Anomalous critical behavior near the quantum critical point
更新时间:2023-04-21 10:59:01 阅读量: 实用文档 文档下载
- anomalous推荐度:
- 相关推荐
The Landau-Ginzburg-Wilson paradigm for critical phenomena is spectacularly successful whenever the critical temperature is finite and all fluctuation modes, with characteristic energies much smaller than the thermal energy, obey classical statistics. In z
Anomalouscriticalbehaviornearthequantumcriticalpointofahole-dopedLa2CuO4
Y.Chen,1WeiBao,1J.E.Lorenzo,2A.Stunault,3J.L.Sarrao,1S.Park,4,5,6andY.Qiu4,5
LosAlamosNationalLaboratory,LosAlamos,NM87545
2
CNRS,BP166X,F-38043,Grenoble,France
3
InstitutLaue-Langevin,BP156,F-38042,Grenoble,France
4
NISTCenterforNeutronResearch,NationalInstituteofStandardsandTechnology,Gaithersburg,MD20899
5
Dept.ofMaterialsScienceandEngineering,UniversityofMaryland,CollegePark,MD20742
6
HANAROCenter,KoreaAtomicEnergyResearchInstitute,Daejeon305-600,Korea
(Dated:February2,2008)
TheLandau-Ginzburg-Wilsonparadigmforcriticalphenomenaisspectacularlysuccessfulwhen-everthecriticaltemperatureis niteandall uctuationmodes,withcharacteristicenergiesmuchsmallerthankBTC,obeyclassicalstatistics.Inzero-temperaturequantumcriticalphenomena,clas-sicalthermal uctuationsarereplacedbyzero-pointquantum uctuationsandquantum-mechanicalgeneralizationoftheLandau-Ginzburg-Wilsonparadigmhasbeenacentraltopicincondensed-matterphysics.Inthisneutron-scatteringstudyonspin uctuationsnearthequantumcriticalpointinducedbyhole-dopinginLa2Cu1 xLixO4(0.04≤x≤0.1),thephaseboundaryforquantumcrossoverexpectedfromthegeneralizedquantumtheoryforcriticalphenomenawasobservedforthe rsttime.Furthermore,criticalexponentandscalingfunctionbecomeanomalousnearthequantumcriticalpoint,whichhasnotbeenexpectedincurrenttheories.
1
arXiv:cond-mat/0408547v1 [cond-mat.str-el] 25 Aug 2004
Interestingphenomena,includinghigh-TCsupercon-ductivity,occurinlaminarcupratesbelowatempera-tureT J/kB≈1500K,whereJisthemagneticex-changeenergybetweenthenearest-neighborspinsintheCuO2plane.Inthistemperaturerange,quantum uc-tuationsbecomedominantandaddoneextradimension,ξT≡¯hc/kBT,wherecisthespin-wavevelocity,tothe2-dimensional(2D)CuO2squarelattice[1,2](Fig.Atthezerotemperature,aquantumphasetransitionfromtheantiferromagnetic(AF)phasetoaparamagneticoneoccursatacriticalholedoping,a.k.a.quantumcriti-calpoint(QCP),xc,inthecuprates.Thus,fordopingx>xcontheparamagneticsideoftheQCP,magneticcorrelationlengthatT=0,ξ0,is nite.GeneralizingtheLandau-Ginzburg-Wilsonparadigmforcriticalphenom-enainclassicalsystemstothequantumspinsysteminthe(2+1)-dimensionalspace,theshorterofξTandξ0setsthelong-wavelengthcuto forspin uctuationsandisex-pectedtodeterminetheuniversalmagneticphenomenawithuniversalcriticalTheE/Tscalinginspindynamics,observedinpersesamplesofhole-dopedLa2CuO4usingBa,SrorLidopant,withsuperconduct-ingorinsulatinggroundstate,andwithcommensurateorincommensuratedynamicspincorrelations[4,5,6,7],canbeunderstoodasthephysicalconsequenceofξT<ξ0atT>TX≡¯hc/kBξ0.Inthisneutronscatteringstudyonquantumspindy-namicsinhole-dopedLa2CuO4,wedeterminethedop-ingdependenceofthecrossovertemperatureTX,belowwhichtheE/Tscalingbreaksdownandcrossesovertoaconstant-energyscaling,consistentwithξ0<ξT.Themostinterestingresultofthisstudy,however,isthatthecriticalexponentaintheE/Tchangesfromanexpecteda≈1toananomalousa≈0.65whendopingisreducedtowardtheAFQCPatxc.Thechangeofthe
FIG.1:(color)PhasediagramsforSrandLi-dopedLa2CuO4whereincreasingholeconcentrationsuppressestheantiferro-magnetic(AF)phaseatthequantumcriticalpointxcanddrivestheSrdopedmaterialsuperconducting(SC).Theline lledareadenotesspin-glassphase.WeobservethecrossoveratTX(redsymbols)betweentheE/Tscaling(QC)andtheE/Γ0scaling(QD)regimesinLi-dopedLa2CuO4.Theinsetillustratesthe(2+1)-dimensionalspaceformedbytheCuO2plane(Cu:redcircles,O:yellowcircles)andthequantumξT.Thebluehemisphereindicatestheextentofthemagneticcorrelationlengthatzerotemperature,ξ0.
