《生物入侵》发表论文(英文)
更新时间:2023-05-15 13:39:01 阅读量: 实用文档 文档下载
- 生物入侵的案例推荐度:
- 相关推荐
BiolInvasions(2012)14:649–658DOI10.1007/s10530-011-0106-8
ORIGINALPAPER
Historyofexposuretoherbivoresincreasesthecompensatoryabilityofaninvasiveplant
XinminLu JianqingDing
Received:21December2009/Accepted:14September2011/Publishedonline:25September2011ÓSpringerScience+BusinessMediaB.V.2011
AbstractReleasefromnaturalenemiesisfrequentlycitedasanimportantfactorcontributingtoplantinvasions.Butsucheffectsarelikelytobetempo-rary—nativeherbivorescanformnewplant-herbivoreassociationsandco-evolvedinsectsmightreachthenewrange.Whilethepotentialeffectsoftheinitialenemyreleasehavebeenwellstudied,theconse-quencesofanyresumptionofherbivoryarepoorlyunderstood.AlternantheraphiloxeroidesisoneofthemostwidespreadinvasiveplantsinChinaandisattackedbothbyaspecialistherbivoreintroducedfromthenativerange,Agasicleshygrophila,andanativebeetleCassidapiperataHopewhichhasformedanewassociation.However,theseinsectsarenotfoundthroughouttheinvadedrange.Totesttheeffectofthehistoryofpopulationexposuretoherbivoryoncompensatoryability,plantswereculturedfrom14populationsaroundChinathatdifferedinwhetherA.hygrophilaorC.piperatawerepresent.TreatmentplantswereexposedtoherbivorybyA.hygrophilaforaweekuntil50%oftheleafareawasdefoliated,thengrownfor80days.Plantsfrompopulationswithpriorexposuretoherbivory(ofanykind)accumulatedmore
rootmassthanpopulationswithoutpriorexposure,indicatingthatpriorexposuretoinsectscanstimulateplantcompensationtoherbivory.Wewouldrecom-mendthatpotentialchangesinplanttoleranceinresponsetopriorexposuretoherbivoryareconsideredininvasiveplantmanagementplansthatemploybio-controlagents.
KeywordsBiologicalcontrolÁBiologicalinvasionÁInsectexposurehistoryÁAlternantheraphiloxeroidesÁCompensation
Introduction
Mostinvasiveplantspecieshavebeenintroducedtotheirnewrangeswithoutthefullsuiteofnaturalenemieswithwhichtheyco-evolved(e.g.naturalenemyrelease)(KeaneandCrawley2002).Intheabsenceofspecialistherbivores,invasivespeciesmayreallocateresourcesfromdefencetogrowth,repro-ductionorboth,asproposedbytheEvolutionofIncreasedCompetitiveAbilityHypothesis(EICA)
¨tzold1995).However,theenemy(BlosseyandNo
release,andtheassociated tnessgain,mightbetemporaryasnativeherbivorestendtoaccumulateonnon-nativespeciesovertime(Siemannetal.2006).Moreover,co-evolvednaturalenemies,suchasher-bivorousinsects,mightalsoeventuallyarriveeitheraccidentallyordeliberately(e.g.throughclassicalbiologicalcontrolreleases),althoughthecharacterand
X.LuÁJ.Ding(&)
KeyLaboratoryofAquaticBotanyandWatershedEcology,WuhanBotanicalInstitute/WuhanBotanicalGarden,ChineseAcademyofSciences,Wuhan,Hubei430074,Chinae-mail:ding@
123
650intensityofthere-associationbetweenplantandherbivorecandifferfromtheinteractioninthenativerange(Garcia-Rossietal.2003).
Inresponsetothere-ornew-associatedinteractionswithherbivores,invasiveplantsmayundergorapidevolutionarychangesindefence,e.g.resistanceand/ortolerance(Thompson1998).Forinstance,inpopula-tionsofinvasivewildparsnips,Pastinacasativa,therewasanincreaseintoxicfuranocoumarinscontentafterre-associationwithParsnipwebworm,Depressariapastinacella(ZangerlandBerenbaum2005),leadingtoanincreaseinherbivoreresistance.Whathasreceivedlessattentionisthepotentialforinvasiveplantstoevolvegreatertoleranceofherbivoryafterre-ornew-associationwithherbivores.
Toleranceistheabilityofaplanttore-growandreproduceafterherbivory(StraussandAgrawal1999).Plantcompensatoryability,de nedhereasthedifferencein tnessbetweenherbivorydamagedandundamagedindividualsofthesamegenotype,isknownasanimportantmeasureofplanttolerance(Belsky1986).Herbivory-inducedcompensatorygrowthforasingleplantgenotypecanrangefromunder-compensationifherbivorydamageisnotfullyreplaced,toequal-compensationifplantsfullyrecoverfromherbivory,andovercompensationifplantshavegreater tnesswhendamaged(MaschinskiandWhitham1989).Proposedmechanismsforplantcompensationincludeincreasesinphotosyntheticability,utilizationofstoredreserves,andchangesinphenologyandresourcereallocation(StraussandAgrawal1999;Tif n2000).Empiricalevidenceindicatesthatherbivorymayevolutionarilyincreaseaplant’scompensatoryability,especiallywhentheriskofdamageispredictableandhigh(JuengerandBergelson2000;Lennartssonetal.1997).Therefore,there-ornew-associatedherbivoreswouldbeexpectedtocreateaselectionpressureonthecompensatoryabilityofinvasiveplants,particularifherbivoresoccurathighdensities.
