促进钾盐为水煤气变换反应的钌_交流催化剂
更新时间:2023-06-05 00:14:01 阅读量: 实用文档 文档下载
- 水煤气变换反应的焓变推荐度:
- 相关推荐
co变换催化剂
PromotedpotassiumsaltsbasedRu/ACcatalystsforwatergasshift
reaction
YajuanMaa,BingLiua, ,MengmengJinga,RenyuanZhangb,JunyuChena,YuhuaZhanga,JinlinLia,
KeyLaboratoryofCatalysisandMaterialsSciencesoftheStateEthnicAffairsCommission&MinistryofEducation,CollegeofChemistryandMaterialScience,South-CentralUniversityforNationalities,Wuhan430074,PRChinab
CollegeofChemistryandChemicalEngineering,XiaMenUniversity,XiaMen361005,PRChina
a
highlights
TheadditionofpotassiumsaltimprovedtheRu/ACactivityoverWGSreaction. COconversionincreasedfrom13.6%forRu/ACto56.1%forK2CO3-Ru/ACat300°C. Theincreaseoftheactivitywasduetothereductiontemperatureofthecatalyst. Thehighhygroscopicabilityofthesaltalsoincreasedthecatalystactivity.
articleinfoabstract
Inthiswork,wehavepreparedseveralkindsofpotassiumsaltsdopedRu/ACcatalystsandsystematicallystudiedtheircatalyticactivitiestowardswater–gasshift(WGS)reaction.ActivitytestingindicatedthatK2CO3dopedRu/ACcatalyst(Ru-K2CO3/AC)showedhighercatalyticperformancethanKOHandKOAcdopedRu/ACcatalysts,methaneselectivitydecreasedmostafterdopingKOH.AlthoughtheparticlesizeofRunanoparticlesinRu-K2CO3/ACcatalystwaslargerthanthatoftheparentRu/ACcatalyst,H2-TPRindicatedthatRuOxwasreducedatmuchlowertemperature,suggestingaweakerinteractionbetweenRuOxandthesurfacefunctionalgroupofactivecarbonafterthedopingofK2CO3.Thus,Runanoparticlesinteractedstrongerwiththereactionmolecules(COandH2O),leadingahighercatalyticactivity.Inaddi-tion,thedopingofK2CO3onthesurfaceofRu/ACcatalystalsoincreasedtheconcentrationofwateraroundRuactivesiteduetothehygroscopicability.Interestingly,itwasalsofoundthatthepreparedmethodalsogreatlyaffectedthecatalystactivity.Iftheactivecarbonwas rstlycoatedwithK2CO3,fol-loweddepositionofRumetalnanoparticles,(calledRu/K2CO3-ACcatalyst),theactivitydecreasedremarkablyascomparedtoRu-K2CO3/AC.ThelowcatalyticactivityofRu/K2CO3-ACwasmainlyduetotheaggregationofRunanoparticles.
Ó2015ElsevierB.V.Allrightsreserved.
Articlehistory:
Received27June2015
Receivedinrevisedform19October2015Accepted26October2015
Availableonline14November2015Keywords:
Water–gas-shiftreactionRutheniumbasedcatalystsPotassiumsaltsDoping
1.Introduction
Thewater–gasshift(WGS)reaction(CO+H2O?H2+CO2,DH=41.2kJmolÀ1)isoneofthemostfundamentalreactionsfortheremovalofCOandproductionofhighpurityH2fromsyngas.Thisreactioncanbeusedfortheupgradingofthereformedgasinfuelcells,asitiseffectivetoreduceCOtoaverylowcontent,avoidingthepoisoningofPtelectrodes[1].Inaddition,WGSreac-tionhasalsoplayedakeyroleinadjustingtheH2/COratioforFis-cher–Tropsch(FT)processes[2]andprovidinghydrogen-richCorrespondingauthors.Tel./fax:+862767842572.
E-mailaddresses:liubing@(B.Liu),lijl@(J.Li).
/10.1016/j.cej.2015.10.119
1385-8947/Ó2015ElsevierB.V.Allrightsreserved.
streamsforfuelcells[3].Industrially,inordertoproducehighpur-ityH2atthehighestpossibleCOconversion,two-stagemethodisappliedinWGSreaction:ahightemperatureshiftreactionoperat-ingat300–450°CbytheuseofFe-basedcatalysts(e.g.,Fe2O3/Cr2O3)andalowtemperatureshiftreactionoperatingat200–270°CbytheuseofCu-basedcatalysts(e.g.,Cu/ZnO/Al2O3)[4].However,someproblemsstillremaininthecomicaltwo-stageWGScatalysts.ThecatalyticactivityofFe2O3/Cr2O3isrelativelowatlowreactiontemperatures.Furthermore,theFe2O3/Cr2O3containsabout1–2wt.%hexavalentchromium(Cr6+),whichishighlytoxictohumans,organismsandtheenvironment[5].TheCu/ZnO/Al2O3catalystsdeactivatedatanoxidizingatmosphere[6].Therefore,theneedforthedevelopmentofhighactiveWGScatalystsstillremainsanimportantgoalinWGSreactions.
