Computer Methods in Applied Mechanics and Engineering
更新时间:2023-07-26 01:48:01 阅读量: 实用文档 文档下载
- computer推荐度:
- 相关推荐
一些ME专业提升的论文。
ThisarticleappearedinajournalpublishedbyElsevier.Theattachedcopyisfurnishedtotheauthorforinternalnon-commercialresearchandeducationuse,includingforinstructionattheauthorsinstitution
andsharingwithcolleagues.Otheruses,includingreproductionanddistribution,orsellingorlicensingcopies,orpostingtopersonal,institutionalorthirdparty
websitesareprohibited.Inmostcasesauthorsarepermittedtoposttheirversionofthearticle(e.g.inWordorTexform)totheirpersonalwebsiteorinstitutionalrepository.AuthorsrequiringfurtherinformationregardingElsevier’sarchivingandmanuscriptpoliciesare
encouragedtovisit:
/copyright
一些ME专业提升的论文。
Author's personal copy
Available online at
Comput.MethodsAppl.Mech.Engrg.197(2008)
2131–2146
/locate/cma
Afastimmersedboundarymethodusinganullspaceapproach
andmulti-domainfar- eldboundaryconditions
TimColonius*,KunihikoTaira
DivisionofEngineeringandAppliedScience,CaliforniaInstituteofTechnology,CA91125,USAReceived21March2007;receivedinrevisedform3August2007;accepted6August2007
Availableonline12September2007
Abstract
Wereportonthecontinueddevelopmentofaprojectionapproachforimplementingtheimmersedboundarymethodforincompress-ible owsintwoandthreedimensions.BoundaryforcesandpressureareregardedasLagrangemultipliersthatenabletheno-slipanddivergence-freeconstraintstobeimplicitlydeterminedtoarbitraryprecisionwithnoassociatedtime-steprestrictions.Inordertoaccel-eratethemethod,wefurtherimplementanullspace(discretestreamfunction)methodthatallowsthedivergence-freeconstrainttobeautomaticallysatis edtomachineroundo .Byemployingafastsinetransformtechnique,thelinearsystemtodeterminetheforcescanbesolvede cientlywithdirectoriterativetechniques.Amulti-domaintechniqueisdevelopedinordertoimprovefar- eldboundaryconditionsthatarecompatiblewiththefastsinetransformandaccountfortheextensivepotential owinducedbythebodyaswellasvorticitythatadvects/di usestolargedistancefromthebody.Themulti-domainandfasttechniquesarevalidatedbycomparingtotheexactsolutionsforthepotential owinducedbystationaryandpropagatingOseenvorticesandbyanimpulsively-startedcircularcyl-inder.Speed-upsofmorethananorder-of-magnitudeareachievedwiththenewmethod.Ó2007ElsevierB.V.Allrightsreserved.
1991MSC:76D05;76M12PACS:47.11.+j
Keywords:Immersedboundarymethod;Fractionalstepmethod;Projectionmethod;Nullspacemethod;Vorticity/streamfunctionformulation;Far- eldboundaryconditions;Multi-domainmethod;FastPoissonsolver;Finitevolumemethod;Incompressibleviscous ow
1.Introduction
Intheimmersedboundarymethod(IBmethod),immersedsurfacesaregeneratedbyforcesatasetofLagrangianpoints[29,20,19].The owissolvedonanEuleriangridthatdoesnotconformtothebodygeometry–typicallyauniformCartesiangridisused.Theboundaryforcesthatexistassingularfunctionsalongthesurfaceinthecontinuousequationsaredescribedbydiscretedeltafunctionsthatsmear(regularize)theforcinge ectovertheneighboringEuleriancells.
Correspondingauthor.
E-mailaddresses:colonius@caltech.edu(T.Colonius),kunihiko@cal-tech.edu(K.Taira).
0045-7825/$-seefrontmatterÓ2007ElsevierB.V.Allrightsreserved.doi:10.1016/j.cma.2007.08.014
*
IntheoriginalIBmethod,surfaceswereviewedas ex-ibleelasticmembraneswithaconstitutiverelation(e.g.Hooke’slaw)relatingtheforcestothemotionoftheLagrangianpoints[28].Thistechniquewaslaterextendedtosurfaceswithprescribedmotion(andinparticularrigidbodies)bytakingthespringconstanttobelarge[2,16].Goldsteinetal.[9]appliedtheconceptoffeedbackcontroltocomputetheforceontherigidimmersedsurface.Thedi erencebetweenthevelocitysolutionandtheboundaryvelocityisusedinaproportional-integralcontroller.Con-stitutivelawsareeliminatedinthedirectforcingmethod[21,7];forcinginthemomentumequationisdeterminedbypenalizingtheslipatthe(interpolated)surface.Fortheaforementionedtechniquesthatutilizeconstitutiverela-tions,thechoiceofgain(sti ness)rgegain
一些ME专业提升的论文。
2132T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
resultsinrestrictionsonthetimestep,whilesmallgainresultsinsliperror.1Directforcingmethodssimilarlyresultinasliperroratthesurface.Whilethesliperrorisreportedtobesmall[7],themagnitudecannotbeestimatedinadeductivemanner.FurtherinformationregardingtheIBmethodandhigher-orderextensionsaregiveninarecentreview[20].
AnalternativeistoregardtheboundaryforcesasLagrangemultiplierswhosevaluesarechosentosatisfytheno-slipconstraint[8,36].Byintroducingappropriateregularizationandinterpolationoperatorsandgroupingthepressureandforceunknownstogether,thediscretizedincompressibleNavier–Stokesequationscanbeformulatedwithastructurealgebraicallyidenticaltothetraditionalfractionalstepmethod[36].Thepressureandforceunknownsarefoundbysolvinga(modi ed)Poissonequa-tion.Inwhatfollows,werefertothismethodastheimmersedboundaryprojectionmethod(IBPM).
TheprincipleadvantagesoftheIBPMtechniquearethatthecontinuityandno-slipconstraintscanbesatis ed(toarbitraryaccuracy)implicitlyatthenexttimelevel,andthattheCourantnumberisonlylimitedbythechoiceoftimemarchingschemesfortheviscousandadvectiontermsinthemomentumequation.Further,itispossibletoarrangealloperationssothatthemethodisuniformlysec-ond-orderaccurateintime,andsothatthematrixarisingfromimplicittreatmentoftheviscoustermsinthemomen-tumequationaswellasthemodi edPoissonmatrixarebothsymmetricandpositivede nite.Consequentlytheconjugate-gradientmethodcanbeusedtosolvethelinearsystems.However,iterativesolutionofthelinearsystemsresultsinaconvergenceerror.Thispresentsnodi cultyinthemomentumequationwherethesolutionneedonlybeconvergedtotheextentthatitissmallerthanotherdis-cretizationerrors.Butinthemodi edPoissonequation,convergenceerrorsdirectlyimpacttheaccuracytowithwhichthedivergence-freeandno-slipconstraintsaresatis- ed.Whiletheerrorscanbemadearbitrarilysmall,largenumbersofiterationsmayberequired.
Inthepresentpaper,werevisitthismethodandproposesomeimprovementstoacceleratetheIBPM.InSection2,wereviewtheoriginalformulationandpresentsomenewresultsfromarecentextensionofthemethodtothree-dimensional ows.InSection3,weimplementanullspace(discretestreamfunction)method[11,4]thatallowsthedivergence-freeconstrainttobeautomaticallysatis edtomachineroundo .Weshowthatifthegridiskeptuniformthroughoutspace(withequalspacinginalldirections),thePoisson-likeequationfortheforcescanbee cientlysolvedeitherdirectlyforstationarybodiesoriterativelyformov-ingbodiesthroughtheuseofafastsinetransform.Whileuniformgridspacingisinfactrequiredinthevicinityof
1
Sti nessissuesarealsoobservedwithelasticsurfaces.Recently,stablesemi-andfully-implicittemporaldiscretizationstocouplethevelocity eldandtheboundaryforceforelasticboundarieshavebeenproposedby[24,22].
thebodybythediscretedeltafunctionthatisusedtoreg-ularizethesurfaceforce,itisrelativelyine cientforexter-nal owswherethedomainneedstoextendtolargedistancefromthebody.IntheoriginalIBPM,thisdi -cultyisovercomebystretchingthemeshawayfromthebody,butthisisincompatiblewiththenullspace/fastsinetransformformulationintroducedhere.Toovercomethisrestriction,wederiveinSection4improvedfar- eldboundaryconditionsthatarecompatiblewiththefastmethodandallowthedomaintobemoresnugaroundthebody.Thenewboundaryconditionsaccountfortheextensivepotential owinducedbythebodyaswellasvor-ticitythatadvects/di usestolargedistancefromthebody.Theboundaryconditionsrelyonamulti-domainapproachwherebythePoissonequationissolved(withthefastsinetransform)onaseriesofincreasinglylarger,butcoarser,computationaldomains.ValidationexamplespresentedinSections5and6demonstratethee cacyandimprovede ciency,respectively,oftherevisedformulation.2.Immersedboundaryprojectionmethod2.1.Projectionapproach
WeconsidertheincompressibleNavier–Stokesequa-tionswithasingularboundaryforcefaddedtothemomentumequationasacontinuousanalogoftheimmersedboundaryformulation:
ouotþuÁru¼Àrpþ12
Z
Reruþfðnðs;tÞÞdðnÀxÞds;ð1ÞsrÁu¼0;uðnðs;tÞÞ¼
Z
ð2Þ
uðxÞdðxÀnÞdx¼uBðnðs;tÞÞ;ð3Þx
whereuandparethevelocityandpressurevariables,
respectively.Notethatweexpresstheno-slipconditionusingadeltafunctionconvolutionalongtheimmersedsur-face.Here,non-dimensionalizationisperformedtoyieldasingleparameterofReynoldsnumber,Re.Spatialvariablexrepresentspositioninthe ow eld,D,andndenotescoordinatesalongtheimmersedboundary,oBhavingavelocityofuB.ThegeometryoftheimmersedobjectBisconsideredtobeofarbitraryshape.Inthepresentdevelop-ment,therearenoforcesinteriortothebodyandanymo-tionordeformation2ofthebodyisprescribed.Furthergeneralizationsofthemethodarepossiblebutawaitfuturework.