Theevolutionaryresponsesofinvasiveplantsto
herbivorehavebeenwellstudied(Mu
¨ller-Scha¨reretal.2004),providinginsightsintomanyaspectsofplantevolutionarybiology,especiallyevolutionof
plantdefence(Mu
¨ller-Scha¨reretal.2004;Thompson1998).However,almostallthesestudiesfocusonsexualplants,whilelittleinformationisavailableontheevolutionaryresponsesofclonallypropagatedinvasiveplantstoherbivores.Infact,someofthe
123
X.Lu,J.Ding
globallyimportantinvasiveplantsreproducemainlyclonally,e.g.Alternantheraphiloxeroides(Julienetal.1992)andEichhorniacrassipes(Lietal.2006),intheirnon-nativeranges.Thereisincreasingevidenceindicatingthatsomaticmutationandgenomicmodi- cationinclonalplantsarefrequentandprovidegeneticandepigeneticvariationthatcontributestotheiradaptiveevolution,especiallyforclonallyprop-agateddomesticatedplants(Prentisetal.2008;McKeyetal.2010).Moreover,intra-clonalvariationinplantdefenceandselectiveimpactsofherbivoryonplantdefencehasbeenreportedinclonalplants(MonroandPoore2004;WhithamandSlobodchikoff1981).Therefore,herbivorycanimposeselectionondefenceofclonalinvasiveplants;indeedsucheffectsarelikelytobepromotedbytheinvasionprocess(Prentisetal.2008).
Here,wereporttheresultsofanexperimentdesignedtoexaminetheconsequencesofpriorexposuretoinsectherbivoresonthecompensatoryabilityoftheclonalinvasiveplantalligatorweed,Alternantheraphiloxeroides(Mart.)Griseb(Ama-ranthaceae).Speci cally,wehypothesizedthatplantpopulationsfromsiteswithherbivoreswouldshowagreatercapacityforcompensationthanpopulationsfromsiteswithoutthem.Wealsotestedwhetherthesourceofherbivoryencountered(nativeinsects,introducedinsects,orboth)in uencedtheformofplantcompensation.
MaterialsandmethodsStudyspecies
Alternantheraphiloxeroidesisaperennialherbaceousplantwithhorizontaltoverticalstemsthatcangrowinaquaticandterrestrialhabitats.Eachstemconsistsofnodesthatarecapableofproducingindividualplant-lets.Rootsdevelopatcloselyspacednodesalongstems(Julienetal.1995).ThespeciesisnativetoSouthAmericaandhasbecomeawidespreadinvaderintheAsia–Paci cregionandtheUnitedStates(Julienetal.1995).Itwas rstintroducedintoChina(Shanghai)asaforageplantinthe1930s,andsincethenithasbeendistributedtoasmanyas20provincesinCentralandSouthernChina(Ma2001),withitsrangestillexpandinginNorthernChina(Gengetal.2007).AccordingtoJulienetal.(1992)A.philoxeroides
Insectexposurehistoryincreasesaninvader’scompensatoryability651
producesseedsinitsnativeSouthAmericanrange,butrarelysetsseedsandpropagatessolelybyvegetativemeansfromstemandrootbudsinAustralia,theUnitedStatesandChina.
Agasicleshygrophila,ahost-speci cleafgrazerofA.philoxeroides,hasbeenwidelydistributedforbiologicalcontrol(Buckingham2002).ThebeetlehascurbedA.philoxeroidesinvasioninmanyinfestedriversandponds(Ma2001;Saintyetal.1998),buthasfailedtocontroltheplantinsemi-aquaticandterres-trialhabitatsdespiteoccurringonA.philoxeroidesinthesehabitats(Ma2001).Thebeetlewas rstintro-ducedtoChinain1986,buthasnotspreadtoallareasaffectedbyA.philoxeroides(Ma2001),andsoplantpopulationshavedifferenthistoriesofre-association.InChinaA.philoxeroidesisalsodefoliatedbyanativetortoisebeetle,CassidapiperataHope(Coleoptera:Cassididae)(Linetal.1990)interrestrialhabitatsandoccasionallyinaquatichabitats(LuandDing,unpub-lished).BothA.hygrophilaandC.piperataareabovegroundherbivores.AdultsandlarvaeofA.hygrophilafeedonleavesandstemsofA.philoxe-roides,oftenproducingfeedingholesand‘‘trenches’’onleaves;adultsandlarvaeofC.piperataonlyfeedonleavesofA.philoxeroides,oftenproducingtinyfeedingholes.PreviousstudieshavefoundthatA.philoxeroidescancompensaterapidlyintermsofbiomassproductionafterdamagebyherbivory(naturalandsimulated)andmowinginterrestrialhabitats,whichmayberelatedtoitshighrootmass(Luetal.2010;LuandDing2010;Sunetal.2009;Wilsonetal.2007).Moreover,incommongardenexperimentswefoundthatA.philoxeroidescompensatesfordefolia-tioncausedbyA.hygrophilaandC.piperatainasimilarmanner(LuandDing,unpublished).