co变换催化剂
156Y.Maetal./ChemicalEngineeringJournal287(2016)155–161
SomenoblemetalsespeciallyPt,Pd,AuandRucatalystshavebeenusedasalternativesforWGSreactionstocircumventthenamedlimitationsofthecommercialWGScatalysts[7–10].Amongthem,paredwithPtcatalysts,Rucatalystsaremuchcheaper,thustheuseofRucatalystswillbepromisingasaneco-nomicalwayintheindustrialWGSreactions.Infact,homogeneousRucatalystshavebeenusedforWGSreactionsforalongtime,whichcanbeoperatedatlowtemperature,achievinghighequilib-riumconversion.However,WGSreactionoverhomogeneouscata-lystswasmainlycarriedoutunderhighCOpressures(>10bar)ineetal.preparedahomogeneousRu3(CO)12catalystandapplieditinWGSreaction.Aratioof150molofH2producedpermoleofRu3(CO)12over30daysbythissystem[11].Comparedwiththehomogeneouscat-alysts,theRubasedheterogeneousWGScatalystssometimesshowedevenmuchhigherhighcatalyticactivitytowardsWGSreaction[12].Forexample,Shindeetal.[13]preparedhighlyactiveandcokeresistantZr0.93Ru0.05O2catalyst,andapplieditinWGSreaction.Thiscatalystcanafforded99%conversionofCOwith100%H2selectivitybelow290°C.AlackofCOmethanationactivityisattributedtotheionicnatureofRuspecies(Ru4+).
Inrecentyears,someresearchersfoundthatthecatalystactiv-ityofheterogeneouscatalystsoverWGSreactioncouldbeimprovedbythemodi cationofthecatalystsurfacewithalkaliadditives,especiallypotassiumsalts[14–17].Forexample,thecat-alyticactivitiesofseveralkindsofPtcatalystscanbeenhancedbythedopingofNa+,K+,Li+,Rb+,Cs+[16,18].ThemainroleofalkalicationswasclaimedthatitcanweakentheC–Hbondofformate,thusfacilitatingCO2desorptionfromthecatalystsurface[15].ItisalsobelievedthattheintroductionofalkaligeneratednewactivesitessuchasPt–alkali–Ox(OH)yclustertopromotetheWGSreac-tion[18].Wateriseasilydissociatedontheseclusterstoafford–OH,whichisthenreactedwithCOatlowtemperatures.TheactiveenergyofwaterdissociationishigherthanotherstepsinWGSreaction[19].TheformationofPt–alkali–Ox(OH)yclustercanlowertheactiveenergyofwaterdissociationstep.Besidestheimprove-mentofthecatalystactivity,thealkaliadditionwasalsofoundtoimprovethePt@SiO2catalyststabilityincyclicoperations[20].Inourpreviouswork,wehavealsofoundthatthecatalyticactivityofRunanoparticlessupportedonactivecarbon(Ru/AC)wasalsogreatlyenhancedbytheadditionofK2CO3[21].AlthoughthehighercatalyticactivityofRu/ACafterthedopingofK2CO3wasobtained,manyissuesarestilldeservedtostudysuchasthesourceofpotassiumsaltsandthecatalystpreparedmethodsontheactiv-ityofRu/ACcatalyst,aswellasthedeepinsightintothedifferencesinthesecatalyststowardWGSreaction.Herein,wehavepreparedseveralkindsofpotassiumsaltsdopedRu/ACcatalystsbytwodif-ferentmethodsandsystematicallystudiedtheircatalyticactivitiestowardswater–gasshift(WGS)reaction.Moreimportantly,thedifferenceinthecatalyticactivitiesoftheseas-preparedcatalystswasalsotriedtobeunderstoodbyvarioustechnologies.
2.Experimentalsection2.1.Materialsandmethod
30wt.%HNO3waspurchasedfromAladdinChemicalReagentCo.,Ltd(ShanghaiChina).Ethanol(99.5%),K2CO3(99.9%)KOAc(99.9%),KOH(99.9%)andethyleneglycol(EG)werepurchasedfromSinopharmChemicalReagentCo.,Ltd(ShanghaiChina).Ru(NO)(NO3)3(10wt.%)andactivecarbon(AC)werepurchasedfromAlfaAesarchemicalsCo.,Ltd(Shanghai,China).AllofthechemicalreagentsexceptACwereusedasreceivedwithoutfurtherpuri cation.
2.2.Catalystsynthesis
Ru/ACcatalystwaspreparedaccordingtothemethodasdescribedinourpreviousworkwithaslightmodi cation[21].ACwas rstlytreatedwith30wt.%HNO3at90°Cfor4h.ForthepreparationofRu/ACcatalyst,Ru(NO)(NO3)3(0.2g,Ru:10wt.%)inEGsolution(30mL)andAC(1g)waswelladdedanddispersedinthesolutionwithultrasonic-assistancefor30min.Then,themixturewasstirredat160°Cfor6h.Aftercoolingtoroomtemper-ature,themixturewas ltrated,washedseveraltimesbyethanolanddriedatroomtemperature.TheRucontentwas2wt.%inthe-oryandthecatalystwasnamedasRu/AC.