Theabovesystemisdiscretizedwithastandardstag-geredCartesiangrid nitevolumemethod.ThemeshandvariablelocationsaredepictedinFig.1.Thecomputa-tionaldomain,D,isrepresentedbyaCartesiangrid,(xi,yi),andtheimmersedboundary,oBisdescribedbyasetofLagrangianpoints,(nk,gk),whichcanbeafunctionof
2
Forexamplefullycoupled uid–structureinteractionviaanimmersedcontinuummethod[38].
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462133
time.ThebodyBisassumedtohaveaprescribedsurfacemotion.Followingthematrix–vectornotationof[4],wecanwriteEqs.(1)–(3)semi-discretelyasM
dq
dt
þGpÀHf¼NðqÞþLqþbc1;ð4ÞDq¼0þbc2;
ð5ÞEq¼unþ1
B;
ð6Þ
whereq,p,andfarethediscretevelocity uxvector,pres-sure,andboundaryforce.Thediscretevelocity,u,canberelatedtoqbymultiplyingthecellfaceareanormaltothevector,i.e.,q=(qu,i,qv,i)=(uiDyi,viDxi).Theabove rst,second,andthirdequationsrepresentthediscretizedmomentumequation,continuityequation,andno-slipcon-ditionalongoB.Discretizednon-linearconvectivetermÀuÆ$uisdenotedbyNðqÞandoperatorsMandLarethe(diagonal)massmatrixanddiscreteLaplacian,respectively.
Wenotethatallofthematricesintheabove(andallthatfollow)aresparseandaremoste cientlycodedaspoint-operators-subroutinesreturnthematrix–vectormul-tiplysuchthatthematricesareneverexplicitlyformed.Forconvenience,point-operatorrepresentations(forthecaseofauniformgrid)aregiveninAppendixA.
OperatorsGandDarethediscretegradientanddiver-genceoperatorsTandcanbeformulatedsuchthatG=ÀD[27,4].TheremainingoperatorsofEandHaretheinterpolationandregularizationoperatorsresultingfromtheregularizationoftheDiracdeltafunctionsinEqs.(1)and(3).Theno-slipconstraintisenforcedbyequatingtheboundaryvelocity,uB,tothevelocityvaluealongoBinterpolatedbyEfromtheneighboringcells.Ontheotherhand,theregularizationoperatorsmearsthee ectofthesingularboundaryforcealongoBtotheCartesiangrid.Topreservesymmetryinthe nalalgo-
rithm,weconstructtheseoperatorstosatisfyE=ÀHT;see[36]forfurtherdiscussion.WementionthatmatricesG,D,E,andHarenotsquare.Consequently,Eqs.(4)–(6)2canbewritten30asasystemofalgebraicequations:nþ110n16AGÀHr0bc11
4D0
07Bq
CBCBC
E005@pfA¼@0unAþ@bc2A:ð7ÞB
þ10SubmatrixA¼1
mentofthevelocityMÀaLLresultsfromtheimplicittreat-term.Hereweapplytheimplicittrap-ezoidruleontheviscoustermwithaL¼Thetermisdiscretizedwiththesecond-order2
convectiveAdam–Bashforth(AB2)r¼Âmethod.ÃInthiscasetheright-handsidevectorn11qn
DtMþ2Lþ3NðqnÞÀ1NðqnÀ1Þ.TheAB2meth-odisnotself-starting2andwereplace2
itwithbackwardEu-lerforthe rsttimestep.Theinhomogeneoustermsbc1andbc2dependontheparticularboundaryconditionsandarediscussedin[36].Boundaryconditionsaredis-cussedingreaterdetailinSections3and4.
WiththeuseofstaggeredCartesiangrid,weareabletogloballyconservemass,momentum,kineticenergy,andcirculation[17,23,26].Detaileddiscussiononspatialdis-cretizationsofvariousformsofthenon-linearconvectiveterm(rotational,divergence,skew-symmetric,andadvec-tiveforms)areprovidedin[23,26].Theexplicitright-handsidetermingeneralalsoincludesinhomogeneousterms,bc1andbc2,generatedbytheboundaryconditionsfromthediscreteLaplacianLandthedivergenceDoperators,respectively.
Byapplyingthepropertiesofthesub-matrices,Eq.(7)can2berestated3as
0nþ1106AGET
qrn
þbc14G
T0075B
@pCA¼B1@Àbc2CAð8ÞE00~funB
þ1;where~f
istheboundaryforcewithanincorporatedscalingfactor.ThisformoftheequationisknownKahn–Tucker(KKT)systemwhereðp;~astheKarush–
f
ÞTappearasasetofLagrangemultipliertosatisfyasetofkinematiccon-straints.Inthediscretizedsetofequations,theconstraintsarepurelynumericalanditisnolongernecessarytodistin-guishthepressureandboundaryforce. neacombinedvariablek¼ðp;~Insteadwecande-f
ÞTfortheLagrangemultipliersandgroupthesubmatricesasQ=[G,ET].Notethatbyremovingtheboundaryforceandno-slipconditionalongoB,thetraditionaldiscretizationoftheincompress-ibleNavier–Stokesequationscanberetrieved.
SincewenowhaveformulatedtheimmersedboundaryformulationoftheNavier–Stokesequationsinanalgebra-icallyidenticalmannertothetraditionaldiscretizationoftheincompressibleNavier–Stokesequations,standardsolutiontechniquescanbeutilized.Hereweapplythepro-jection(fractional-step)algorithmtoEq.(8),whichcanbeexpressedasanapproximateLUdecompositionoftheleft-handsidematrix[27],toproducetheimmersedboundaryprojectionmethod[36]
:
一些ME专业提升的论文。
2134T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
Aqür1;ðSolveforintermediatevelocityÞQ
T
ð9Þð10Þ
AyjQk
¼QqÀr2;ðSolveamodifiedPoissonequationÞ
ð11Þ
TÃ
ouou
þU1¼0;otox
ð12Þ
qnþ1¼qÃÀAyjQk;ðProjectionstepÞ
hasbeenapplied.Boundaryconditionsalongthecomputa-tionalboundaryarediscussedingreaterdetailinSection4inthecontextofthenewformulation.2.2.Three-dimensionalIBPM
Two-dimensionalvalidationexamplesandconvergencestudiesfortheIBPMarepresentedin[36].TodemonstratethattheIBPMcanbeimplementedinthreedimensions,webrie ydescriberesultsforthree-dimensional owoveralow-aspect-ratio atplateatangleofattack.Asanexam-ple,arectangular atplateofaspectratio,AR=2,atanangleofattackofa=30°isinstantaneouslygeneratedinauniform ow eldatt=0.TheReynoldsnumberissettoRe=100andthecomputationaldomainistakentobe[À4,6.1]·[À5,5]·[À5,5](normalizedbythechord)withagridsizeof125·55·80(streamwise,vertical,andspan-wisedirections,respectively).Here,gridstretchingisappliedtoregionsawayfromtheplate,whilekeepinguni-formresolutioninthecloseproximityoftheimmersedbody.Thetimestepandtheminimumgridsizearesetto0.01and0.04,respectively,tolimitthemaximumCourantnumberto0.5duringthesimulation.
InFig.2,thespanwisevorticitycontoursatthemidspanarecomparedtodigitalparticleimagevelocimetry(DPIV)measurementsacquiredfromacompanionexperimentper-formedinanoiltowtank.SimulationresultsandtheDPIVdataarefoundtobeinagreementalongwithforcemea-surementsontheplatevalidatingthethree-dimensionalimmersedboundaryprojectionmethod.Thecorrespondingthree-dimensionalwakestructuresarepresentedinFig.3toillustratetheformationofleading-edge,
trailing-edge,
denotesthejthorderTaylorseriesexpansionofwhere
À1
AwithrespecttoDt.Theexplicittermsontheright-handsidehavebeengroupedintor1andr2.In[36],AandQTAyjQareconstructedtobesymmetricpositivede niteoperatorsinordertousetheconjugate-gradientmethodtoe cientlysolvefortheintermediatevelocityandtheLagrangemulti-pliers.Incontrasttothetraditionalimmersedboundarymethods,heretheno-slipconditionalongoBisenforcedonthesolutionbyprojectingtheintermediatevelocity eldintothesolutionspacethatsatis esbothdivergence-freeandno-slipconstraints.
TheIBPMisfoundtobesecond-orderaccurateintimeandbetterthan rstorderaccurateinspaceintheL2mea-sure.Sincethereisnoneedforanyconstitutiverelations(e.g.,Hooke’slaw[2,16]andproportional-integralcontrol-ler[9])tocomputetheboundaryforce,sti nessissuesarecircumventedallowingtheCourantnumbertobelimitedonlybythechoiceoftimemarchingschemesforthevis-cousandconvectiveterms.