Inthisstudy,wefocusedonherbivorybyA.hygrophila.TheA.hygrophilaadultbeetlesusedinourexperimentswerecollectedfromA.philoxero-idesinthesuburbsofWuhan,HubeiProvince.Plantsamplinglocations
Inearlyspring2007,wecollectedplantsfrom14terrestrialpopulations([10kmapartfromeachother)ofA.philoxeroidesin veChineseprovinces(Table1);populationsfromthesameprovincewereassumedtobeindependentforpurposesofthisstudy.Basedonbiologicalcontrolrecords(Ma2001;Yang2001),feedingrecordsforC.piperata(Linetal.
1990),andour2006–2007 eldsurveysoninsectfeeding,thesepopulationswerecategorizedintofourgroupsbasedonthepresence(orabsence)ofA.hygrophilaandC.piperata(Table1).Ateachsitewecollected10plantsfrom4locations(40plants/population)[20mapartinopen eldsnearaquatichabitats(riverbank).Wecollectedastem(10–15cmlong)fromeachplantandimmediatelyplacedthestemsinmoistfoamincoolerswithdryicefortransporttothelaboratory.Inthelaboratorywecutstemsto4–5cmlengths;eachcutstemcontainedasinglenode.Stempieceswerethenplantedverticallyinplasticcontainers(50940930cmdeep) lledwithahomogenizedmixtureofpeat,topsoilandsandinagreenhouseundernaturallightatWuhanBotan-icalGarden(ChineseAcademyofSciences).Thecontainerswerecagedtoexcludeherbivores.Toreducethepossiblecarryoverimpactofparentalenvironmentonplantcompensation,weremoved4–5cmstempieces(eachbearingonenode)fromthenewshootsforourexperimentsafter10weeks.
Herbivorytreatments
TheexperimentwasconductedinagreenhouseatWuhanBotanicalInstitute/WuhanBotanicalGarden(ChineseAcademyofSciences)fromApriltoearlyDecember,2007.Meandailyairtemperatureinthegreenhousewas20–35°CfromlateApriltoSeptemberand15–25°CfromOctobertoearlyDecember.
Threerandomlyselectedstempiecesfromthesamepopulation(stemsfromthesamepopulationweremixedtogetherbeforeplanting)wereplantedverti-callyinapot(16cmindiameter,14cminheight) lledwithahomogenizedmixtureofpeat,topsoilandsand.Twentydaysbeforeherbivorytreatment,weretainedsimilar-sizedplantsandthinnedtheplantstooneplantperpottominimiseplantsizevariationamongpots.Dependingontheavailabilityofstempieces,therewere34–46plantsperpopulation.
Halfthepottedplantsforeachpopulationreceivedinsects(herbivorytreatment:50%oftheleafareaofeachplantwasremovedbyherbivores),andhalfservedascontrols(undamagedcontrol)(giving17–23replicatesforeachtreatment).Twodaysbeforeherbivorytreatment,halftheshootsforeachplantwerecaged.Intheherbivorytreatment,6–8A.hygrophilaadultswerereleasedintoeachcage.
123
652
Table1LocationsofsourcepopulationsofA.philoxeroidesandtheirinsectexposurehistoryProvinces/populationsYunnanHGKMDCDLShanghaiCMYSLHQNHLHLZhejiangLPHenanXYHubeiZWYYMCShandongSD
36°41040.300
116°54050.500
–
32°00054.90030°32044.50030°32032.300
114°05013.600114°24045.600114°18032.700
NI?N–
20–40%20–40%
1987
30°24023.500
120°18006.000
I?N
30–40%
1987
31°34023.00031°10047.20031°10029.70031°1004.431°0745.6
00
0000
X.Lu,J.Ding
LongitudeLatitude
ExposurehistoryDefoliationlevelReleasetime
Reference
24°58046.00024°58036.40024°57038.40025°4317.2
00
102°39057.900102°39058.800102°33027.700100°1131.0
00
II––N––IN
20–30%20–30%
19871987
Ma(2001)Ma(2001)
121°30021.700121°23022.600121°22032.400121°3420.0121°2339.6
00
0000
10–20%
10–20%20–30%
1995Yang(2001)
Ma(2001)
Ma(2001)
ExposurehistoryiscategorizedasexposuretoA.hygrophila(I),C.piperata(N),both(I?N)orneither(–),asjudgedfromrecordsofreleaseofA.hygrophila(citedunderReferenceinthetable)andfromsurveysin2006–2007.Defoliationlevelisfromthesesurveys.ReleasetimeisforintentionalreleaseofA.hygrophila
After7days,allthecagedshootsintheherbivorytreatmentwerecompletelydefoliatedandtheinsectsandcageswereremoved.Plantswerethengrownforanadditional80days.Duringthistime,plantswerewateredevery2daysandpotpositionsinthegreen-housewererandomisedeverymonth.Atharvestthenumbersofstemandrootbudswerecounted,andaboveandbelowgroundbiomasswereseparatedanddried(80°Cfor48h)beforeweighing.Dataanalysis
Priortoanalysis,total,rootandshootmass,androottoshootbiomassratio(R/S)werelog10-transformedtoachievenormalityandhomoscedasticity.