Thealkalidopingcatalystswerepreparedbytwodifferentmethods.Onmethodisthepost-modi cationoftheas-preparedRu/ACcatalysts.Brie y,theRu/ACcatalyst(1.0g)wasimpregnatedwithofacertainamountofaqueousK2CO3for24hatroomtem-perature,anddriedat160°Cfor4h.ThecatalystwasabbreviatedasRu-K2CO3/AC.Methodforthemodi cationoftheRu/ACcatalystwithKOHandKOAcwasthesameasthepreparationofRu-K2CO3/AC,whichwerenamedasRu-KOH/ACandRu-KOAc/AC,respec-tively.Ineachcase,themolratioofRutoKwassettobe1:10.ThecontentofKwas7.6%,7.4%and7.3%forRu-KOH/AC,Ru-K2CO3/ACandRu-KOAc/ACcatalystsdetectedbyICP.ThecontentofRuwasabout1.8%forthethreecatalystsdetectedbyICP.
Ontheotherhand,thesupportwas rsttreatedwithK2CO3beforethedepositionofRunanoparticles.ACwas rstimpreg-natedwiththesameamountofK2CO3,andthendriedat160°Cfor4h.Then,theK2CO3treatedACwasaddedinRu(NO(NO3)3EGsolution,andotherstepswerethesamefortheRu/ACcatalystasdescribedabove.Theas-preparedcatalystwasdenotedasRu/K2CO3-AC.
2.3.Catalystcharacterization
Fouriertransforminfrared(FT-IR)spectraofthesampleswerecollectedusingaNicoletFouriertransforminfraredspectrometer(NEXUS470).Fortheanalyses,thepowdersamplesweremixedwithpotassiumbromide(KBr)powderandpressedintodiskswithoutanypretreatment.
H2-temperatureprocessedreduction(H2-TPR)wasexperimentswerecarriedoutusingAMI-200fromZetonAltamiraCompany.Thesample(50mg)inaquartzreactorwaspurgedwith30ml/minArwhileheatingataramprateof10°/minto150°Candmain-tainingthattemperaturefor1htoremovetracesofwater.Aftercoolingto50°thesamplewasreducedina owof10vol.%H2/Ar(30ml/min)whileheatingfrom50°to500°atarateof10°/min.BETsurfaceareaofthepreparedmaterialswasdeterminedbyphysisorptionofN2at77KbyusingaquantachromeAutosorb-1-C-MSinstrument.ThetotalporevolumesandtheaverageporesizeswereobtainedbyusingtheBarrett–Joyner–Halendamethod.Transmissionelectronmicroscopy(TEM)imagesofthecatalystsampleswereobtainedwithaFEITecnaiG20instrument.Thesam-pleswerepreparedbydirectlysuspendingthecatalystinethanolwithultrasonictreatment.Acoppermicroscopegridcoveredwithperforatedcarbonwasdippedintothesolutionandthendried.TheICP-AESanalysiswasperformedonOptima4300DV,Perkine-ElmertodeterminethecontentofRuandKintheiongelcatalysts.
2.4.TypicalprocedureforWGSreaction
Theactivityofallpreparedcatalystswasevaluatedinacontin-uoustestrigwithon-lineanalysisoftheef uentgasesviaAgilentMicroGC3000AGC.Inatypicalrun,0.4goftheas-preparedcata-lystwasplacedinastainless-steeltubular xedbedreactorandcontactedwithacontinuousgas ow(40mL/min)consistingof
co变换催化剂
Y.Maetal./ChemicalEngineeringJournal287(2016)155–161157
60%N2,30%H2Oand10%COatatmosphere.Thecatalystwasini-tiallyheatedinCO/N2atmospherefromroomtemperatureto300°Cbeforesteamwasaddedtothemixture.Thereactionwas rstlyconductedat300°Cforabout5htoobtainstablecatalyticactivitybeforethetemperaturewasdecreasedupto200°Ctostudytheeffectoftemperatureoncatalystactivity.
3.Resultsanddiscussion
3.1.EffectsofpotassiumadditiononactivityforWGSreactionInitially,theRu/ACcatalyststreatedwithdifferentkindsofpotassiumsalts(KOH,K2CO3,KOAc)werestudiedforWGSreac-tions.COconversionsatdifferentreactiontemperatureoverthesecatalystsweredepictedinFig.1.Thereactionwas rstlyconductedat300°Cforabout5htoobtainstablecatalyticactivitybeforethetemperaturewasdecreasedupto200°Ctostudytheeffectoftem-peratureoncatalystactivity.Theactivitytestwaskeptforatleast2hateverytemperature.Noobviouslydeactivationwasfoundatourexperimentcondition.Forallofthecatalysts,paredwiththeparentRu/ACcatalyst,thethreekindsofpotassiumsaltdopedRu/ACcat-alystsshowedanenhancedactivityatthesamereactiontempera-ture.TheseresultsindicatedthatthedopingofalkaliimprovedtheactivityofRu/ACcatalysttowardsWGSreaction.Atlowreactiontemperaturebelow220°C,thesealkalidopedRu/ACcatalystsexhibitedonlyamarginalincreaseinCOconversion.However,thesepotassiumdopedRu/ACcatalystsshowedmuchhighercat-alyticactivitythantheparentRu/ACcatalystbeyond220°C.Itisalsonotedthatthekindofpotassiumsaltshowedagreatin uenceontheactivityofthesealkalidopedRu/ACcatalysts.Ru-K2CO3/ACandRu-KOAc/ACcatalystsdemonstratedmuchhigherWGSactiv-itythanRu-KOH/ACcatalystwiththesameratioofRutoKof1:10.Forinstance,COconversionwasattainedin44.8%withRu-KOH/ACcatalystat300°C,whilethosereached51.8%and56.1%underthesamereactionconditionsfortheRu-KOAc/ACandRu-K2CO3/AC,respectively.Thereasonsofthedifferentcatalyticactivityofthesecatalystswillbeillustratedinthefollowingpart.ThemethaneselectivityovervariouscatalystsasafunctionofreactiontemperaturewasshowninFig.S1.Therewasnomethaneinproductionbelow275°Cforallthetestedcatalystsinour
experimentcondition.Themethaneselectivityincreasedwiththeincreaseofthereactiontemperature,butstilllessthan2%at300°C.TheadditionofKOHdecreasedthemethaneselectivity,forinstance,theSCH4decreasedfrom1.7%to0.7%afterKOHdopingat300°C.Theadditionofpotassiumsalt(K2CO3,KOAc)didn’thaveanobviouseffectontheselectivityofmethaneatourtestedcondition.