Inthecaseofexternal ow,non-uniformgridstretchingisutilizedtopositionthecomputationalboundaryoDasfaraspossiblefromtheimmersedbodytominimizethein uenceofthearti cialboundaryconditionsontheinner ow eld.Allboundaryconditionsaresettouniform ow(U1,0,0)inthestreamwisedirection(x-direction)exceptfortheout owboundarywhereaconvectiveboundarycondition[33],
Ayj
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462135
Fig.3.TopviewofvorticalstructurebehindarectangularplateofAR=2anda=30°representedbyanisosurfaceofQ=1forRe=100atdi erenttimes.Streamlinesareoverlaidwithcolorcontourindicatingthelocalvelocitynormfrombluetoredinincreasingmagnitude.Flowdirectionfromtoplefttobottomright.(Forinterpretationofthereferencestocolourinthis gurelegend,thereaderisreferredtotheconversionofthisarticle.)
andtipvortices.TheisosurfaceherearegeneratedforunitQ-value(secondinvariantofthevelocitygradienttensor)toshow owregionswithsigni cantrotation.3Streamlinesarealsodepictedtoillustratethetip-e ects.Initiallyastrongtrailing-edgevortexisformedconvectingdown-streamwhiletheleading-edgeandtipvorticesstaystablyattachedtotheplate(t=1.5).Lateratsteady-state(t=13),thedi usedleading-edgevorticalstructureisstillstablyattachedtotheplate.Inthecaseofthree-dimen-sional ow,theviscousdi usionofvorticityinthespan-wisedirectionandthetip-e ectstabilizesthewakestructureatthislowRe.Resultswithvariousaspectratio,anglesofattack,andplanformgeometriesareexaminedinfurtherdetailin[37].
3.Nullspacemethodfortheimmersedboundarymethod3.1.Nullspaceapproach
Thenullspaceordiscretestreamfunctionapproach[11,4]isamethodforsolvingthesystem(7)withouttheimmersedboundaryformulation.Inthiscase,the owonlyneedstosatisfytheincompressibilityconstraint,whichleadsustotheuseofdiscretestreamfunction,s,suchthatq¼Cs;
ð13Þ
whichautomaticallyenforcesincompressibilityatalltime;Dqn+1=DCsn+1=0.Thisdiscreterelationisconsistentwiththecontinuousversionofthevectoridentity:$Æ$· 0.4
Pre-multiplyingthemomentumequationwithCT,thepressuregradienttermcanalsoberemovedfromthefor-mulationsinceCTGp=À(DC)Tp=0,resultinginonlyasingleequationtobesolvedforeachtimestep:CTACsnþ1¼CTðrn1þbc1Þ:
ð15Þ
Inthismethod,themostcomputationallyexpensivecom-ponentofthefractionalstepmethod,namelythepressurePoissonsolver,iseliminatedwhilethecontinuityequationisexactlysatis ed.Moreoverthefractionalsteperroraris-ingfromusinganapproximateAÀ1isnotpresentsinceanapproximateLUdecompositionisnotrequired.Thisfea-tureledChangetal.[4]tocallthistechniquetheexactfrac-tionalstepmethod.
WenotethattheoperatorCTisanotherdiscretecurloperation,andthat:c¼CTq;
ð16Þ
isasecond-orderaccurateapproximationtothecirculationineachdualcell(vorticitymultipliedbythecellareanor-maltothevorticitycomponent).
Thismethodmayingeneralbeusedonunstructuredmeshesintwoandthreedimensions[4],including,asaspe-cialcase,thesimpleCartesianmeshusedinIBmethods.Intwodimensions,thediscretestreamfunctionandcircula-tionhaveasinglecomponent(inthedirectionnormaltotheplane),whichisnaturallyde nedatthecellvertices(seeFig.4)[4].Inthreedimensionstherearethreecompo-nentsofthestreamfunctionandcirculationthatarede nedatthecentersoftheedgesoftheVoronoi(dual)cell,anal-ogouslytothevelocitycomponentsontheprimal
mesh.
Notethatwehavesetbc2=0whichisthecasefortheboundaryconditionsweconsiderhere.Moregeneralsituationsthatrequirebc250canbehandledby ndingaparticularsolutionfortheinhomogeneousvectorandaddingthesolutiontoEq.(13).
4
whereCrepresentsthediscretecurloperator.Thisopera-torisconstructedwithcolumnvectorscorrespondingtothebasisofthenullspaceofD.Changetal.[4]shouldbeconsultedfordetails.Hence,theseoperatorsenjoythefol-lowingrelation:DC 0;
3
ð14Þ
TheQ-value(thesecondinvariantof$u)isde nedas
22
Q 1ðkXkÀkSkÞ,forincompressible owwhereXandSaretheasymmetricandsymmetriccomponentsof$u,respectively[13].Comparedtothevorticitynorm,positiveQ-valuescanhighlightvorticalstructuresbyremovingregionsofhighshear.
一些ME专业提升的论文。
2136T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
Fig.4.Locationofvariablesonstaggered3Dmesh.Velocitycomponentsarede nedatthecenterofeachedge.Streamfunctionandcirculationarede nedsimilarlyfortheVoronoicell–inthiscaseacellthatiso setbyhalfacelllengthineachdirection.
3.2.NullspaceapproachwithanimmersedboundaryInordertosatisfyboththeincompressibilityandtheno-slipconditionswiththenullspacetechnique,itwouldbenecessarytoderiveabasisforthenullspaceofQT.Although,asingularvaluedecompositionofQTcanbeperformedtonumericallydeterminethenullspace,theresultisnotingeneralasparserepresentationwhichisdesirableforcomputationalfeasibility.Ananalyticalderi-vationofthenullspaceoperatordoesnotseemtobeaneasytaskeither.Moreover,inthegeneralcasewherethebodyismoving,thenullspacerepresentationwouldneedtoberecomputedatleastoncepertimestep.
Tocircumventthisdi culty,weonceagainrelyonaprojectionapproach.TConsiderthesystemn+1thatisobtainedbyincorporatingCandqn+1=CstoEq.(8).TheincompressibilityconstraintandthepressurevariableareeliminatedandwearriveatanotherKTTsystem:
"CTACCTE
T#
snþ1 CTrn!1EC0~f¼unBþ1:ð17ÞTheleft-handsidematrixissymmetricbutingeneralindef-inite,makingadirectsolutionlesse cient.Theprojection
(fractionalstep)approachmimicsEqs.(9)–(11),andweobtain
CTACsüCTrn1;
ð18ÞECðCTACÞÀ1ðECÞT~f¼ECsÃÀunþ1B
;ð19Þsnþ1¼sÃÀðCTACÞÀ1ðECÞT~f
;ð20Þ
wherewehaveasnotyetinsertedanapproximationfortheinverseofCTAC.Directsolutionofthissysteminthegen-eralcaserequiresanestediterationtosolvethemodi edPoissonequation.Thismaybefeasibleingeneral(aroughoperationcountindicatethattheworkissimilartoEqs.(9)–(11)).Inthecasewherethebodyisnotmoving,itismoreoverpossibletoperformaCholeskydecompositionofEC(CTAC)À1(EC)Tonceandforall,sincethedimensionofthesystemscaleswiththenumberofforcesfortheim-mersedboundary.Inthiscaseasystemofequationsof
theformCTACx=bneedbesolvedonceforeachLagrangianforceatthebeginningofthecomputation.3.3.Fastmethodforuniformgridandsimpleboundaryconditions
Inthissectionwereverttothesemi-discretemomentumequation,
M
dqþGpþETdt
~f¼NðqÞþLqþbc1;ð21Þ
wheresymbolsareasde nedpreviously.Thedivergence
freeandno-slipconstraintsareunchanged.
Wenowshowthatwithsimpli cation,asimilarsystemtoEqs.(9)–(11)maybesolvedusingfastsinetransforms,resultinginasigni cantreductionincomputationalwork.Whenthegridisuniform(withequalgridspacinginallcoordinatedirections),themassmatrixMistheidentitymatrix.Weassumeforthemomentthatthevaluesofthevelocityareknownintheregionoutsidethecomputationaldomain.WeapplysimpleDirichletboundaryconditionstothevelocitynormaltothesides/edgesofthecomputationaldomain,ckingfurtherinformation,onecouldspecify,forexample,ano-penetrationBCforthenormalcomponentofvelocityandazerovorticity(orno-stress)conditionfortheremainingtangentcomponents.Thesearenaturalboundaryconditionsforanexternal owaroundthebody,providedthedomainislarge.Inthenextsectionwewillshowhowimprovedestimatesforthevelo-citiesoutsidethecomputationaldomaincanbeobtainedviaamulti-domainapproach.
Withthesesimpli cationsweoperateonEq.(21)withCT
(whicheliminatesthepressure)andweobtaindcþCTdt
ET~f¼ÀbCTCcþCTNðqÞþbcc:ð22Þ
InderivingthisequationwehaveusedthatLq=ÀbCCTq=ÀbCcprovidedthatDq=0.Herebisacon-stantequalto1/(ReD2),whereDistheuniformgridspac-ing.2Thisidentitymimicsthecontinuousidentity$u=$($Æu)À$·$·u=À$·$·u.
Withuniformgridandtheaforementionedboundaryconditions,thematrixÀbCTCisthestandarddiscreteLaplacianoperatorona5-or7-pointstencilintwoandthreespatialdimensions,respectively.Theboundarycondi-tionsdiscussedaboveresultinzeroDirichletboundaryconditionsforc.ThisdiscreteLaplacianisdiagonalizedbyasinetransformthatcanbecomputedinOðNlogc)[30].Wedenote2NÞoperations(whereNisthedimensionofherethesinetransformpair:^c¼Sc$c¼S^c;
ð23Þ
wherethecircum exdenotestheFouriercoe cients.Inwritingthetransformpair,wehaveusedthefactthatthesinetransformcanbenormalizedsothatitisidenticaltoitsinverse.Further,wemaywritesymbolicallyK=
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462137
SCTCS,whereKisadiagonalmatrixwiththeeigenvaluesofCTC.Thesearepositiveandknownanalytically(e.g.[30]),andwenotethatthereisnozeroeigenvalue(sincetheboundaryconditionsareDirichlet).