criticalexponentisinconsistentwiththeclassicaluniver-salityofcriticalexponents.Inanalogtoarecentexampleinheavyfermionthesubstantialreductionoftheaexponentinthe2DspinsystemsuggestsextraphysicsinquantumcriticalphenomenawhichinvalidatestheclassicalLandau-Ginzburg-WilsonWechooseLi-dopedLa2CuO4singlecrystalsforthisstudy(TableI).Isotopicallyenriched7Li(98.4%)wasusedtoreduceneutronabsorptionofnaturalLi.ThecrystalshaveorthorhombicCmcasymmetryinthetem-
The Landau-Ginzburg-Wilson paradigm for critical phenomena is spectacularly successful whenever the critical temperature is finite and all fluctuation modes, with characteristic energies much smaller than the thermal energy, obey classical statistics. In z
2
TABLEI:DopingxofLa2Cu1 xLixO4andmainexperimen-talquantitiesdeterminedinthisstudyxTX(K)
0.65±0.06
b
≈1
≈1
The Landau-Ginzburg-Wilson paradigm for critical phenomena is spectacularly successful whenever the critical temperature is finite and all fluctuation modes, with characteristic energies much smaller than the thermal energy, obey classical statistics. In z
FIG.3:(color)Scalingplotsofthemagneticresponsefunc-tion.a,b,TheE/Tscalingathightemperatureforx=0.1and0.04,respectively.Insetinbshowsthegoodness-of- tforthecriticalexponenta=0.65forx=0.04.c,d,DeparturefromtheE/Tscalingatlowtemperature.ThesolidlineinaandcisEq.(1)usingEq.(2)asthescalingfunction,inbanddusingEq.(3)asthescalingfunction.ColorofsymbolsdenotestemperatureasinFig.2.
Forx=0.1,identicaltothecaseforx=0.06[7],a≈1andthescalingfunctionis
f1(y)=y/(1+y2).
(2)
ThepeakpositionEp/kBT=b=0.28±0.01inFig.3aislargerthanb=0.18forx=0.06.ForBaorSr-dopedLa2CuO4,theexponentahasbeendeterminedonlyforx=0.14anditisalsoa=0.94±0.06≈1[6].Thusforx≥0.06,hole-dopedLa2CuO4hasanormalcriticalexpo-nenta≈1,consistentwithaCurie’slawforthestaggeredmagneticsusceptibility.
ForLidopingx=0.04whichisclosetotheAFQCPofxc≈0.03[11],afractionala=0.65±0.06isrequiredforthedatatocollapseontoasinglescalingcurve(Fig.3b).Previously,inheavyfermionalloyCeCu5.9Au0.1,whichisalsonearanAFQCP,single-crystalneutronscat-teringdataarecollapsedontotheE/Tscalingwitha=0.74±0.1[8].ThesameprocedureasinRef.[8],whichisunbiasedwithrespecttotheselectionoff(y),isusedtooptimizeaforx=0.04,andthegoodness-of- trepre-sentedbythechi-squarestatisticaltestisshownintheinsettoFig.3b.ThespectruminFig.3bisbroaderthanthatinFig.3aandcannotbedescribedbyEq.(2).Weadoptempiricallythescalingfunctionforx=0.04,
f2(y)=sgn(y)yu1/(1+yv
1),
(3)
wherey1≡|y|[(v u)/u]1/vwithu=0.77±0.02and
v=1.33±0.02asthebest ts.Theparameterb=0.21±0.01.Notethatfor|y| 1,f2(y)~sgn(y)|y|uisalsoanomalousanddoesnotconformtotheusualanalyticformχ′′(E)~EatsmallE[3].