Wecarriedoutanalyseswiththefulldataset,includingdataforallharvestedplants,totestthepotentialimpactsofherbivory,insectexposurehistory(previouslyexposedorun-exposedtoherbivory),populationandtheirinteractionsonplantperfor-mance.Wealsoanalysedthedataforplantswithinsectexposurehistoryonly(previouslyexposedtoA.hygrophila,C.piperata,orboth),tocomparetheimpactsofpreviousexposuretodifferentinsectspeciesonplantresponsetosubsequentherbivory.Allmeasuredplanttraitswereanalysedwiththree-waynestedANOVAs.Withthefulldataset,theANOVAmodelincludedinsectexposurehistory(previouslyexposedorun-exposedtoherbivory)andherbivorytreatmentas xedfactors,andplantpopu-lationasarandomfactornestedwithininsectexposurehistory.Forthedataforplantswithinsectexposurehistoryalone,theANOVAmodelincludedinsectspecies(A.hygrophila,C.piperata,orboth)andherbivorytreatmentas xedfactors,andplantpopu-lationasarandomfactornestedwithininsectspecies.Theeffectsofinsectexposurehistoryandinsectspeciesweretestedoverthenestedpopulationterm.Differencesbetweenindividualmeansweretestedwithttests.
DataanalyseswerecarriedoutusingStatisticalanalysissystem(SASVersion8.1,SASInstitute).
123
Insectexposurehistoryincreasesaninvader’scompensatoryability653
Results
EffectofherbivoryandinsectexposurehistoryonplantbiomassandvegetativebudformationTheinteractionbetweenherbivoryandinsectexpo-surehistoryaffectedplantrootmass,butdidnotaffectplantshootmass,R/S,ortotalbiomass(Table2,Fig.1).Insupportofourprediction,herbivorysignif-icantlyincreasedrootmass(P=0.0007,Fig.1c)ofplantswithinsectexposurehistorywhencomparedtoundamagedcontrolplants,whileherbivorydidnotaffectrootmassofplantswithoutinsectexposurehistorywhencomparedtoundamagedcontrolplants(P[0.05,Fig.1c).
Theinteractionbetweenherbivoryandpopulationhadasigni canteffectonplanttotalandshootmass,andmarginallyaffectedplantrootmass(Table2).Ofthe14plantpopulations, veovercompensated,eightequal-compensatedandoneunder-compensatedintermsofplanttotalbiomassinresponsetoherbivory(Fig.2a).Insupportofourprediction,fourofthe vepopulationsthatovercompensatedforherbivory(HG,XY,ZWYandLHL)werefromlocationswith
Table2Athree-waynestedANOVAfortheeffectsofinsectexposurehistory(Eh),population(P),herbivory(H)andtheirinteractionsonplanttotal,rootandshootmass;roottoshootSourceofvariation
df
TotalbiomassF
ExposurehistoryPopulation[Eh]HerbivoryEh*HP[Eh]*HError
Sourceofvariation
1,1212,4021,4021,1212,402402df
Totalno.ofbudsF
ExposurehistoryPopulation[Eh]HerbivoryEh*HP[Eh]*HError
1,1212,3991,3991,1212,399399
0.00019.0206.5300.4541.470
P0.99<0.00010.0110.510.13
0.05825.8105.0603.8193.030
P0.81<0.00010.0250.0750.0004
herbivoresthatremoved10–40%plantleafareahistorically,whileonlyone(YMC)wasfromalocationwithnoherbivoresandhadnoknownhistoryofherbivoreinteraction(Fig.1a,Table1),andtheone(DL)thatunder-compensatedforherbivorywasfromalocationwithnoknowninsectexposurehistory(Fig.2a).Inthreeoftheovercompensatingpopula-tions(HG,ZWYandYMC),theshootmassofdamagedplantswassigni cantlyhighercomparedwiththatoftheundamagedplants(Fig.2b).
Thetotalnumberofvegetativebudswasonlyaffectedbyherbivoryandplantpopulation(Table2),whichdidnotsupportourpredictions.Thetotalnumberofvegetativebudswasgreater(14.57%,F1,426=1.787,P=0.008)indamagedthanincontrolplants.Thenumberofrootbudswassigni cantlyaffectedbyherbivory,plantpopulationandtheirinteraction,whereasthenumberofrootbudswasnotaffectedbyotherfactorsortheirinteractions(Table2),whichalsofailedtosupportourprediction.ThenumberofrootbudsofplantsfromHG,CM,HQandZWYpopula-tionsincreasedunderherbivory,whileherbivorydidnotin uencethenumberofrootbudsofplantsfromotherpopulations(Fig.2c).Thenumberofstembuds
biomassratio(R/S);totalnumberofbuds;andnumbersofrootandstembuds
Shootmass
P0.89<0.00010.0020.0060.061
F0.120724.3101.2601.7042.880
P0.73<0.00010.260.220.0008
R/SF0.2176.0503.0002.2911.410
P0.65<0.00010.0840.160.16
RootmassF0.01915.009.47010.771.720
No.ofrootbudsF0.0727.3909.6401.6561.800
P0.79<0.00010.0020.220.047
No.ofstembudsF0.6212.3301.3302.0061.210
P0.450.0070.250.180.27
Squarebracketsindicatenestingofterms
Statisticallysigni cantvalues(P\0.05)areinbold
123
654Fig.1Effectofherbivoryinthegreenhouseexperimentonatotal,bshootandcrootmassofplantsexposedorunexposedtoherbivoresinthe eld:meansacrosspopulations.Valuesaremeans±1SE(backtransformedforthetotal,shootandrootmass).Symbolsabovepairsofbarsshowprobability(ttest)thatthetwomeansdidnotdiffer:(nosymbol)[0.05;*0.01–0.05;**0.001–0.01;***\0.001
wasaffectedbyplantpopulationandwasnotaffectedbyotherfactorsortheirinteractions(Table2).Differentialeffectsofpreviousexposuretodifferentinsectspecies
Fortheplantswithinsectexposurehistory,insectspecies(previouslydamagedbynative,introduced,orbothinsects)didnotin uenceplanttotalbiomass,totalnumberofvegetativebuds,ornumbersofrootandstembuds(Table3).Noneofthetraitswereaffectedbytheinteractionbetweenherbivoryandinsectspecies,whileplanttotalbiomass,shootmass
123
X.Lu,J.Ding
andR/Swereaffectedbytheinteractionbetweenherbivoryandplantpopulation(Table3).