Applyingthesametime-marchingschemesusedprevi-ouslyS weobtainthetransformedsystem:IþbDtK Scü IÀbDt
CTC
cn22
þDtÀ2
3CT
NðqnÞÀCTNðqnÀ1ÞÁ þDtbcc;
ð24ÞECSKÀ1 IþbDt À1
!2
KSðECÞT~f¼ECSKÀ1ScÃÀunþ1B;ð25Þcnþ1
¼cÃÀS IþbDt2
K À1
SðECÞT~
f:ð26Þ
Thevelocity,neededforthenexttimestep,maybefoundbyintroducingthediscretestreamfunction:qn¼Csnþbcq;
sn¼SKÀ1Scnþbcs:
ð27Þ
Eachofthevectorsbcc,s,qinvolvestheassumedknownval-uesofvelocityattheedgeofthecomputationaldomain.Theirvaluesarediscussedindetailinthenextsection.Inthenewsystemofequations,onlyonelinearsystemneedbesolved,Eq.(25),withapositivede niteleft-handsideoperator.Thatthematrixispositivede nitecanbeseenbyinspection.ThedimensionsofthematrixarenowNf·Nf,andthusmanyfeweriterationsarerequiredthantheoriginalmodi edPoissonequation,Eq.(10).Tobemoreprecise,eachiterationonEq.(25)requiresOðNð2log2NþNbwþ4dÞÞoperations,whereNisthenum-berofvorticityunknownsandNbwisthebandwidth5ofthebody-forceregularization/interpolationoperators,anddisthedimensionalityofthe ow(2or3for2Dor3D,respectively).ForthediscreteDeltafunctionwithasup-portof3D,wehaveNbw=3d.FortheoriginalPoissonequation,Eq.(10),thecostperiterationisOðNÂðNbwþð2dþ1ÞjÞþ4dÞ,wherejistheorderoftheapproximateTaylor-seriesinverseofAandthefactor2d+1isthestencilofthediscreteLaplacian.Furthermore,usingstandardestimatesforthenumberofiterationsrequiredforconvergenceoftheconjugate-gradientTmethod[35]alongwiththeknowneigenvaluesofCC,wecanesti-matethattheoperationcountpertimestepforthePoissonsolutionhasbeenreducedfrom6
OðN1=2Nð7dþð2dþ1ÞjÞÞoperationcountforEq:ð10Þto
5
Wehaveusedthefactthat6HerethefactorsN1/2orN1=N2
f(Ninarrivingattheestimate.
faretheestimatednumberofiterationsoftheconjugategradientsolver,the2Nlog2Nfactorcomesfromtwo(fast)sinetransforms,the(2d+1)jfactorfromtheLaplacian,and7dfromtheinterpolation,regularization,CT,andCoperationstogether.
OðN1=2
fNð2log2Nþ7dÞÞ
operationcountforEq:ð25Þ:
Forexample,inathree-dimensionalcasewithN=1283,Nf=103,d=3,andj=3theestimatedspeedupisabout30.Foratwo-dimensionalcasewithN=1282,Nf=200,d=2andj=3,thespeedupisabout10.ThisisforthePoissonsolvealone.AdditionalspeedupoccursbecauseitisnolongernecessarytosolveasystemAx=bforthemomentumequation.NumericalexperimentsinSection6forthetwo-dimensionalcasecon rmatleasttheorder-of-magnitudeofthespeedup(theactualspeedupisfasterthanpredicted).Finally,werecallthatthenewsystemofequationsresultsinnoiterativeerrorinsatisfyingthedivergence-freeconstraint(itisautomaticallyzerotoround-o ).
Ifthebodyisstationary,thenthePoisson-likeequationfortheforcescanbee cientlysolvedusingatriangularCholeskydecomposition.Thisresultsinavastlylowerworkpertime-step,sincetheoperationcountforthePois-sonsolveissimplyOðN2fÞ.InthiscasethecomputationalspeedislimitedonlybythesolutionofEq.(24).
Tosummarize,ifthegridisuniformandsimplebound-aryconditionsareused,itisvastlypreferabletosolveEqs.(24)–(26).Werefertothisinwhatfollowsasthefastmethod.Unfortunately,forexternal ows,thesimpli edboundaryconditionsarenote ectiveunlessthecomputa-tionaldomainisquitelarge.Sincethegridisalsorequiredtobeuniform,evenfarawayfromthebody,thelargerdomainwouldquicklynegatethebene toffastmethod.However,inthenextsectionwediscussanalternativestrat-egyforimplementingboundaryconditionsinthefastmethodthathasamoremodestcostpenalty.
4.Far- eldboundaryconditions:amulti-domainapproachThefastmethodreliesonsimpli edfar- eldboundaryconditions,namelyknownvelocitynormaltotheboundaryandknownvorticity.Thesecanbesettozeroifthecompu-tationaldomainissu cientlylarge.Forsmallerdomains,thiswillleadtosigni canterrorsand,inparticular,theforcescomputedonthebodywillsu erasigni cantblock-ageerror.Theerrorarisesfromtwosources.The rstistheextensive,algebraicallydecayingpotential owinducedbythebody(orequivalently,thesystemofforces).Thesecondisthatvorticitymayadvectordi usethroughthebound-ary.InouroriginalmethoddiscussedinSection2,theseerrorsareminimizedbyusingalargedomainwithahighlystretchedCartesianmeshnearthefar- eldboundaries(butretaininguniformgridspacingnearthebody),aswellasbyusinganapproximateconvectiveout owboundarycondi-tion.Unfortunately,stretchedmeshesareincompatible7withdirectFouriermethodsforsolutionofthePoissonequation.Inthissection,weshowhowtoposeanaccurate
7
IncertainspecialcircumstancesstretchedmeshescanbecombinedwithFourier-transformmethodsforellipticequations,e.g.[3].
一些ME专业提升的论文。
2138T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
far- eldboundaryconditionthatisalsocompatiblewiththefastmethoddescribedinthelastsection.
Westartbybrie yreviewingrelevantboundarycondi-tionsdesignedtoreduceoneorbothoftheaforementionederrors.Forerrorsassociatedwiththeslowlydecayingpotential ow,afewtechniqueshavebeenposedinthepasttopatchinthepotential owextendingfromthetruncatedcomputationalboundarytoin nity.RennichandLele[31]proposeatechniquefortwounboundeddirectionsandoneperiodicdirection.Theirmethodisbasedonmatchingthenumericalsolutiontoanalyticalrepresentationofthesolu-tiontoLaplaceequationoutsideacylindricalvolume.Theyreporta50%increasepertimestepforatypicallarge-scalecomputation,butthiscostismorethano setbytheabilitytousemuchmorecompactdomains.Wang[39]presentsasimilarapproachfortwo-dimensional owintheformofacorrectiontoatrialsolutionthatsatis esanincorrectDirichletboundarycondition.Vortexparticlemethodsinprincipleautomaticallyaccountfortheextensivepotential owgeneratedbythevorticity.However,inpracticeitisoftennecessarytoremoveparticlesthatadvecttolargedis-tancefromtheregionofinterest.Aninterestingtechniquetoreduceerrorsassociatedwithremovalofparticlesiscalledmerging,wherebythecirculationsofseveralvortexparticlesarecombinedintoasingleelementwhentheyaresu cientlyfarfromthebody[34,32].
Thesecondtypeoferrorassociatedwithvorticityadvectingordi usingthroughtheboundaryistypicallyhandledbyposingout owboundaryconditions.Forincompressible owtheseareusuallycalledconvectiveboundaryconditions,whereasincompressible owthetermnon-re ectingboundaryconditionisoftenused.Anothertechniqueistoselectivelyapplydampinginaregionnearthecomputationalboundary.Methodsthatemploythistechniquevaryfromadhocspeci cationoflayerwidth,dampingstrength,etc.,totechniquesthattheoreticallyspecifythedampingparametersaccordingtoamodel.Anexampleistheperfectlymatchedlayer[1]forlinearwaveequations(includinglinearizedcompressibleEulerequations[12])thatusesanalyticalsolutionstothegovern-ingequationstoderivedampingtermsthatpreventre ec-tionofwavesfromtheinterface.Anothertechniquecalledsuper-grid[6]isbasedonananalogywithturbulencemod-eling–thatthee ectoftheturbulencemodelistomodelscalestoo netoberesolvedinthecomputationalmesh,whereasthee ectoftheboundaryconditionistomodelscalestoolargetoberesolvedinthecomputationaldomain.Afulldiscussionofthesetechniquesisbeyondthescopeofthispaper;wereferthereadertosomerecentreferencesforfurtherdetails[33,15,25,5].Thesetechniquesaredesignedtoremovevorticityfromthedomainassmoothlyaspossibletherebypreventingundesirablere ec-tionsoraliasing.Mostdonotaccountforthevelocityinducedbyvorticitythathasalreadyexitedthedomain(anon-locale ect).
Wepresenthereanalternativetechniquethatsharessomefeatureswiththesepreviousmethods,especiallythoseof[31,34,6].Itisbasedonamulti-domainapproachthatalsosharessomeoperationswiththemultigridmethodforsolvingellipticequations.We rstdescribethemethodinwords.Thebasicideaistoconsiderthedomainasembeddedinalargerdomainbutwithacoarsermesh.Thecirculationontheinner(smaller, ner)meshistheninterpolatedorcoarsi edontotheouter(larger,coarser)mesh.ThePoissonequationissolved(withzeroboundaryconditions)ontheouterdomain.ThissolutionistheninterpolatedalongtheboundaryoftheinnermeshandthePoissonequationissolved,withthe‘‘corrected’’boundaryvaluespeci ed,ontheinnermesh.