ThehighestTOFobtainedfromourcatalystswas76hÀ1for2%Ru-K2CO3/ACat300°C.AsshowninTable1,theWGSactivitywasmuchhigherthanthe3%Ru-K2CO3/SiO2catalystsinRef.[34],whichTOFwas35hÀ1.OurcatalystWGSactivitywasalittlelowerthanthePt/KOH/Al2O3catalyst22,however,theactivitywastestedatmuchhigherpressure(5bar)intheirworkthanours(atmosphere).
Fig.2showstheTEMimagesofRu/ACandK2CO3-Ru/ACcatalysts.AsobservedinFig.2,Runanoparticleswereuniformlydistributedonthesupportsofthetwokindsofcatalysts,andnodistinctaggregationofRunanoparticleswasobservedintheTEMimagesofthetwocatalysts.TheparticlessizedistributionofRunanoparticleswasalsoestimatedbythemeasurementoftheRuparticlesfromthegivenareaoftheTEMimage.TEManalysispro-videddirectinformationonthesizeoftheRunanoparticlesintherangefrom1to5nm,andtheaverageofparticlesizewasesti-matedtobe2.4nm.AfterdopingwithK2CO3,theaverageparticlesizeofRunanoparticlesincreasedto3.2nmforK2CO3-Ru/ACcat-alyst,indicatingthedopingofK2CO3ontheactivecarboncausedthegrowthofRunanoparticles.Similarphenomenonwasalsoobservedbyotherresearchers[22].Kuscheandco-workersfoundthatthesizeofPtnanoparticlesinPt/Al2O3catalystincreasedfrom3.2nmto4.4nmafterdopingAl2O3withKOH.Xiongetal.foundalkalipromoters(alkali:Li,Na,KorCs)alsoledtoanincreaseincrystallitesizeoftheironoxideinFe/CNTcatalyst[23].ThepossiblereasonfortheslightincreaseoftheRunanoparticlessizewasthattheas-preparedRu/ACcatalystafterthedopingofK2CO3wassubjectedtobeheatedat160°C,whichresultedinthemove-mentofRunanoparticles,leadingtoagrowingsizeofRunanoparticles.
BETmeasurementswereusedtocharacterizethetexturestruc-tureofsupportandcatalysts,andtheresultsareshowninTable2andFig.S2.TheaverageporediameteroftheRu/ACandK2CO3-Ru/ACcatalystswasclosetothesupportactivecarbon.However,thesurfaceareaandporevolumedecreasedofthetwocatalystsweremuchlowerthanthesupport,indicatingRuorpotassiumsaltentersintotheporecanalofactivatedcarbon.Interesting,theBETsurfaceandporevolumeoftheK2CO3-Ru/ACcatalystshowedaveryslightdecreaseascomparedwithRu/ACcatalyst,whichfur-therindicatedthatthepotassiumsalt(K2CO3)wasdopedonthesurfaceoftheRu/ACcatalyst.