3
TheheavyfermionmetalCeCu5.9Au0.1(z=2anddi-mensiond>2)andourx=0.04cupratesample(z=1andd=2)belongtodi erentuniversalityclasseswiththeef-fectivedimension(d+z)aboveandbelowtheuppercrit-icaldimension,respectively[1,21].However,theyarebothclosetoanAFQCPandsharewithinerrorbarsananomalousaexponentsubstantiallysmallerthanunity.Inourstudyofdopingdependence,furthermore,hole-dopedLa2CuO4recoversthenormala≈1andanalyticχ′′(E)forx≥0.06.Thesechangesincriticalbehaviorareveryunusual.AnomalousaexponentfortheheavyfermionmetalCeCu5.9Au0.1isrecentlyexplainedbyin-cludinglocaldegreesoffreedomintheKondoscreen-ing,inadditiontotraditionallong-wavelengthmagnetic uctuations,intheantiferromagneticquantumphasetransition[9].ClosertoourcaseofdopedcupratesneartheAFQCP,currently,“decon ned”degreesoffreedomassociatedwithfractionalizationofmagneticorderpa-rameterinpure2Dantiferromagnetarebeingexploredtheoretically[10].LikeRef.[9],thistheorygoesbeyondtheLandau-Ginzburg-Wilsonparadigm,whichfocusesonlong-wavelength uctuationsoftheorderparameterincriticalphenomena.Whetherincludingtheseadditional“decon ned”degreesoffreedominthecriticaltheoryfortheQCPwould,similartothecaseforheavyfermionmetals[9],producetheanomalousaexponentandf2(y)reportedhereforcupratesisunknown.Nevertheless,ourobservationofanomalouscriticalphenomenaneartheQCPinanotherclassofcorrelatedelectronicmaterialsuggeststhegeneralityofthephenomena,andwouldcer-tainlyencouragethebuddingresearchinterestonsubtlequantuminterferencee ectsnearaQCP.
InFig.3candd,lowtemperaturedataareaddedtothescalingplotsforx=0.1and0.04,respectively.Sincethepeakpositionshiftstotherightwithdecreasingtem-perature,theE/Tscalingcannotbesatis ed.Instead,asshowninFig.4aandb,belowTX,thelocalmagneticresponsefunctionχ′′(E)isnearlytemperatureindepen-dent.Thecurvesinthe guresare
χ′′(E)=Bf(E/Γ0),
(4)
whereBisaconstant,andthesamepairofscalingfunctions,f1(y)andf2(y),areusedinEq.(4)withΓ0=0.66±0.01and1.11±0.03meVforx=0.1and0.04,respectively.Notethatthereisnodetectablegapinχ′′(E)inFig.4forx=0.1and0.04,asforx=0.06re-portedpreviously[7].Insometheoreticalmodelsofnon-randomquantumantiferromagnets,aquantumspinliq-uidhasagap, ~¯hc/ξ0,nearE=0inχ′′(E)belowTX[21].Thegaplessχ′′(E)observedinoursamplesisob-tainedinthesetheorieswithstrongdampingofthespinliquidbydopedholes,Γ≈ [22,23].Partial llingoftheHaldanegapin1Dquantumspinliquidbydopedholeshasbeenreportedlately[24].Inothertheoreticalmod-elsofquantumantiferromagnets,severaltypesofgaplessspinliquidsexistwithoutimpurityscattering[25].Clas-
The Landau-Ginzburg-Wilson paradigm for critical phenomena is spectacularly successful whenever the critical temperature is finite and all fluctuation modes, with characteristic energies much smaller than the thermal energy, obey classical statistics. In z
FIG.4:(color)Temperatureinvarianceofthemagneticre-sponsefunctionatT<TX.a,Thedopingx=0.1.ThesolidlineisEq.(4)usingEq.(2)asthescalingfunction.b,x=0.04.ThesolidlineisEq.(4)usingEq.(3)asthescalingfunction.ColorofsymbolsdenotestemperatureasinFig.2.
si cationofourobserved2Dgaplessspinliquidinhole-dopedcuprateswouldbeaninterestingtheoreticaltask.Thecrossovertemperature,TX,fromtheE/Tscal-ingtotheE/Γ0scalingregimecanbeconvenientlylocatedbythepeakintemperaturedependenceofS(Q,E)attheE→0limit[7],sinceathightemperature,S(Q,E→0)∝T afromEq.(1)-(3),andatlowtemper-atureS(Q,E→0)∝TfromEq.(2)-(4).ThebluecurvesatE=0inFig.2aandbareS(Q,E→0)forx=0.1and0.04,respectively.TheextractedTXfromFig.2,to-getherwithpreviouslydeterminedvalueforx=0.06[7],areshowninthephasediagraminFig.1andarelistedinTableI.Underthedome-shapedphaseboundary,spin uctuationenergy,whichwouldapproachzeroaccord-ingtotheE/Tscaling,saturatesata niteΓ0.ThusthecrossoveratTXkeepsspin uctuationsenergeticatlowtemperature,whichmightbeessentialforthehighvalueofTCifsuperconductivityincupratesismediatedmagneticallybyspin uctuations.