Similartothevortexmergingmethoddiscussedabove,anyexistingcirculationintheouterportionofthelargerdomainisretainedfromtheprevioustimelevel.Inthisway,weapproximatelyaccountforcirculationthathasadvectedordi usedoutoftheinnerdomain.Clearly,thesolutiononthecoarsermeshcontainsalargertruncationerrorfortheevolutionofthisvorticity.However,inversionoftheLaplacianisasmoothingoperation.Highfrequencycomponentsofthesolutioninducedbycirculationintheoutermeshdecaymorerapidlythanlow-frequencycompo-nents.Beinginterestedinthe owinthevicinityofthebody(anditswake),wediscardthesolutionsintheouterregiononlyretainingthevelocityitinducesontheinnerdomain.
Weapplythistechniquerecursivelyanumberoftimes,enlarging(andcoarsening)thedomainineachgridlevel.Wechoosetokeepthetotalnumberofgridpointsineachdirection xedoneachmesh;wemagnifythedomainandcoarsenthegridbyafactorof2ateachgridlevel.Thepro-cedureisshownschematicallyinFig.5.Thevorticityisrepeatedlycoarsi edoneachprogressivegrid.ThePoissonequationisthensolvedonthelargestdomain,inturnpro-vidingaboundaryconditionforthenextsmallerdomain.Theprocessisthenrepeateduntilwereturntotheoriginaldomain.
Thevelocity elddecaysalgebraicallyinthefar- eldandwethusexpecterrorsassociatedwiththeboundaryconditiononthelargestdomaintodecreasegeometricallyasthesizeofthelargestdomainisincreased.Intheworstcaseofatwo-dimensional owwithnon-zerototalcircula-tion,thevelocitydecayswiththeinverseofthedistancetothevorticalregion.AnalyticalestimatesgiveninAppendixBshowthatweobtainafactorof4reductioninthebound-aryerrorwitheachprogressivelylargergrid.This,ofcourse,iswhatwouldbeobtainedbysimplyextendingtheoriginalgridtoadistanceequaltotheextentofthelargestgrid,butduetothecoarseningoperation,thecostincreaseslinearlywithincreasingextent,ratherthanqua-dratically(intwodimensions)orcubically(inthreedimensions).
Themethodcanthusbewrittenasfollows.Wede nethedomainofeachgridasDðkÞ,k=1,2,...,Ng,wherek=1referstotheoriginal(smallest)gridandk=Ngreferstothelargestone.Wethende nethemulti-domaininverseLaplacian
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462139
~s¼SKÀ1Sc~
;ð28Þ
where~cisanarbitraryinputvector(withlengthequaltothenumberofdiscretecirculationvaluesonthegrid),~sisthesolution(withlengthequaltothenumberofdiscretestreamfunctionvalues),andtheoperatorSKSimpliesthefollowingoperations:
~cð1Þ¼~c8
;
ð29Þ>~cðkÞwherex2DðkÞnDðkÀ1Þ;~cðkÞ¼<
:
PðkÀ1Þ!ðkÞð~cðkÀ1ÞÞwherex2DðkÀ1Þ>;
ð30Þk¼2;3;...;Ng;~sðNgþ1Þ¼0;
ð31Þ~sðkÞ¼SKÀ1Sc~
ðkÞþbcs½Pðkþ1Þ!ðkÞð~sðkþ1ÞÞ ;k¼Ng;NgÀ1;...;1;ð32Þ~s¼SKSc~
¼~sð1Þ:ð33Þ
HereP(kÀ1)!(k)(k)!(kÀ1)isa ne-to-coarseinterpolationoperator
andPisitscoarse-to- necounterpartrestrictedtooDðkÀ1Þbybcs.
InconstructingP,itwouldbedesirabletopreserve(tomachineroundo )certainmomentsofthecirculationdis-tributionsothatthevelocitydecayratefarfromthebodyiscorrect.Inthepresentimplementation,weattempttopreserveonlythetotalcirculation.Switchingfrommatrix/vectortopoint-operatornotation,wewrite,forthetwo-dimensionalcase,
PðkÀ1Þ!ðkÞðc~
ðkÀ1ÞÞðkÀ1Þ
2i;2j¼~ci;jþ1ðkÀ1Þ1ðkÀ1Þ
2~ciÀ1;jþ2~ciþ1;j
þ12~cðkÀ1Þi;jÀ1þ12~cðkÀ1Þi;jþ1þ14~c
ðkÀ1ÞiÀ1;jÀ1þ14~cðkÀ1Þ1ðkÀ1Þiþ1;jÀ1þ4~ciÀ1;jþ1þ1ðkÀ1Þ4~c
iþ1;jþ1
:ð34ÞThe9-pointstencilleadstoaconservationofthetotalcir-culationandissecond-orderaccuratebasedonaTaylor-seriesexpansion.Wenotethatthecoe cientsinEq.(34)sumto4sincethecirculationinthe(dual)cellisthevortic-itymultipliedbythearea,andcoarsifyingthegridbyafac-torof2resultsinafactorof4increaseincellarea.Thethree-dimensionalversionofEq.(34)consistsofaveragingEq.(34)overtwoadjacent(i,j)planesofdatanormaltothevorticitycomponent,foreachofthethreecomponents.Forthecoarse-to- neinterpolationattheboundaryofthenext- nermesh,weusethevaluefromthecoarsermeshforthosegridpointsthatcoincide,andamid-pointlinearinterpolation(againsecond-orderaccurate)forthosepointsinbetween.
Wenotethatcirculationisonlystrictlypreservedifthereisnovorticityadvectingordi usingoutoftheoriginaldomain.Duringvorticitytransferfrom netocoarsemesh,circulationisonlypreservedtothelevelofdiscretizationerror,sincethediscretizationerrorisdi erentoneachmeshandadvectionanddi usionratesarethereforeslightlydi erent.Testsbelowcon rmthatchangesincircu-lationasstructurespassbetweenthedi erentdomainsareappropriatelysmall.
Utilizingthemulti-domaindescriptionofthecirculationandsolutionofthePoissonequation,wenowwritetheoverallsystemofequationstobesolvedateachtime-step.S IþbDt
K
ScðkÞ
ü 2IÀbDtCTC
cðkÞnþDtð3CTNðqðkÞnÞÀCTNðqðkÞnÀ1
22
ÞÞþDt
bckÞðcðkþ1ÞÃÞ þ½Pðkþ1Þ!ðkÞðcðkþ1Þn2
cð½Pðkþ1Þ!ðÞ Þ; k¼Ng;NgÀ1;...;1;
ð35ÞECSKIþbDtK À1
!SðECÞT~f¼ECSKScð1ÞÃþ1
2
ÀunB;ð36Þcnþ1¼cð1Þ
Ã
ÀS IþbDt2
K À1
SðECÞT~
f;ð37Þsnþ1¼SKScnþ1:
ð38Þ
Notethatinsolvingforthestreamfunctionatthenexttimestep,Eq.(38),wesavethecoarsi edcirculation eldsandstreamfunctionstouseontheright-handsideofEq.(35)atthenexttime
step.
一些ME专业提升的论文。
2140T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
Whenvorticity(j)crossestheboundaryofagivengridlevel,thec eldsarenotnecessarilysmoothacrosstheinterfaces,especiallyatthecoarsestlevels.Thepropagationofavortexthroughmeshlevelsisexaminedinthenextsec-tionanditispossibletoseesomeslightinternalre ectionsofthelocalcirculationneartheboundary.However,theerrorsremaincon nedtoasmallregionneartheboundaryanddi usedovertimebythephysicalviscosity.
Themulti-domaintechniquecomeswithasigni cantincreaseincomputationalexpense.SincewenowsolvetheintermediatevorticityequationeachPoissonequationNgtimes,theoperationcountgoesupbyafactorofNg.Nevertheless,itenablesustoutilizethefastalgorithmdescribedintheprevioussection.Moreover,we ndthatthemulti-domainissu cientlyaccuratethatcomputa-tionaldomaincanbemadesnugaroundthebody.Runtimesforparticularexamplesarediscussedbelow.
Wenotethatinmanysituations,itisdesirabletospecifyauniform owaboutabody.Thisissimpletoaccomplishinthenullspaceformulation,asthereisnocirculationasso-ciatedwithit.Oneneedonlyaddtheuniform owtoqn
resultingfromEq.(27)andtounþ1
inEq.(36)onecouldaddanypotential owB
.Inprincipleinthisway,atleastpro-videditsatis esthediscretePoissonequationwithzeroright-handside.5.Validationexamples
5.1.Velocity eldforanOseenvortex
Thetwo-dimensionalvelocity eldassociatedwithaGaussiandistributionofvorticity(Oseenvortex)iscom-putedwiththemulti-domainboundaryconditions.Thistestisusedtovalidatethemethodologysinceitispossibletoderiveanalyticallytheexpectedimprovementinmulti-domainsolutionwithincreasingNgforthiscase.Asdis-cussedabove,thelargestdomainusesnopenetration/nostressboundaryconditions.Ananalyticalsolutionforthevelocity eldwiththeseboundaryconditionsmaybecon-structedbythemethodofimagessuchthattheexpectederrorforthemulti-domainboundaryconditionscanbeevaluated.TheprocedureisstraightforwardandisdescribedinAppendixB.Theresultsshowthattheerrorshoulddecreaseas4ÀNgingeneral,andforthespecialcaseofasquaredomain,therateimprovesto16ÀNg.Thevorticity eldisinitializedwithxðx;yÞ¼
C4pmeÀr2
;ð39Þwherer¼pt
x2þy2isthedistancefromtheorigin.Theanalyticalsolutionfortheazimuthalvelocityis
uC r2 hðx;yÞ¼2pr
1ÀeÀ:ð40Þ
Westartthecomputationattimet=t0andchooseCandt0suchthatthemaximumspeedisUatr=R.Inwhatfol-lows,alllengthsandvelocitiesarenormalizedbyRandU,
respectively.Thevorticityisevaluatedattheverticesofarectangulardomainwithuniform(andequal)gridspacinginbothdirectionsandthePoissonequationissolvedusingthemulti-domainmethoddiscussedabove.InFig.6,con-toursofthevelocityinthexdirectionareplottedforacasewithNg=5;thevelocitycomputedoneachofthe vedo-mainsareoverlaidtoshowthatthevelocity eldremainssmooththroughthedomaintransitions.InFig.7,theL1errorofu(theentirediscretevelocity eld)isplottedasNgisvariedfrom1to5,fortwodi erentcomputationaldomains.Fortherectangulardomainextendingto±4and±8intheNxandydirections,respectively,thedecayfol-lowsthe4ÀgtheoreticalestimatethroughNg=5.ForthesquaredomainÀNextendingto±5ineachdirection,weob-servethe16gdecaydowntoerrorsaround10À3whichcanbeshowntoberoughlythelevelofthetruncationerrorforthesecond-order nitevolumemethodatthisgridden-sity.Forthenon-squaredomain,werequireaboutNg=5toreducetheboundaryconditionerrortoasimilar
level.