H2-TPRmeasurementsareusedtoprobethenatureandthereducibilityofthecatalysts.TheTPRpro lesoftheRu/ACcatalystandthepotassiumdopedRu/ACcatalystsaredepictedinFig.3.AlthoughRunanoparticlesareinitsmetallicformunderreducingpreparationconditions,theRunanoparticlescanbeoxidizedtohighvalencestatewhenexposedtooxygenduringstorage[24].XPSresultscon rmedmetallicRu(0)andRuO2wereco-existedintheRu/ACandRu-K2CO3/ACcatalysts.Twopeakswereclearlyobservedinthereductionpro leofRu/ACcatalystfrom180to
Table1
WGSactivitycomparisonwithliteratures.CatalystsTOF(hÀ1)ReactionconditionReferences2%Ru-K2CO3/AC76T=300°C,P=atmosphereOurworkPt-KOH/Al2O3
95T=230°C,P=5bar
Ref.[22]3%Ru-K2CO3/SiO2
35
T=250°C,P=atmosphere
Ref.[34]
co变换催化剂
Table2
ResultsofN2adsorptionmeasurementsofthecatalysts.CatalystACRu/AC
Ru-K2CO3/AC
Surfacearea(cm2/g)792564558
Porediameter(nm)2.82.83.0
Porevolume(cm3/g)0.5480.3880.384
asprecursor[25].ComparedwiththeTPRpro leoftheRu/ACcat-alyst,the rstreductionpeakofallthepotassiumsaltsdopedRu/ACcatalystsdividedintotwopeaksandshiftedtolowertempera-ture,thesecondreductionpeakwasmuchweaker.Forinstance,thelowtemperaturereductionpeakofRu-K2CO3/ACappearedat93°Cand201°C,whilethosewereobservedat122°Cand247°CforRu-KOAc/AC,100°Cand201°CforRu-KOH/AC,respec-tively.TheH2consumptionofthecatalystsduringH2-TPRexperi-mentwascalculatedbystandardH2pulseexperiment,andtheresultsareshowninTable3.Itonlyneed1mmolH2for50mg2%Ru/ACcatalystduringH2-TPRexperimentifRuwastotallyoxi-dizedintoRuO2.Obviously,theH2consumptionduringH2-TPRexperimentwasmuchlowerthanthecalculateddata,whichindi-catedthatRuwaspartiallyoxidizedduringstorage.TheH2con-sumptionofRu-K2CO3/ACandRu-KOAc/ACwaslargerthanRu-KOH/AC,andallofthemwerelargerthanRu/AC.TheseresultsindicatedthatRuwasfurtheroxidizedafterdopingpotassium,andtheoxidationdegreeofpotassiumsalt(K2CO3,Ru-KOAc)dop-ingcatalystwaslargerthanKOHdopingcatalyst.
TheinteractionbetweentheRuOxnanoparticlesandactivecar-bonwascomparativelyweakandhigherdispersiondegreeofRuparticleleadtolowerreductiontemperature[26].However,iftheactivecarbonwasfunctionalizedbythetreatment
with
Table3
ThepeakpositionandH2consumptioncalculatedfromH2-TPRexperiment.CatalystsRu/AC
Ru-KOH/ACRu-K2CO3/ACRu-KOAc/AC
T(K)Peak–10093122
1
T(K)Peak270201201247
2
T(K)Peak330341339350
3
H2consumption(lmol)27313536
400°Cwithtwomaximumpeaksat270and330°C,respectively.Thesesignalscanbeassignedtothereductionofwell-dispersedRuOxoxidespecies,andsimilarresultswerealsoobservedintheTPRpro lesofRu/c-Al2O3,inwhichalsoRu(NO)(NO3)3wasused
co变换催化剂
Y.Maetal./ChemicalEngineeringJournal287(2016)155–161159
HNO3,RuOxstronglyinteractedwiththesurfacefunctionalgroupoftheactivecarbon,andthereductionofRuOxtoRu0particleswasdif cultandreducedatmuchhightemperature[27].ThedecreaseofthereductiontemperatureofRuOxafterthedopingofpotassiumsaltsindicatedthatpotassiumsaltsalsohadthecon-tactwithRuOx,thuscausedaweakerinteractionofRuOxwithsup-portandreducedthereductiontemperatureofRuOx.Evinetal.foundsimilarphenomenonasours,inwhichthereductiontemper-atureofPtoverPt/CeO2catalystsbecamelowerandwiderafterdopingwithalkali(Li,Na,K,Rb,Cs)[28].Therefore,accordingtotheTMEandH2-TPRresults,thedopingofpotassiumsaltontheRu/ACcatalystcausedanincreaseoftheRunanoparticlesize,andthepresenceofpotassiumsaltdecreasedtheinteractionoftheRuOxandthesurfacefunctionalgroupofactivecarbon,whichresultedinalowerreductiontemperatureoftheoxidizedRunanoparticles.Potassiumionsstabilizehighdispersed,oxidizedRuspeciesontheactivatedcarbonsurface,maybeformedanewRu-O-Kactivatedsite.Suchspecies(Na+,K+)havebeenreportedtocatalyzetheWGSreactiononPt/SiO2catalysts[18].