Discussion
Compensatorygrowthcanpotentiallyfacilitateaplantinvasion(Schierenbecketal.1994;WilseyandPolley2006)andcouldbeafactorthathampersthebiologicalcontrolofexoticplants(Garcia-Rossietal.2003).However,thishasreceivedlittleattention(Bossdorf
etal.2005;Mu
¨ller-Scha¨reretal.2004).WeexaminedherethecompensatoryabilityofA.philoxeroidespopulationsacrossitslargenewrangeinChina.Ashypothesized,wefounddifferencesincompensatoryabilitybetweenplantswithandwithoutinsectexpo-surehistory.A.philoxeroidespopulationsfromloca-tionswithinsectexposurehistoryaccumulatedmorerootmassandshowedgreatercompensatoryabilityinresponsetoherbivorythanpopulationsfromlocationswithoutinsectexposurehistory.Whiletherewasalargeinter-populationvariance,thetypeofherbivory(A.hygrophila,C.piperata,orboth)wasnotfoundtoaffectthelevelofcompensation.
DifferencesincompensatoryabilitybetweenplantpopulationswithdifferentgrazinghistorieshavealsobeenreportedinArtemisialudoviciana(DamhoureyehandHartnett2002),Sorghastrumnutans(DamhoureyehandHartnett2002),AgropyronsmithiiRydb(DetlingandPainter1983;PolleyandDetling1988)andBoutelouacurtipendulavar.caespitosa(Smith1998).However,thedifferingintensitiesofcompensatoryresponsebypopulationsofA.philoxeroideswithvaryingherbivoryexposurehistory,andtheclonalnatureoftheplant,suggeststhattheeffectseenheremightbeduetoepigeneticinheritance(McKeyetal.2010;Prentisetal.2008).Indeed,Gaoetal.(2010)reportedthatgenome-wideDNAmethylationalterna-tionsenableA.philoxeroidestoadapttovaryingwateravailabilityrapidly.
Inresponsetolong-termherbivory,aplantmaydisplayevolutionaryorplasticchangesinphysiologyormorphologythatmayincreasecompensatoryability,e.g.formingmorehorizontally-orientedleaves,allo-catingfewerresourcestonewleavesormoreresourcestoroots,orstoringmorereservesbelow-ground(CarmanandBriske1985;MackandThomp-son1982;McIntireandHik2002).Forexample,rametsoftheclonalaquaticplantRanunculus
lingua
Insectexposurehistoryincreasesaninvader’scompensatoryabilityFig.2Impactsof
herbivoryinthegreenhouseexperimentonatotalandbshootmass,andcnumberofrootbudsofplantsexposedorunexposedtoherbivoresinthe eld:meansforindividualpopulations.Valuesarepopulationmeans±1SE(backtransformedforthetotalandshootmass).
Symbolsabovepairsofbarsshowprobability(ttest)thatthetwomeansdidnotdiffer:(nosymbol)[0.05;
*0.01–0.05;**0.001–0.01;***\0.001
655
thathadexperiencedsubstantialherbivoryproducedlargerbutfewerrhizomesandexperiencedlessreductioninmostgrowthparameterswhenexposedtoextensiveherbivory,incomparisonwithrametsthathadexperiencedlessherbivory(Johansson1994).ThegreatercompensatoryabilityofA.philoxeroideswithinsectexposurehistorycomparedtoplantswithoutinsectexposurehistorymayhaveresultedprimarilyfromincreaseinrootstoragemass,whichhasbeenreportedtobehighlycorrelatedwithitscompensatoryability(Wilsonetal.2007;LuandDing2010).
Our ndingthatA.philoxeroidesfrom vepopula-tions(fourwithandonewithoutherbivoryexposurehistory)over-compensatedherbivoryprovidesinsightsintotheplant’sphysiologicalpotentialforcompensa-tion.However,whethertheplantcanovercompensateinresponsetoherbivoryundernatural eldconditionsneedsfurtherclari cation,sinceaplant’scompensa-tionintensityisalsoin uencedbyotherenvironmentalconditions,includingresourceavailability,time,fre-quencyandintensityofdamage,neighbouringplants,anddurationoftherecoveryperiod(MaschinskiandWhitham1989;StraussandAgrawal1999).Schooleretal.(2006,2007)foundthatherbivorysigni cantlysuppressedthegrowthofA.philoxeroideswhentherecoveryperiodwasjust5weeksor
less.