Fig.6.MultidomainsolutionofthePoissonequationwithNg=5foranOseenvortex.Contoursofthevelocitycomponentinthexdirectionareplottedforeachofthe5grids.Thesmallestgridextendsto±5R,withgridspacingD=0.05R.Contourlevels:min=À0.2,max=0.2,increment=
0.02.
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462141
5.2.PropagationofanOseenvortex
Inordertoevaluateerrorsassociatedwithvorticityadvecting/di usingthroughthecomputationalboundary,weagainusetheanalyticalsolutionassociatedwithanOseenvortex.Thevortexisinitializedat(x,y)=(0,0)andadvectedbyanotherwiseuniform owwithspeedequaltothemaximumvelocityofthevortex.ThevorticityandazimuthalvelocityarestillgivenbyEqs.(39)and(40),respectively,r¼q
butðxÀUtÞ2
þy2 withtheradius,rrede nedwith.
Again,Candtheinitialtime,t0aresetsothatatt=t0,themaximumspeedassociatedwiththevortexaloneisUandoccursatr=R.AgainwesetRe=300.
Fig.8showstheerrorinthevelocityattheoriginforadomainthatnominallyextendsto±5RwithD¼0:05.Sincethevelocitydecayslike1/r,ithasalong-rangeR
e ect.Toachievelessthan1%errorwithoutcorrectedboundaryconditions,thedomainwouldneedtoextendto±100R.Theerrorisinitiallyzero(evenwiththeuncorrectedboundaryconditions)duetosymmetry.Astimepro-gresses,theerrorincreasesandreaches25%forNg=1.Thisoccursasthevortexpropagatesthroughtherightboundaryofthedomain.WithNg>1,thevortexispro-gressivelytransferredtothenextlargestmeshatintervalsoftime5·2nÀ1,n=1,...,Ng.WithNg=5,theerrorstaysbelow1%uptonon-dimensionaltime80,whenitleavesthecoarsest,largestmesh.Therearesmalloscillationsintheerrorevidentduringgrid-to-gridtransfertimes.Theassociatedtotalcirculationchangesbyatmost5%duringthesetransfers.WithNg=10,errorfromtheboundaryconditionisundetectableuptotime100andtheerroriscontrolledbythesecond-orderdiscretizationerrorandstaysbelowabout0.2%.Thesolutionattime100isshowninFig.9onthelargestmesh.Themagni edregionisshownasinaninsetandshowscontoursofthevorticityandnormalvelocity.Bytime100,thevortexwouldhavephysicallydi usedtoacoresizeofabout1.6R,whereasthegridspacingonthelargestdomainis12.8R!Theveloc-ity eldnearthecoreiscompletelywrong,butthecircula-
tionisnearlyconservedandthisinducesthecorrectpotential owfarfromthecore.Thephysical(smallest)domainisalsodepictedontheplotand,asisshowninFig.8,theerrorattheoriginisstilllessthanaboutoneper-centofthecorrectvalueatthattime.5.3.Potential owoveracylinder
Asa nalexample,weconsiderthepotential owinducedatt=0+byanimpulsivelystartedcylinderofdiameterD.Theimmersedboundaryuses571equallyspacedLagrangianpointsandthedomainisde nedsnuglyaroundthebody,extendingto±0.55DineachdirectionwithgridspacingD=0.0055D.Weinitiateauniform
ow
一些ME专业提升的论文。
2142T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
withspeedUandletthebody‘‘materialize’’att=0.Thesolutionisobtainedbyperforming1time-stepoftheNavier–Stokessolutionusingthefastmethodwithmulti-domainboundaryconditions.A ow eldobtainedwithNg=4ispresentedwiththeexactpotential owsolutioninFig.10.Thestreamlinesarefoundtobeinagreementwithaslightdi erenceneartheimmersedboundaryduetotheregularizednatureofthediscretedeltafunction.InFig.11,wecomparetheexactpotential owsolutiontothenumericalsolutionalongthetopboundaryoftheinner-mostdomainfordi erentNg.WeobservetheestimatedOð4ÀNgÞconvergenceÀ3(seeAppendixB)downtoalevelofabout10afterwhichtheleading-ordererrorisdomi-natedbythetruncationerrorarisingfromthediscretedeltafunctionsattheimmersedboundaryandthediscretizationofthePoissonequation.6.Performanceofthefastmethod
Weconcludebymeasuringtheperformanceofthefastnullspace/multi-domainimmersedboundarymethodcom-paredtotheoriginalperformancebytheIBPM.First,wesimulate owsoverastationarycircularcylinderofdiam-eterDandcomparetopreviouslypublishedresults[18,36].ComputationsareperformedonthedomainDð1Þ¼½À1;3 ½À2;2 withD=0.02DwhereNgisvariedbetween1and5.Thecylinderiscenteredattheorigin.The owisimpulsivelystartedatt=0,andthebodyissta-tionary.ThustheCholeskydecompositionisusedtosolveEq.(36).
Aftertransiente ectsassociatedwiththeimpulsively-started owhavediedaway,weexaminewakestructuresandforcesonthecylindersfromfordi erentvaluesofNg.ThesearecomparedwithpreviousresultsforRe=40and200inTables1and2,respectively.Forthesteady owatRe=40wereportcharacteristicdimensionsoftherecir-culationbubbleinthewake,andfortheunsteady owatRe=200,wereportsheddingfrequencyand uctuatingliftanddragcoe cients.CharacteristicdimensionsofthewakeareillustratedinFig.12.ItisevidentthatasNgisincreased,thefastmethodgivesnearlyidenticalresultstothepreviouslypublisheddata.ItappearsthatNg=4issuf-
Table1
Comparisonofresultsfromthefast-methodwithpreviouslyreportedvaluesforsteady-state owaroundacylinderatRe=40
l/d
a/db/dhCDSpeed-upRe=40
Present(Ng=2)1.690.600.5553.4°1.9225.8Present(Ng=3)2.010.670.5854.0°1.6818.5Present(Ng=4)2.170.700.5953.8°1.5814.2Present(Ng=5)2.200.700.5953.5°1.5511.3LinnickandFasel[18]2.280.720.6053.6°1.54–TairaandColonius[36]
2.30
0.73
0.60
53.7°
1.54
1
Table2
Comparisonofresultsfromthefast-methodwithpreviouslyreportedvaluesforunsteady owaroundacylinderatRe=200
St
CD
CLSpeed-upRe=200
Present(Ng=2)0.2061.47±0.049±0.66121.1Present(Ng=3)0.2001.40±0.052±0.7084.7Present(Ng=4)0.1971.36±0.046±0.7065.4Present(Ng=5)0.1951.34±0.045±0.6853.0LinnickandFasel[18]0.1971.34±0.044±0.69–TairaandColonius[36]
0.196
1.35±0.048
±0.68
1
cienttorecoverthepreviousresults.Notethatfortheori-ginalIBPM,computationsareperformedoveradomainof[À30,30]·[À30,30]by300·300stretchedgridpointswiththe nestresolutionofDx=Dy=0.02.ThetimestepforallcasesarechosentobeDt=0.01tolimitthemaxi-mumCourantnumberto1.
Inthetables,speed-upisde nedasthetimerequiredtocomputethelast50timestepsinthesimulationsnormal-izedbythetimeelapsedfortheoriginalIBPM.Bymeasur-ingthelast50timesteps,wegiveaconservativeestimateforspeed-upsincetheoriginalmethodisiterativeandtyp-icallyrequiresmanymoreiterationsforearliertimes.ThuswithNg=4thefastmethodreducesthecomputationaltimebyafactorofabout15forthesteady owand65fortheunsteady ow.Wehavefoundsimilarspeed-upsinavarietyofproblemsonwhichwehavetestedthecode.Wenotethatwehavethusfaronlyimplementedthefastmethodintwodimensions(theoriginalalgorithmhas
been
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462143
validatedinbothtwoandthreedimensions).Speed-upsforthree-dimensionalproblemsarelikelytobemoredramaticasdiscussedinSection3.3.