FT-IRspectraofpotassiumsaltsdopedRu/ACcatalystsandtheRu/ACcatalystarerecordedintheregionfrom800to4000cmÀ1.AsshowninFig.4,thestrongbandat1090cmÀ1ispresentinallthesamples,whichisassignedtotheasymmetricandsymmetricvibrationsfromNOÀ3remainedinthesupportAC[29],astheACsupportwasactivatedbyHNO3beforetheloadingofRunanopar-ticles.Thebandat1560cmÀ1intheK2CO3-Ru/ACandKOAc-Ru/ACcatalystsisassignedtot(OCO)asymmetricandsymmetricvibra-tions,whichshouldbecausedbythedopingofK2CO3andKOAcinthecatalysts[30,31].Itisnotedthebandat1630cmÀ1alsoappearinthepotassiumsaltspromotedsamples,whichcanbeassignedtoO–H–Obendingvibrationofthephysicallyadsorbedwater[32].Inaddition,thebroadbandbetween2500and3500cmÀ1inthepotassiumsaltsdopedRu/ACcatalystsisalsocausedbythevibrationsofthephysicallyadsorbedwater,whilethatismuchweakerintheRu/ACcatalyst.TheseresultsindicatedthatthetreatmentofRu/ACcatalystswithpotassiumsaltsenhancedwaterconcentrationinthesurfaceofthecatalysts,
onthealuminasurface,whichincreasedtheavailabilityofH2Oatthecatalyticallyactivesites[24].AccordingtotheresultsobtainedfromFT-IRspectrum,theenhancementofwaterconcen-trationaroundtheactivesitesduetothehygroscopicnatureofthesaltcoatingshouldbetheonereasonofthesigni cantimprove-mentofthecatalyticactivityofalkalidopingRu/ACcatalysts.Inaddition,thedopingofpotassiumsaltonRu/ACcatalystsincreasedalittletheRuOxparticlesize,andtheinteractionbetweenRuOxnanoparticlesandsurfacefunctionalgroupofsupportdecreased.ThelowerinteractionsofthemetalnanoparticleswiththesupportinverselypromotedCOcontactadsorptionontheactivesites(RuOxnanoparticles),affordingahighercatalyticactivity.Watanabeetal.alsocon rmedthissupposebyFT-IRresults.Alkaliadditionwasabletostrengthenthemetal-CObondbyincreasingthebackdona-tionofthemetalelectronsintothe2panti-bondingorbitalofadsorbedCO[33].
parisonoftheactivityofK2CO3promotedRu/ACcatalystspreparedbytwodifferentmethods
TofurtherstudytheeffectofalkalidopedRu/ACcatalystsontheWGSactivity,westudiedthedifferentpreparationmethodsofK2CO3dopingRu/ACcatalystsforWGSreaction.Ru/K2CO3-ACindi-catedthattheACsupportwas rstlytreatedbyK2CO3,followingbytheintroductionofRunanoparticlesonthesupport,whileK2CO3-Ru/ACdenotedasRu/ACwas nallytreatedbyK2CO3.AsshowninFig.5thepreparationmethodgreatlyaffectedthecata-lystactivityinWGSreactioneventhoughtheweightpercentageofKisalmostthesameinthethreecatalysts.TheactivityofK2CO3-Ru/ACwasmuchhigherthanthoseofRu/paredwiththeparentRu/ACcatalyst,aslightimprovementwasobservedovertheRu/K2CO3-ACcatalyst.
Inordertogetsomeinsightsintothehugedifferenceofthecat-alyticactivitycausedbythepreparationmethods,somecharacter-izationofthesecatalystswerestudied.TEMimagesoftheRu/K2CO3-ACcatalystwereshowninFig.6.ItisobservedthatRu
co变换催化剂
Journal287(2016)155–161
wasstrongbase.ItisreportedthatRu(NO)(NO3)3existedintheformof[RuNO(NO3)4H2O]Àor[RuNO(NO2)(NO3)2(OH)H2O]Àinsolution[34].Thus,thesenegativeRuprecursorscouldhardlybeadsorbedonthesurfaceoftheK2CO3-treactedAC,andthentheRunanoparticlesinthesolutiontendedtoaggregateandthendepositedintothesupportwithalargeparticleandalowdisper-sion.Withthesameamountoftheactivecomponent,theaggrega-tionofmetalnanoparticlesresultedinalowratioofexposedactivesitestopromotethecatalyticreaction,thusalowercatalyticactiv-itywasobserved.Therefore,theaggregationofmetalnanoparticlesshouldbetheonereasonoftheobservedlowWGSactivityoftheRu/K2CO3-ACcatalyst.4.Conclusions
Inthiswork,aseriesofpotassiumsaltdopedRu/ACcatalystswerepreparedandstudiedtheircatalyticactivityoverWGSreac-tion.Itwasfoundthatthekindofpotassiumsaltsigni cantaffectedtheRu/ACcatalyticactivity.Ru-K2CO3/ACshowedhighercatalyticperformancethanRu-KOAc/ACandRu-KOH/ACcatalysts.TheCOconversiongreatlyincreasedfrom13.6%forRu/ACcatalystto56.1%forK2CO3-Ru/ACcatalystat300°C.Thesigni cantincreaseofthecatalyticactivityoftheK2CO3-Ru/paredwithK2CO3-Ru/ACcatalyst,theRu/K2CO3-ACcatalystgavemuchlowerWGSactiv-ity.ThelowcatalyticactivityofRu/K2CO3-ACwasmainlyduetotheaggregationofRunanoparticles.Acknowledgement
TheProjectwassupportedbyNationalNaturalScienceFounda-tionofChina(No.21206200).AppendixA.Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,at/10.1016/j.cej.2015.10.119.
Reference
[1]B.Liu,H.Y.Xu,Z.H.Zhang,Platinumbasedcore–shellcatalystsforsourwater–
gasshiftreaction,mun.26(2012)159–163.
[2]G.P.vanderLaan,A.A.C.M.Beenackers,Intrinsickineticsofthegas–solid
Fischer–Tropschandwatergasshiftreactionsoveraprecipitatedironcatalyst,Appl.Catal.AGen.193(2000)39–53.
