues in these areas.

第7页

over the resisting area and result in all the material fibers being stressed to like amounts. Shearing stresses and, more important, bending stresses are not uniform and usually result in a few fibers of material being deformed to their limit while others re- main unstressed or nearly so. Bending is, by far, the structurally least efficient way to carry loads.

Assuming for the moment that we have a material equally strong in tension, compression, shear, and bending, it would be best to load it in tension to achieve its maximum structural capacity. Compressive forces, if applied to a long slender structure, can cause buckling. Buckling always occurs under less load than would be required to fail the materials in true compression (i.e., crushing). Of course, materials are not equal in strength when loaded in different ways. Some materials have almost no tensile strength, and generalizations are very difficult to make. As explained in succeeding chapters, shearing stresses will cause tension and compression; and bending is actually-a combination of shear, tension, and compression. Because of the previously mentioned uneven distribution of stress intensity, however, bending is always the most damaging load that can be applied to any resisting structural material.

第8页

第五单元

课文 建筑物的结构

[1] 如果只考虑工程要点建筑物结构可以定义为保持形状与稳定而存在的那些部分的集合。其主要目的是抵制任何作用于建筑物上的负载,并将其传输到地上。

[2] 根据建筑,建筑的结构不止那些。它是建筑形式的不可分割的一部分并在不同程度上是那种形式的产物。熟练使用上,建筑结构可以建立或加强建筑体量和平面之间的顺序和节奏。它可以直观地主导或隐性。它可以发展和谐或冲突。它可以同时受限和解放。不幸的是在某些的情况下,它不能被忽略。它是物质性的。

[3] 结构也必须保持建筑形式的工程化。原则与物理、数学工具依据建造提供了区分理性与非理性形式的基本原理。艺术家有时可以产生消除任何科学考虑的形状,但建筑师却不能。

[4]存在至少三个必须出现在建筑结构上的项目: 稳定 强度和刚度 经济

[5] 采取这三种的需求的第一个,显然,稳定需要保持形状。一个不稳定的建筑结构意味着不平衡的力或缺乏平衡和随之加速的结构或其构件。

[6] 强度的要求意味着被选择抵制通过结构负载和形状产生的应力必须是足够的。的确,一个“安全系数”是经常被提供的,以致于在预期的荷载作用下,一个给定的材料是不强调一个甚至接近其破裂点的水平。被称为刚度的材料属性是和强度要求是一起被考虑的。刚度不同于强度,因为它直接涉及结构在荷载作用下的拉伤和偏斜多少。强度高但刚度弱的材料在抵抗应用力价值方面将变形太多。

[7] 建筑结构经济涉及到的不仅是材料使用费。工程经济是一个复杂的主题,涉及原料、 制造、 安装及保养。必须考虑设计和建设劳动成本和能源消耗成本。建设速度和钱 (利息) 的成本也是因素。在大多数的设计情况下,多个结构材料需要考虑。竞争的选择几乎总是存在的,选择是不明显的。

[8] 除了这三个主要要求,其他几个因素是值得强调的。首先,结构或结构系统必须与建筑的功能相关。它不应从形式上冲突。例如线性函数要求一个线性的结构,因此不适合给有圆顶的保龄球馆盖以屋顶。同样,剧院必须有大、 无

第9页

障碍物阻挡视线的范围,但高级餐厅可能不一定。简单地说,结构必须适合它作为住房的功能。

[9] 第二,结构必须是防火的。显然,结构系统必须能够保持其完整性,至少直到居民是安全的。建筑规范规定建筑必须抗火不塌的小时数。这些结构材料用于那些固有抗火或通过防水材料被充分保护的元素。被提供的抗火程度将取决于一大批项目,包括空间的使用和占有荷载、 它的尺寸和建筑物位置。

[10] 第三,结构应也与这座大楼的流通系统很好地集成。它不应与水和垃圾管道系统,空气调节系统或 (最重要的)人的运动有冲突。很明显的是,各种建筑系统必须与设计过程相协调。人们可以设计在任何一个的系统内顺序的分步方式,但他们所有的设计应以并行方式移动完成。空间上,建筑物的所有各部分是相互依存的。

[11] 第四,结构必须心理和物理安全一样,在风中剧烈摇摆的高层建筑框架也许实际上是不危险的但也许使建筑还是一样不适宜居住。太”弹性”的轻质楼板系统会使用户感到不舒适。不被分割的竖框打断的大玻璃窗可能相当安全但将对临近一个街道上的一40层楼非常不安全。

[12] 有时建筑师必须故意试图增加结构表面强度或硬度。这种明显的安全也许比真诚地表现建筑结构更重要,因为未经训练的观察者无法区分真正的和可预见的安全。

第10页

阅读材料 A

结构的规划和设计

建筑设计者需要了解负载下的物理结构的行为。本能或“感觉”结构行为的能力是通过那些已有很多涉及结构定性和定量的分析的经验获得的。随之而来的怎样建立不同材料和、形状的力、应力和变形知识对这种“感觉” 的发展至关重要。

开始力、应力和变形的研究是最容易通过定量方法实现的。形成所有结构规划和设计基础的这两个主题是非常难以抽象学习的。

在大多数建筑设计的努力下,最初的结构计划是由建筑师完成的。理想的情况下,结构和机械咨询师应从项目构想到施工竣工伴随建筑师左右工作。但是,在大多数的情况下,建筑师必须做出一些有关结构形式和结构体系之间被发展的关系的初始假设。在结构的原则和行为方面的扎实背景需要做这些与任何信心合理程度有关的假设。结构层的形状、 所有主要支持元素的位置、 系统的方向性 (如果有的话)主要结构材料和跨度长度的初步确定都是结构规划进程的组成部分。