Next,wecomparethespeed-upfromforatranslatingcircularcylindersimulatedbymovingtheLagrangianboundarypoints.NowEq.(36)issolvediterativelywiththeconjugate-gradientmethod.Acylinderoriginallyattheoriginatt=0isimpulsivelytranslatedtotheleftwithunitvelocitywithRe=200.TheinnermostdomainisselectedasDð1Þ¼½À5;1 ½À1;1 withD=0.02DandweuseNg=4multi-domains.Insidethishighlycon nedDð1Þ,thetranslatingcylindergeneratestwocounterrotat-ingvorticesinthewakeasshowninFig.13fort=3.5.Thevorticitypro leisinaccordwithpreviousresultsreportedin[36].Comparedtoacomputationperformedwiththeoriginalapproach,thepresentcomputationisfoundtobe43.4timesfaster.Recallthataspeed-upof53.0isobservedforastationarycylinder(Table2),whichsuggeststhattheoverallalgorithmisstillsolvede cientlyevenwithamovingimmersedboundary.7.Summary
Wehavereportedonimprovementstotheimmersedboundaryprojectionmethodfor owovertwo-andthree-dimensionalbodieswithprescribedmotion.Inprevi-ouswork[36],weshowedthattheIBmethodcanbeformulatedinanalgebraicallyidenticalwaytotheincom-pressibleNavier–Stokesequationswithoutanimmersedboundary.ThisformulationenablestheclassicalfractionalstepmethodtobeappliedtotheIBequations,eliminatingtheneedforanyconstitutiverelationforthemotionofthebody(andhenceassociatedsti ness),andensuringthattheno-slipanddivergence-freeconstraintsaresatis edtoarbi-trarilyhighprecision.Inthispaperweshowedthatthesolutioncanbesubstantiallyacceleratedbyemployinganullspace(discretestreamfunction)methodtosatisfyingthedivergencefree-constraint,andbyrestrictingthecom-putationtoequally-spacedmeshes.
Inthisfastmethod,theviscousterms,divergence-free,andno-slipconstraintsarestilltreatedimplicitly,butthelinearsystemsassociatedwiththePoissonequationandimplicitviscoustermscanbesolvedirectlywithfastsinetransforms.Inthesolution,thedivergence-freeconstraintisautomaticallysatis edtomachineprecision.Forstation-
arybodies,theno-slipconstraintcanalsobeenforcedtomachineprecisionbydirectsolutionoftheequationforthebodyforcesbyusingaCholeskydecomposition.Formovingbodies,iterativesolutionofthelinearsystemforthebodyforcesisstillrequired,butthesizeofthesystemisproportionaltothenumberofLagrangiansurfacepoints;thematrixispositivede niteandtheconjugate-gradienttechniqueise cientforitssolution.
NeartheIB,therestrictiontouniformmeshisastan-dardrequirementofthediscretedeltafunction;however,farfromthebody,thiswouldingeneralbeoverlyrestric-tiveasitisusefultostretchthemeshsothatthedomaincanbemadelargetoapproachthesolutiononanunboundeddomain.Wepursuedanalternativestrategyofimprovingthefar- eldboundaryconditionstothepointwherethedomaincanenclosethebody(andtheportionofthewakeonewishestoresolve)snugly.Wederivedamulti-domaintechniquethatsolvesthePoissonequationonprogressivelylarger,butcoarser,meshes.Vorticityisallowedtoadvectanddi usefrom nertocoarsermesh.Theresulting owontheoriginaldomainthenaccountsforboth(i)theslowlydecayingpotential owinducedbythebodymotion,and(ii)theslowlydecayinginducedvelocityassociatedwithvorticitythathasadvectedtolargedistancefromthebody.Whilethereiscostpenaltyassoci-atedwiththemulti-domainsolution,theoverallschemeemployingthefastnullspacemethodandmulti-domainboundaryconditionsisstillmorethananorder-of-magni-tudefasterthanouroriginalmethodintwodimensions.Thespeed-upresultsfrombene tsassociatedwiththefastnullspacemethodaswellasbeingabletousemorecom-pactdomains.
Thefastnullspacemethodandmulti-domainboundaryconditionsareequallyvalidforbothtwo-andthree-dimensional ows.Two-dimensionaltestcasesincludingstationaryandadvectingOseenvorticesand owoverimpulsively-startedcylindersdemonstratetheaccuracyofthemulti-domainboundaryconditions.WenotethatthetechniquesaregenerallyapplicabletotheincompressibleNavier–Stokesequationsonunboundeddomainswithorwithoutimmersedboundaries.Themulti-domaintech-nique,inparticular,shouldproveusefulinsimulating owsthatinvolveweakinteractionsof nite-circulationvorticesthathaveplaguedmethodsemployingperiodicorothersimpli edboundaryconditionsinthepast(e.g.[10,14]).
Acknowledgements
TheauthorsthankProf.BlairPerotfortheenlighteningdiscussionsonthefractionalstepmethod.Theexperimen-taldatapresentedinSection2.2weregenerouslysharedbyDr.WilliamDickson.ThisworkwaspartiallysupportedbytheUnitedStatesAirForceO ceofScienti cResearch(AFOSR/MURIFA9550-05-1-0369)andtheNationalScienceFoundation
(DMS-0514414).
一些ME专业提升的论文。
2144T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
AppendixA
Examplesofthepoint-operatornotationimpliedbysomeofthematrix–vectormultipliesinthepaperaregivenhere,forthe(relevant)caseofauniform,two-dimensional,staggeredgridwithequalgridspacing,D,inbothdirections(forwhichM=I).Theseoperatorscanallbesimplyderivedasspecialcasesofthoseusedforunstructuredmeshes[4],andthree-dimensionalversionsarestraightfor-ward.Notreportedherearetheregularization/interpola-tionoperators(E,H)whicharegivenby[36].Inwhatfollowsthesubscriptsiandjrefertotheithandjthcellsinthexandydirections,respectively,andthesuperscript(k),ifpresent,referstothekthcomponentofavectorquantitysuchasvelocityorgradientofpressure.ðDqÞð1Þ
ð1Þ
ð2Þ
ð2Þ
i;j¼qiþ1;jÀqi;jþqi;jþ1Àqi;j;
ð41ÞðGpÞð1Þ
i;j¼pi;jÀpiÀ1;j;
ð42ÞðGpÞð2Þ
i;j¼pi;jÀpiÀ1;j;ð43ÞðCsÞð1Þ
i;j¼si;jþ1Àsi;j;
ð44ÞðCsÞð2Þ
i;j
¼Àðsiþ1;jÀsi;jÞ;
ð45Þ
ðCTqÞ¼qð2Þ
ð2Þ
ð1Þ
ð1Þ
i;ji;jÀqiÀ1;jÀðqi;jÀqi;jÀ1Þ;
ð46Þ
ReD2ðLqÞðkÞ
ðkÞ
ðkÞ
ðkÞ
ðkÞ
ðkÞ
i;j¼qiþ1;jþqiÀ1;jþqi;jþ1þqi;jÀ1À4qi;j;k¼1;2:ð47Þ
AppendixB
Inthisappendix,wederivethetheoreticalestimatesfor
thevelocityerrorexpectedfromtheuseofmulti-domainboundaryconditionsforthePoissonequation.Wecon-siderthevelocityerrorsforpotential owaroundacylin-derandstationaryOseenvortexdiscussedearlierintheSection5.
B.1.Errorestimateforpotential owoveracylinderLetusconsideracircularcylinderofdiameterDsituatedattheorigininsidearectangulardomain[ÀL/2,L/2]·[ÀrL/2,rL/2].SidelengthLheredenotesthesizeofthesmallestDð1ÞandwerepresentNthesizeofthelargestdomainDðNgÞbyaL,wherea¼2g=2.Aspectratioofthedomainsisdenotedbyr.Toassessthevelocityerror,wecomputethevelocityerrorattopcenterofDð1Þðx¼
0;y¼r
LÞ.Otherpointsinthedomainscalesimilarly.Theexactpotential owsolutionatthispointforanunboundeddomainis
"u1þ D
2#
exact¼UL;ð48Þ
whereUisthefreestreamvelocityvalue.Thecorrespond-ingverticalvelocityviszeroatthispoint.
Toestimatetheerrorinducedbythemulti-domain
approach,thee ectofDirichletboundaryconditionsonthelargestdomaincanbeassessedusingthemethodofimages.Assumingthecylinderisplacedattheorigin,weobtain:X1uimages¼UþU
X1ðÀ1Þ
iþj
ðD=2Þ2ðy22
jÀxiÞ;
ð49Þ
i¼À1j¼À1
ðx2iþ
y2jÞ
wherexiandyjcorrespondstothedistancefromthecenter
ofÀthe(i,j)thÁcylindertothepointoferrorassessmentx¼0;y¼r
L.Substitutingxi=aLiandyandsubtractingtheexact(free-space)solution,j¼arLjþrLweobtain,theerror ¼uimagesÀuexact
1¼ÀUD2UD2XX1iþjr2Àjþ12a
2Ài2r2L2þ4a2L2ðÀ1Þi¼À1j¼À1r2jþ1222þi
UD2UD2p21
¼ÀXr2L2þ4a2L24ðÀ1Þjfcsch2½bjða;rÞ
j¼À1
þsech2½bjða;rÞ g;
ð50Þ
wherebjða;rÞ¼follows.Forthe4a
ð1þ2ajÞ.Thesumcanbebrokenupasj=0term,aTaylorseriesexpansionforlargeaisused.Forj50,1+2ajcanbereplacedby2ajforlargeaintheexponentials.Wethenobtain:
¼ÀUD2p2 1
L8a2
3
þCðrÞ!