123
656X.Lu,J.Ding
Table3Athree-waynestedANOVAfortheeffectsofinsectspecies(Is),population(P),herbivory(H)andtheirinteractionsonplanttotal,rootandshootmass;roottoshootbiomassratio(R/S);totalnumberofbuds;andnumbersofrootandstembudsSourceofvariation
df
TotalbiomassF
InsectspeciesPopulation[Is]HerbivoryIs*HP[Is]*HError
Sourceofvariation
2,55,2411,2412,55,241241df
Totalno.ofbudsF
InsectspeciesPopulation[Is]HerbivoryIs*HP[Is]*HError
2,55,2411,2412,55,241241
0.00217.6906.9000.1042.010
P0.99<0.00010.0090.900.078
No.ofrootbudsF1.0512.9403.7000.5181.150
P0.420.0130.0560.620.33
No.ofstembudsF0.04014.14013.4300.1381.670
P0.96<0.00010.00030.870.14
0.46823.41017.3900.0133.440
P0.65<0.0001<0.00010.990.005
RootmassF0.30214.26032.8200.20071.560
P0.75<0.0001<0.00010.820.17
ShootmassF0.51422.7306.1700.0063.840
P0.63<0.00010.0140.990.002
R/SF0.5028.9707.9800.1312.500
P0.63<0.00010.0050.880.03
Squarebracketsindicatenestingofterms
Statisticallysigni cantvalues(P\0.05)areinbold
Our ndingsmayholdbroadimplicationsforthebiologicalcontrolofinvasiveplants.Introducingandreleasingnaturalenemiesinsomecasesmayfavour,ratherthansuppress,thegrowthoftargetspeciesthroughincreasedcompensatoryresponsetoherbiv-ory—anundesirableoutcome.Theabilityofnativeherbivorestoreduceplantperformanceandincrease
`themortalityofinvasiveplants(MaronandVila
2001),haspromptedthesuggestiontousenativeherbivoresasbiologicalcontrolagents(Croninetal.1999;Mitchelletal.2006).However,thecompensa-torygrowthofA.philoxeroidesinresponsetothenativebeetleinourstudyshowthateventheuseofnativespeciesmaynotalwaysresultincontrol.Thus,toimprovebiocontrolef cacyandavoidpotentialnegativeeffectofbiocontrolagentsonnativeplants,anexplicitunderstandingofthetargetplant’sdefencestrategyiscrucialbeforeapprovalandintroductionofforeignnaturalenemies,aswellastheuseofnativeherbivores.
AcknowledgmentsWethankWenfengGuo,YiWang,XiaJin,HongjunDai,YanSunandKaiWufortheir eldandlabassistance.Themanuscriptwasimprovedbycommentsfrom
¨rer,David¨ller-SchaRichardN.Mack,JohnWilson,HeinzMu
Lodge,AshleyBaldridge,MatthewBarnes,VictoriaNuzzo,
SathyamurthyRaghu,AnjanaDewanji,JianwenZouandthreeanonymousreviewers.ThisworkwasfundedbytheKnowledgeInnovationProgramoftheChineseAcademyofSciencesandtheNationalScienceFoundationofChina(30871650&31100302)whilepreparingthismanuscript.
References
BelskyAJ(1986)Doesherbivorybene tplants?Areviewofthe
evidence.AmNat127:870–892
¨tzoldR(1995)EvolutionofincreasedcompetitiveBlosseyB,No
abilityininvasivenonindigenousplants:ahypothesis.JEcol83:887–889
BossdorfO,AugeH,LafumaL,RogersWE,SiemannE,PratiD
(2005)Phenotypicandgeneticdifferentiationbetweennativeandintroducedplantpopulations.Oecologia144:1–11.doi:10.1007/s00442-005-0070-z
BuckinghamGR(2002)Alligatorweed.In:vanDriescheR,
BlosseyB,HoddleM,LyonS,ReardonR(eds)BiologicalcontrolofinvasiveplantsintheEasternUnitedStates,pp5–15,USDAForestServicePublicationFHTET-2002-04CarmanJG,BriskeDD(1985)Morphologicandallozymicvari-ationbetweenlong-termgrazedandnon-grazedpopulationsofthebunchgrassSchizachyriumscopariumvar.frequens.Oecologia66:332–337.doi:10.1007/BF00378294
CroninG,SchlacherT,LodgeDM,SiskaEL(1999)Intraspe-ci cvariationinfeedingpreferenceandperformanceofGalerucellanymphaeae(Chrysomelidae:Coleoptera)onaquaticmacrophytes.JNorthAmBentholSoc18:391–405
123
Insectexposurehistoryincreasesaninvader’scompensatoryability657
DamhoureyehSA,HartnettDC(2002)Variationingrazing
toleranceamongthreetallgrassprairieplantspecies.AmJBot89:1634–1643
DetlingJK,PainterEL(1983)Defoliationresponsesofwestern
wheatgrasspopulationswithdiversehistoriesofprairiedoggrazing.Oecologia57:65–71.doi:10.1007/BF00379563GaoLX,GengYP,LiB,ChenJK,YangJ(2010)Genome-wide