另外一方面,结构设计是由建筑师和工程师共同完成的。提供对以前的假设的合理性进行检查的主要结构元素大小的初步测定是通过建筑师和工程师完成的。最后,渉及所有的零部件全面的分析、结构详细的论述和结构材料、施工方法细则的最终结构设计几乎总是由结构工程师完成的。

在这两个的领域中,结构规划是比结构设计的复杂得多。它涉及到前面提到的“对结构的感受”或来自经验的直觉。结构设计可以从讲座和书上学到,但很可能的是结构规划却不能。不过,一些见解和判断可以从结构分析与设计中的最小背景中发展而来。如果可能的话,这应该来自一个建筑观点,不论可能在哪,都强调数量和最终质量之间的关系,而不是来自一个工程的方法。

虽然这种深度不是绝对必要的,但是这项定量结构研究可能足够彻底地允许建筑师完全做较小项目的分析。至少,它应提供知识和可能与咨询工程师一起工作的必要词汇。必须记住的是,建筑师接收更多的教育是面向创造力的而不是工程师所做的,因此需要保持对设计的控制。它可以向建筑师提问智能问题并建议可行的选择。如果结构忽略残缺的话,一些设计决策实际上将被他人完成。

第11页

阅读材料 B

荷载类型及应力类型

负载类型

一般情况下,作用在建筑结构上的荷载可分为两组 :由于地球引力产生的荷载和由于其他自然因素和元素引起的荷载。重力负荷可以进一步分为两个组别: 活荷载和恒荷载。建设活荷载包括在结构内或它的顶部上的人和大多数可移动的物体。雪是活荷载。大钢琴、 冷藏室或水床也是。附录O代表性地提供了一些在建筑结构内占据的各种类型的活荷载。研究证实了这些数字表示一个结构生命期内活荷载的可能最大值。这种负荷很少会被意识到。在空间使用上的意外变化更有可能。人们可以感觉如果一个废弃的学校用作 (存储保龄球) 的仓库可能导致的问题。另外一方面,恒载一般包括建筑物内的不动的物体。(内部和外部) 的墙壁、 地板、 机械电气设备和结构元素本身都是恒载的例子。

附录 N中的雪地图提供最大的雪荷载,它可以在美国各地被合理预测。像活荷载的值,这样大的降雪很少发生。然而,我们必须为一些可能性水平设计而不应该忘记正如发生于 1974 年美国东南部的超过500毫米降雪的情况,它导致许多小建筑毁坏。

自然力不是由于作用在建筑上的重力,而是由风和地球地震提供的。风荷载是横向的负荷,它随高度而产生不同强度。(飓风和龙卷风呈现了特别设计的问题,并且当地建筑法规通常需要某些抵制施工的类型。) 一个可能的风压地图被载于附录N。

地震(至少因为初步设计意图)也被视为横向荷载,但众所周知,在地震中的建筑物也受到垂直力的作用。设计方法因如龙卷风和地震的灾难荷载而不完善,并且研究在这些领域继续前进。

最终类型的负载是一种冲击荷载,通常,由于发生在结构内或结构上的移动设备引起的。大多数结构材料能承受一种比慢慢地应用的负载较高规模的突然和临时的负载。由于这个原因,当这些荷载控制设计时,指定的许用应力幅度是基本增长的。无永久性损伤是通过提供不反复出现的适度冲击荷载实现的。(地震是一个严重和重复冲击荷载的好例子。

所有涉及在此文中的图表作为这些附录的一部分,它只提供粗略的数据。设计者应咨询当地始终优先的建筑法规。当情况需要时,设计人员也承担着增加任何推荐设计荷载的职业责任。

第12页

应力类型

建筑结构分析中的一个基本概念是对象处于平衡的状态。这意味着作用在结构或其部件上的任何一点没有不平衡力。所有力都一个一个抵消,这将导致力的平衡。因为它没有净力作用在结构元素或对象上,故它不加速,但是它对这些内力产生响应。它是受推或受拉的,否则它会变形, 释放出和它抗拒力一样的能量。不同类型和规模的内部应力伴随着提供这种阻力的变形。

这些应力是通过它们的行动或行为 (即,拉伸、 压缩、 剪切,和弯曲) 命名的。通过作用在轴或对象质心的拉伸和压缩应力是均匀地分布在抗区上的并将产生所有像数额一样被强调的材料光纤。更重要的是,剪应力、弯曲应力并不一致,并通常产生一些物质纤维,但其他材料保持无应力或接近这样时这种材料将变形到极至。到目前为止,弯曲是结构上承受荷载的最有效方式。

假设目前我们在拉伸、 压缩、 剪切,和弯曲上有同样强烈的的材料,最好在张力上加载它以实现其最大的结构容量。应用到一个细长结构上的压力会导致屈曲。屈曲总是将要在真正压缩(即粉碎)使材料失效的较小荷载发生。当然,当以不同方式加载时,材料将在强度上不平等。一些材料几乎没有拉伸强度,并且难以概括。正如后续章节解释的那样,剪力将引起拉伸和压缩 ;且弯曲实际上是剪拉压的组合。由于前面涉及应力强度是不均匀分布的,因而,弯曲总是可以用于任何抵抗结构材料的最具破坏性的荷载。

第13页

本文来源:https://www.bwwdw.com/article/8dtd.html

Top