þOðaÀ4Þ;ð51Þwherethesum
CðrÞ¼X
1ðÀ1Þj
csch2
prj þ2 prj !ð52Þ
j¼1
2sech2isindependentofaandcanbeevaluatednumericallyforagivenaspectratio,r.Thusweobtaintheestimate
$ÀUD2 1
L3þCðrÞ!4ÀNg;ð53Þwhichisthedesiredresultthatshowsthattheerrorde-creasesgeometricallywithincreasinggridlevel.Notethat
wecanbemoreprecisebynotingthatthesumC(r)goesrapidlytozeroforr>1,andincreaseslike1/r2forsmallr.Thuswecanalsowrite $
UD2½minðL;rLÞ
4ÀNg:
ð54Þ
B.2.ErrorestimateforstationaryOseenvortex
FortheOseenvortex,wefollowasimilarsetupastheprevioussection,butplaceanOseenvortexattheoriginofthedomain.ÀWenowconsiderthenormalvelocityerroratthepointx¼L
;y¼0Á.Assumingthattheboundaryoftheinnermostdomainisoutsidethevortexcore,wehave
一些ME专业提升的论文。
T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–21462145
vexact¼
C
2pðL=2Þ
;
ð55Þ
whereasthesolutionwithDirichletboundaryconditionsis
uCimages¼X1X1aLiþL2paðÀ1Þiþji¼À1j¼À1aLiþLrjÞ2;ð56Þþðasothattheerrorcanbewritten(aftersimilarsimpli cationstoanalysisintheprevioussection)
¼uimages(
Àuexact
¼C p pX12pÀ2þp
arcsch2arþarðÀ1Þi½cschðcþiða;rÞÞi¼1
þcschðcÀÞÞ
'
iða;rð57ÞwherecÆiða;rÞ¼2arð1Æ2aiÞ.Again,wecanexpandthetermsforlargea.Inthiscase,however,caremustbetakeninevaluatingthesumforlargeasincethesumiszeroto rstorderina.Weobtainasimilarresulttotheprevioussection,namely
$
C
minðL;rLÞ
4ÀNg:
ð58Þ
Afurthercancellationbetweenthesecondandthirdtermsontheright-handsideofEq.(57)occurswhenr=1.Wecanthenshowthat $
CÀNL
16g
whenr¼1:
ð59Þ
References
[1]J.P.Berenger,Aperfectlymatchedlayerfortheabsorptionofelectromagneticwaves,put.Phys.114(1994)185–200.
[2]R.P.Beyer,R.J.LeVeque,Analysisofaone-dimensionalmodelfortheimmersedboundarymethod,SIAMJ.Numer.Anal.29(2)(1992)332–364.
[3]A.B.Cain,J.H.Ferziger,W.C.Reynolds,Discreteorthogonalfunctionexpansionsfornon-uniformgridsusingthefastFouriertransform,put.Phys.56(1984)272–286.
[4]W.Chang,F.Giraldo,B.Perot,Analysisofanexactfractionalstepmethod,put.Phys.180(2002)183–199.
[5]T.Colonius,Modelingarti cialboundaryconditionsforcompress-ible ow,Annu.Rev.FluidMech.36(2004)315–345.
[6]T.Colonius,H.Ran,Asuper-grid-scalemodelforsimulatingcompressible owonunboundeddomains,put.Phys.182(2002)191–212.
[7]E.A.Fadlun,R.Verzicco,P.Orlandi,J.Mohd-Yusof,Combinedimmersed-boundary nite-di erencemethodsforthree-dimensionalcomplex owsimulations,put.Phys.161(2000)35–60.
[8]R.Glowinski,T.W.Pan,J.Pe
´riaux,DistributedLagrangemultipliermethodsforincompressibleviscous owaroundmovingrigidbodies,Comput.MethodAppl.Mech.Engrg.151(1998)181–194.
[9]D.Goldstein,R.Handler,L.Sirovich,Modelingano-slip owboundarywithanexternalforce eld,put.Phys.105(1993)354–366.
[10]P.M.Gresho,Incompressible uiddynamics:fundamentalformula-tionissues,Annu.Rev.FluidMech.23(1991)413–453.
[11]C.A.Hall,NumericalsolutionofNavier–Stokesproblemsbythedual
variablemethod,SIAMJ.Alg.Disc.Methods6(2)(1985)220–236.
[12]F.Q.Hu,OnabsorbingboundaryconditionsforlinearizedEuler
equationsbyaperfectlymatchedlayer,put.Phys.129(1)(1996)201–219.
[13]J.C.R.Hunt,A.A.Wray,P.Moin,Eddies,stream,andconvergence
zonesinturbulent ows,CenterforTurbulenceResearch,Rep.CTR-S88,1988.
[14]D.S.Pradeep,F.Hussain,E ectsofboundaryconditioninnumerical
simulationsofvortexdynamics,J.FluidMech.516(2004)115–124.
[15]G.Jin,M.Braza,Anonre ectingoutletboundaryconditionfor
incompressibleunsteadyNavier–Stokescalculations,put.Phys.107(1993)239–253.
[16]i,C.S.Peskin,Animmersedboundarymethodwithformal
second-orderaccuracyandreducednumericalviscosity,put.Phys.160(2000)705–719.
[17]D.K.Lilly,Onthecomputationalstabilityofnumericalsolutionsof
time-dependentnon-lineargeophysical uiddynamicsproblems,Mon.Wea.Rev.93(1)(1965)11–26.
[18]M.N.Linnick,H.F.Fasel,Ahigh-orderimmersedinterfacemethod
forsimulatingunsteadyincompressible owsonirregulardomains,put.Phys.204(2005)157–192.
[19]W.K.Liu,Y.Liu,D.Farrell,L.Zhang,X.S.Wang,Y.Fukui,N.
Patankar,Y.Zhang,C.Bajaj,J.Lee,J.Hong,X.Chen,H.Hsu,Immersed niteelementmethodanditsapplicationstobiologicalsystems,Comput.MethodAppl.Mech.Engrg.195(2006)1722–1749.
[20]R.Mittal,G.Iaccarino,Immersedboundarymethods,Annu.Rev.
FluidMech.37(2005)239–261.
[21]J.Mohd-Yusof,Combinedimmersed-boundary/B-splinemethodsfor
simulationsof owincomplexgeometries,CenterforTurbulenceResearch,AnnualResearchBriefs,1997,pp.317–327.
[22]Y.Mori,C.S.Peskin,Implicitsecondorderimmersedboundary
methodswithboundarymass,Comput.MethodsAppl.Mech.Engrg.197(25–28)(2008)2049–2067.
[23]Y.Morinishi,T.S.Lund,O.V.Vasilyev,P.Moin,Fullyconservative
higherorder nitedi erenceschemesforincompressible ow,put.Phys.143(1998)90–124.
[24]E.P.Newren,A.L.Fogelson,R.D.Guy,R.M.Kirby,Uncondition-allystablediscretizationsoftheimmersedboundaryequations,put.Phys.222(2007)702–719.
[25]M.A.Ol’shanskii,V.M.Staroverov,Onsimulationofout ow
boundaryconditionsin nitedi erencecalculationsforincompress-ible uid,Int.J.Numer.MethodsFluid33(2000)499–534.
[26]B.Perot,Conservationpropertiesofunstructuredstaggeredmesh
schemes,put.Phys.159(2000)58–89.
[27]J.B.Perot,Ananalysisofthefractionalstepmethod,put.
Phys.108(1993)51–58.
[28]C.S.Peskin,Flowpatternsaroundheartvalves:anumericalmethod,
put.Phys.10(1972)252–271.
[29]C.S.Peskin,Theimmersedboundarymethod,ActaNumer.11(2002)
479–517.
[30]W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery,
NumericalRecipesinFORTRAN:TheArtofScienti cComputing,seconded.,CambridgeUniversityPress,1992.
[31]S.C.Rennich,S.K.Lele,Numericalmethodforincompressible
vortical owswithtwounboundeddirections,put.Phys.137(1997)101–129.
[32]L.F.Rossi,Mergingcomputationalelementsinvortexsimulations,
put.18(4)(1997)1014–1027.
[33]R.L.Sani,P.M.Gresho,Re
´sume´andremarksontheopenboundaryconditionminisymposium,Int.J.Numer.MethodsFluid18(1994)983–1008.
[34]D.Shiels,Simulationofcontrolledblu body owwithaviscous
vortexmethod,Ph.D.Thesis,CaliforniaInstituteofTechnology,1998.
[35]J.R.Shewchuk,Anintroductiontotheconjugategradientmethod
withouttheagonizingpain.Onlineathttp://www.cs.cmu.edu/~jrs/jrspapers.html(1994).
一些ME专业提升的论文。
2146T.Colonius,K.Taira/Comput.MethodsAppl.Mech.Engrg.197(2008)2131–2146
[38]X.Wang,Fromimmersedboundarymethodtoimmersedcontinuum
method,Int.J.MultiscaleComput.Engrg.4(2006)127–145.
[39]Z.J.Wang,E cientimplementationoftheexactnumericalfar eld
boundaryconditionforPoissonequationonanin nitedomain,put.Phys.153(1999)666–670.
[36]K.Taira,T.Colonius,Theimmersedboundarymethod:aprojection
approach,put.Phys.225(2007)2118–2137.
[37]K.Taira,W.B.Dickson,T.Colonius,M.H.Dickinson,C.W.
Rowley,Unsteadinessin owovera atplateatangle-of-attackatlowReynoldsnumbers,AIAA2007-710,45thAIAAAerospaceSciencesMeetingandExhibit,Reno,NV,2007.
正在阅读:
Computer Methods in Applied Mechanics and Engineering07-26
电脑及打印机的维护常识05-23
班主任入党转正申请书范文09-08
魔兽争霸3冰封王座秘籍大全05-31
幽默搞笑婚礼主持词02-23
一年级奥数天天练试题及答案11-15
对父母表达爱的作文(精选5篇)02-05
- 1EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FO
- 2aps审核-computer network
- 3aps审核-computer network
- 4中文User Stories Applied For Agile Software Development
- 5EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.
- 6EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.
- 7Chapter 11 Applied linguistics(1)
- 8Invitation Letter for Asian Conference on Computer Vision
- 9Engineering Radial Deformations in Single-Walled
- 10Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Engineering
- Mechanics
- Computer
- Methods
- Applied