[3]V.Galvitaa,K.Sundmachera,Cyclicwatergasshiftreactor(CWGS)forcarbon
monoxideremovalfromhydrogenfeedgasforPEMfuelcells,Chem.Eng.J.134(2007)168–174.
[4]F.Meshkani,M.Rezaei,Preparationofmesoporousnanocrystallineironbased
catalystsforhightemperaturewatergasshiftreaction:effectofpreparationfactors,Chem.Eng.J.260(2015)107–116.
[5]D.L.Trimm,Minimisationofcarbonmonoxideinahydrogenstreamforfuel
cellapplication,Appl.Catal.AGen.296(2005)1–11.
[6]M.V.Twigg,M.S.Spencer,Deactivationofsupportedcoppermetalcatalystsfor
hydrogenationreactions,Appl.Catal.AGen.212(2001)161–174.
[7]B.Liu,A.Goldbach,H.Y.Xu,Sourwater–gasshiftreactionoverPt/CeO2
catalysts,Catal.Today171(2011)304–311.
[8]Z.J.Mei,Y.Li,M.H.Fan,L.Zhao,J.Zhao,EffectoftheinteractionsbetweenPt
speciesandceriaonPt/ceriacatalystsforwatergasshift:theXPSstudies,Chem.Eng.J.259(2015)293–302.
[9]W.D.Williams,M.Shekhar,W.S.Lee,V.Kispersky,W.N.Delgass,F.H.Ribeiro,S.
M.Kim,E.A.Stach,J.T.Miller,L.F.Allard,MetalliccorneratomsingoldclusterssupportedonrutilearethedominantactivesiteduringwaterÀgasshiftcatalysis,J.Am.Chem.Soc.132(2010)14018–14020.
[10]T.Huang,B.Liu,Z.H.Zhang,Y.H.Zhang,J.L.Li,Preparationofcon nedRu-iongelcatalystsandtheirapplicationforalowtemperaturewater–gasshiftreaction,RSCAdv.4(2014)28529–28536.
[11]ine,R.G.Rinker,P.C.Ford,Catalysisbyrutheniumcarbonylinalkaline
solution:thewatergasshiftreaction,J.Am.Chem.Soc.99(1977)252–253.[12]S.Werner,N.Szesni,M.Kaiser,R.W.Fischer,M.Haumann,P.Wasserscheid,
Ultra-low-temperaturewater-gasshiftcatalysisusingsupportedionicliquidphase(SILP)materials,ChemCatChem2(2010)1399–1402.
[13]V.M.Shinde,G.Madras,ProductionofsyngasfromsteamreformingandCO
removalwithwatergasshiftreactionovernanosizedZr0.95Ru0.05O2-dsolidsolution,Inter.J.HydrogenEnergy38(2013)13961–13973.
[14]M.Yang,S.Li,Y.Wang,J.A.Herron,Y.Xu,L.F.Allard,S.Lee,J.Huang,M.
Mavrikakis,M.Flytzani-Stephanopoulos,CatalyticallyactiveAu-O(OH)xspeciesstabilizedbyalkaliionsonzeolitesandmesoporousoxides,Science346(2014)1498–1501.
[15]J.M.Pigos,C.J.Brooks,G.Jacobs,B.H.Davis,Lowtemperaturewater–gasshift:
theeffectofalkalidopingontheC–HbondofformateoverPt/ZrO2catalysts,Appl.Catal.AGen.328(2007)14–26.
[16]J.H.Pazmin
ˇo,M.Shekhar,W.D.Williams,M.C.Akatay,J.T.Miller,W.N.Delgass,F.H.Ribeiro,MetallicPtasactivesitesforthewater–gasshiftreactiononalkali-promotedsupportedcatalysts,J.Catal.286(2012)279–286.
[17]R.T.Figueiredo,M.S.Santos,H.M.C.Andrade,J.L.G.Fierro,Effectofalkali
cationsontheCuZnOAl2O3lowtemperaturewatergas-shiftcatalyst,Catal.Today172(2011)166–170.
[18]Y.P.Zhai,D.Pierre,R.Si,W.L.Deng,P.Ferrin,A.U.Nilekar,G.W.Peng,J.A.
Herron,D.C.Bell,H.Saltsburg,M.Mavrikakis,M.Flytzani-Stephanopoulos,Alkali-stabilizedPt-OHxspeciescatalyzelow-temperaturewater-gasshiftreactions,Science329(2010)1633–1636.
[19]J.A.Rodriguez,P.Liu,J.Hrbek,J.e.Evans,M.Pérez,Watergasshiftreactionon
CuandAunanoparticlessupportedonCeO2(111)andZnO(000I
):intrinsicactivityandimportanceofsupportinteractions,Angew.Chem.Int.Ed.46(2007)1329–1332.
[20]Y.Wang,Y.P.Zhai,D.Pierre,M.Flytzani-Stephanopoulos,Silica-encapsulated
platinumcatalystsforthelow-temperaturewater-gasshiftreaction,Appl.Catal.B127(2012)342–350.
[21]B.Liu,T.Huang,Z.H.Zhang,Z.Wang,Y.H.Zhang,J.L.Li,Theeffectofthealkali
additiveonthehighlyactiveRu/Ccatalystforwatergasshiftreaction,Catal.Sci.Technol.4(2014)1286–1292.