DNAmethylationalterationsofAlternantheraphiloxero-idesinnaturalandmanipulatedhabitats:implicationsforepigeneticregulationofrapidresponsestoenvironmental uctuationandphenotypicvariation.PlantCellEnviron33:1820–1827.doi:10.1111/j.1365-3040.2010.02186.xGarcia-RossiD,RankN,StrongDR(2003)Potentialforself-defeatingbiologicalcontrol?Variationinherbivorevul-nerabilityamonginvasiveSpartinagenotypes.EcolAppl13:1640–1649.doi:10.1890/01-5301
GengYP,PanXY,XuCY,ZhangWJ,LiB,ChenJK,LuBR,
SongZP(2007)Phenotypicplasticityratherthanlocallyadaptedecotypesallowstheinvasivealligatorweedtocolonizeawiderangeofhabitats.BiolInvasions9:245–256.doi:10.1007/s10530-006-9029-1
JohanssonME(1994)Lifehistorydifferencesbetweencentral
andmarginalpopulationsoftheclonalaquaticplantRanunculuslingua:areciprocaltransplantexperiment.Oikos70:65–72
JuengerT,BergelsonJ(2000)Theevolutionofcompensationto
herbivoryinscarletgilia,Ipomopsisaggregata:herbivore-imposednaturalselectionandthequantitativegeneticsoftolerance.Evolution54:764–777.doi:10.1111/j.0014-3820.2000.tb00078.x
JulienMH,BourneAS,LowVHK(1992)Growthoftheweed
Alternantheraphiloxeriodes(Martius)Grisebach,(alliga-torweed)inaquaticandterrestrialhabitatsinAustralia.PlantProtQ7:102–108
JulienMH,SkarrattB,MaywaldGF(1995)Potentialgeo-graphicaldistributionofalligatorweedanditsbiologicalcontrolbyAgasicleshygrophila.JAquatPlantManag33:55–60
KeaneRM,CrawleyMJ(2002)Exoticplantinvasionsandthe
enemyreleasehypothesis.TrendsEcolEvol17:164–170.doi:10.1016/S0169-5347(02)02499-0
LennartssonT,TuomiJ,NilssonP(1997)Evidenceforan
evolutionaryhistoryofovercompensationinthegrasslandbiennialGentianellacampestris(Gentianaceae).AmNat149:1147–1155
LiW,WangB,WangJ(2006)Lackofgeneticvariationofan
invasiveclonalplantEichhorniacrassipesinChinarevealedbyRAPDandISSRmarkers.AquatBot84:176–180.doi:10.1016/j.aquabot.2005.09.008
LinGL,YangYZ,HuJS(1990)Studiesonbiologyandcontrol
ofAlternantheraphiloxeroiders.JJiangsuAgricColl11:57–63
LuXM,DingJQ(2010)Floodingcompromisescompensatory
capacityofaninvasiveplant:implicationsforbiologicalcontrol.BiolInvasions12:179–190.doi:10.1007/s10530-009-9441-4
LuX,DaiH,DingJ(2010)Con-speci cneighboursmay
enhancecompensationcapacityinaninvasiveplant.PlantBiol12:445–452.doi:10.1111/j.1438-8677.2009.00247.xMaRY(2001)Ecologicaladaptationfortheintruducedbio-controlagent,Agasicleshygropghila,forAlligatorweed,
Alternantheraphiloxeroides,inChinaPhD.ChineseAcademyofAgriculturalSciences,Beijing,China,p120MackRN,ThompsonJN(1982)Evolutioninsteppewithfew
large,hoovedmammals.AmNat119:757–773
MaronJL,Vila
`M(2001)Whendoherbivoresaffectplantinvasion?Evidenceforthenaturalenemiesandbioticresistancehypotheses.Oikos95:361–373.doi:10.1034/j.1600-0706.2001.950301.x
MaschinskiJ,WhithamTG(1989)Thecontinuumofplant
responsestoherbivory:thein uenceofplantassociation,nutrientavailability,andtiming.AmNat134:1–19.doi:10.1086/284962
McIntireEJB,HikDS(2002)Grazinghistoryversuscurrent
grazing:leafdemographyandcompensatorygrowthofthreealpineplantsinresponsetoanativeherbivore(Ochotonacollaris).JEcol90:348–359.doi:10.1046/j.1365-2745.2001.00672.x
McKeyD,EliasM,PujolB,Duputie
´A(2010)Theevolutionaryecologyofclonallypropagateddomesticatedplants.NewPhytol186:318–332.doi:10.1111/j.1469-8137.2010.03210.x
MitchellCE,AgrawalAA,BeverJD,GilbertGS,HufbauerRA,
KlironomosJN,MaronJL,MorrisWF,ParkerIM,Power
AG,SeabloomEW,TorchinME,Va
´zquezDP(2006)Bioticinteractionsandplantinvasions.EcolLett9:726–740.doi:10.1111/j.1461-0248.2006.00908.x
MonroK,PooreAGB(2004)Selectioninmodularorganisms:is
intraclonalvariationinmacroalgaeevolutionarilyimpor-tant?AmNat163:564–578.doi:10.1086/382551
Mu
¨ller-Scha¨rerH,SchaffnerU,SteingerT(2004)Evolutionininvasiveplants:implicationsforbiologicalcontrol.TrendsEcolEvol19:417–422.doi:10.1016/j.tree.2004.05.010PolleyHW,DetlingJK(1988)HerbivorytoleranceofAgropy-ronsmithiipopulationswithdifferentgrazinghistories.Oecologia77:261–267.doi:10.1007/BF00379196
PrentisPJ,WilsonJRU,DormonttEE,RichardsonDM,Lowe
AJ(2008)Adaptiveevolutionininvasivespecies.TrendsPlantSci13:288–294.doi:10.1016/j.tplants.2008.03.004SaintyG,McCorkelleG,JulienM(1998)Controlandspreadof
alligatorweedAlternantherapliloxeroides(Mart.)Griseb.,inAustralia:lessonsforotherregions.WetlandsEcolManage5:195–201.doi:10.1023/A:1008248921849
SchierenbeckKA,MackRN,SharitzRR(1994)Effectsof
herbivoryongrowthandbiomassallocationinnativeandintroducedspeciesofLonicera.Ecology75:1661–1672.doi:10.2307/1939626
SchoolerS,BaronZ,JulienM(2006)Effectofsimulatedand
actualherbivoryonalligatorweed,Alternantheraphilo-xeroides,growthandreproduction.BiolControl36:74–79.doi:10.1016/j.biocontrol.2005.06.012
SchoolerSS,YeatesAG,WilsonJRU,JulienMH(2007)Her-bivory,mowing,andherbicidesdifferentlyaffectproduc-tionandnutrientallocationofAlternantheraphiloxeroides.AquatBot86:62068.doi:10.1016/j.aquabot.2006.09.004SiemannE,RogersWE,DewaltSJ(2006)Rapidadaptationof
insectherbivorestoaninvasiveplant.ProcRSocB273:2763–2769.doi:10.1098/rspb.2006.3644
SmithSE(1998)Variationinresponsetodefoliationbetween
populationsofBoutelouacurtipendulavar.caespitosa(Poaceae)withdifferentlivestockgrazinghistories.AmJBot85:1266–1272
123
658
StraussSY,AgrawalAA(1999)Theecologyandevolutionof
planttolerancetoherbivory.TrendsEcolEvol14:179–185.doi:10.1016/S0169-5347(98)01576-6
SunY,DingJQ,RenMX(2009)Effectsofsimulatedherbivory
andresourceavailabilityontheinvasiveplant,Alternan-theraphiloxeroidesindifferenthabitats.BiolControl48:287–293.doi:10.1016/j.biocontrol.2008.12.002
ThompsonJN(1998)Rapidevolutionasanecologicalprocess.
TrendsEcolEvol13:329–332.doi:10.1016/S0169-5347(98)01378-0
Tif nP(2000)Mechanismsoftolerancetoherbivoredamage:
whatdoweknow?EvolEcol14:523–536.doi:10.1023/A:1010881317261
WhithamTG,SlobodchikoffCN(1981)Evolutionbyindivid-uals,plant-herbivoreinteractions,andmosaicsofgeneticvariability:theadaptivesigni canceofsomaticmutationsinplants.Oecologia49:287–292
123
X.Lu,J.Ding
WilseyBJ,PolleyHW(2006)Abovegroundproductivityand
root-shootallocationdifferbetweennativeandintroducedgrassspecies.Oecologia150:300–309.doi:10.1007/s00442-006-0515-z
WilsonJRU,YeatesA,SchoolerS,JulienMH(2007)Rapid
responsetoshootremovalbytheinvasivewetlandplant,alligatorweed(Alternantheraphiloxeroides).EnvironExpBot60:20–25.doi:10.1016/j.envexpbot.2006.06.003
YangZH(2001)TheestablishmentofAgasicleshygrophila
populationinsuburbofShanghaicity.ShanghaiAgricSci1:87–88
ZangerlAR,BerenbaumMR(2005)Increaseintoxicityofan
invasiveweedafterreassociationwithitscoevolvedher-bivore.ProcNatlAcadSciUSA102:15529–15532.doi:10.1073/pnas.0507805102
正在阅读:
《生物入侵》发表论文(英文)05-15
建筑物轴线交点放样的全过程04-13
肝功能中球蛋白偏高说明什么06-04
自贡市高2014届第四次诊断性考试01-18
珠芽型黄魔芋种植技术(定)07-08
高考物理 5年高考真题精选与最新模拟 专题14 动量和能量06-01
客户关系管理案例库09-29
语文教师必读书目01-31
网上电子商城设计毕业论文 - 图文05-09
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 发表论文
- 英文
- 入侵
- 生物
- 事业单位档案管理创新改革思路探讨
- 初一语文下册第一单元测试卷
- 16春季福师《网络信息安全》在线作业一
- HR试用期工作总结
- 安徽联通高铁覆盖方案
- 地产企业如何做好产品设计管理
- 自治区11号文件百题问答
- led电子显示屏系统故障诊断
- 1. State Key Laboratory of Heavy Oil Processing
- 16.1 实验:探究碰撞中的不变量
- 去极端化个人反思发言(模板)
- 超薄玻璃生产制造项目立项报告
- 国际金融复习资料答案
- 化工原材料价格上涨
- 家装工地现场管理规范
- 2014届高考数学一轮复习第10章《计数原理、概率、随机变量及其分布》(第4课时)知识过关检测 理 新人教A版
- 新课程下小学数学课堂有效教学策略研究
- 10 不安全食品召回制度
- 使用FreeFileSync文件备份工具进行差异备份方法
- 纸业公司的发展现状分析与方向