[22]M.Kusche,K.Bustillo,F.Agel,P.Wasserscheid,Highlyeffectivept-based
water-gasshiftcatalystsbysurfacemodi cationwithalkalihydroxidesalts,ChemCatChem7(2015)766–775.
[23]H.F.Xiong,M.A.Motchelaho,M.Moyo,L.L.Jewell,N.J.Coville,EffectofGroupI
alkalimetalpromotersonFe/CNTcatalystsinFischer–Tropschsynthesis,Fuel150(2015)687–696.
[24]Z.P.Yan,L.Lin,S.J.Liu,Synthesisofc-valerolactonebyhydrogenationof
biomass-derivedlevulinicacidoverRu/Ccatalyst,EnergyFuels23(2009)3853–3858.
[25]K.Baranowska,J.Okal,N.Miniajluk,Effectofrheniumonruthenium
dispersionintheRu–Re/g-Al2O3catalysts,Catal.Lett.144(2014)447–459.[26]M.F.Ran,Y.Liu,W.Chu,Z.B.Liu,A.Borgna,HighdispersionofRunanoparticles
supportedoncarbonnanotubessynthesizedbywater-assistedchemicalvapordepositionforcellobioseconversion,mun.27(2012)69–72.
[27]J.Xiong,X.F.Dong,L.L.Li,COselectivemethanationinhydrogen-richgas
mixturesovercarbonnanotubesupportedRu-basedcatalysts,J.Nat.GasChem.21(2012)445–451.
[28]H.N.Evin,G.Jacobs,J.Ruiz-Martinez,U.M.Graham,A.Dozier,G.Thomas,B.H.
Davis,Lowtemperaturewater-gasshift/methanolsteamreforming:alkalidopingtofacilitatethescissionofformateandmethoxyC–HbondsoverPt/ceriacatalyst,Catal.Lett.122(2008)9–19
.
co变换催化剂
Y.Maetal./ChemicalEngineeringJournal287(2016)155–161
[29]P.A.Bazula,A.H.Lu,J.Nitz,F.Schuth,Surfaceandporestructuremodi cation
oforderedmesoporouscarbonsviaachemicaloxidationapproach,MicroporousMesoporousMater.108(2008)266–275.
[30]A.M.DuartedeFarias,A.P.M.G.Barandas,R.F.Perez,M.A.Fraga,Water–gas
shiftreactionovermagnesia-modi edPt/CeO2catalysts,J.PowerSources165(2007)854–860.
[31]R.Knapp,S.A.Wyrzgol,A.Jentys,J.A.Lercher,Water–gasshiftcatalysts
basedonionicliquidmediatedsupportedCunanoparticles,J.Catal.276(2010)280–291.
161
[32]H.Abdulhamid,E.Fridell,J.Dawody,M.Skoglundh,InsituFTIRstudyofSO2
interactionwithPt/BaCO3/Al2O3NOxstoragecatalystsunderleanandrichconditions,J.Catal.241(2006)200–210.
[33]R.Watanabe,Y.J.Sakamoto,K.Yamamuro,S.Tamura,E.Kikuchi,Y.Sekine,
RoleofalkalimetalinahighlyactivePd/alkali/Fe2O3catalystforwatergasshiftreaction,Appl.Catal.AGen.457(2013)1–11.
[34]T.Niu,L.H.Zhang,Y.Liu,HighlydispersedRuonK-dopedmeso-macroporous
SiO2forthepreferentialoxidationofCOinH2-richgases,Inter.J.HydrogenEnergy39(2014)13800–13807.
正在阅读:
促进钾盐为水煤气变换反应的钌_交流催化剂06-05
北理工08-09上2006级信号考试A卷04-09
夜,也是有心境的男子10-29
三叉神经痛的止痛方法10-01
我给妈妈过母亲节作文450字07-02
双波长法测定安钠咖中组分含量5510-21
《企业纳税实务B》考前模拟题11-06
公差配合与测量技术电子教案08-29
中华传统文化研究开题报告01-02
读《汤姆索亚历险记》有感作文500字02-05
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 水煤气
- 钾盐
- 催化剂
- 变换
- 反应
- 促进
- 交流
- 最新出纳年底总结自我鉴定
- 第2节 氮的循环(第一课时)讲学稿
- 蓝鲸薪酬管理资料
- 踩盘报告-索尔龙舟
- 三只想生病的小狗(社会、语言)
- 海底两万里的读后感
- 最新除夕的小学作文七篇
- 橡皮膏大王读后感_2
- 零售业中高层管理人员短缺的原因及策略探悉
- 一年级语文下册第二单元测试卷(新人教版)
- 护士在医院见习的体会
- 2015学生会工作规划书
- 2021年汽修实习代表生发言稿
- 先简支后连续的预应力溷凝土连续梁设计
- 体验的音符在数学教学上跳动
- 基于爬虫的网络文本挖掘研究与应用
- 第九讲 个体行为与激励理论
- 苏教版七年级数学上册第二章复习_有理数及其运算单元测试_经典题库
- 【优质文档】好运送给你,串词-范文word版 (13页)
- 2005-2006第二学期数字电子技术期末试卷A卷(计算机)