ExperimentalsearchfortheE/TscalingwasinitiallystimulatedbythemarginalFermiliquidphenomenology[4,5,26].Thesubsequentobservationofthescalingininsulatingsample[7]supportstheQCPasthecommonmechanism.ThebreakdownoftheE/Tscalingbelowadome-shapedcrossoverboundaryreportedhereexcludestheexistenceofadditionalmag-neticQCPsintheinvestigateddopingrange.ThegappedquantumspinliquidpredictedbelowTXfornon-random2Dantiferromagnetsdoesnotsurviveinourdopedcuprates.Thisobservationdisfavorsthosetheo-rieswhichrelyontherobustnessofthegappedquantumspinliquidagainstdopingforhigh-TCsuperconductiv-ityincuprates[27].Whiletheapplicationoftheclassi-calLandau-Ginzburg-Wilsonparadigmforcriticalphe-
4
nomenatoquantumcriticalphenomenaincupratesnat-urallyexplainstheuniversaloccurrenceoftheE/Tscal-inginhole-dopedLa2CuO4andthecrossovertothe -nitemagnetic-energyregimeatlowtemperature[2,3],theanomalouscriticalexponentandscalingfunctionneartheQCPreportedherehaveyettobeunderstood,probablybygoingbeyondtheLandau-Ginzburg-Wilsonparadigmandtakingintoaccountadditionalquantuminterferencee ectsexistingnearthezerotemperature[9,10].WethankQ.M.Si,A.Zheludev,S.-H.Lee,C.Bro-holm,S.Sachdev,A.V.Chubukov,F.C.Zhang,C.M.Varma,X.G.Wen,A.Balatsky,A.Abanov,L.Yu,Z.Y.WengandY.Bangforusefuldiscussions.SPINSatNISTissupportedpartiallybyNSF.WorkatLANLissup-portedbyU.S.DepartmentofEnergy.
[1]J.A.Hertz,Phys.Rev.B14,1165(1976);A.J.Millis,
ibid.48,7183(1993).
[2]S.Chakravarty,B.I.Halperin,andD.R.Nelson,Phys.
Rev.Lett.60,1057(1988).
[3]S.SachdevandJ.Ye,Phys.Rev.Lett.69,2411(1992).[4]S.M.Hayden,etal.,Phys.Rev.Lett.66,821(1991).[5]B.Keimer,etal.,Phys.Rev.Lett.67,1930(1991).
[6]G.Aeppli,T.E.Mason,S.M.Hayden,H.A.Mook,and
J.Kulda,Science278,1432(1997).
[7]W.Bao,Y.Chen,Y.Qiu,andJ.L.Sarrao,Phys.Rev.
Lett.91,127005(2003).[8]A.Schr¨oder,G.Aeppli,E.Bucher,R.Ramazashvili,and
P.Coleman,Phys.Rev.Lett.80,5623(1998).[9]Q.M.Si,etal.,Nature413,804(2001).[10]T.Senthil,etal.,Science303,1490(2004).
[11]J.L.Sarrao,etal.,Phys.Rev.B54,12014(1996).[12]F.C.Chou,etal.,Phys.Rev.Lett.71,2323(1993).[13]T.Nagano,etal.,Phys.Rev.B48,9689(1993).
[14]C.Niedermayer,etal.,Phys.Rev.Lett.80,3843(1998).[15]R.H.He ner,D.E.MacLaughlin,G.J.Nieuwenhuys,
J.L.Sarrao,andJ.E.Sonier,PhysicaB312,65(2002).[16]T.Sasagawa,etal.,Phys.Rev.B66,184512(2002).[17]P.A.Lee,Phys.Rev.Lett.71,1887(1993).
[18]T.E.Mason,G.Aeppli,S.M.Hayden,A.P.Ramirez,
andH.A.Mook,Phys.Rev.Lett.71,919(1993).[19]K.Yamada,etal.,Phys.Rev.Lett.75,1626(1995).[20]W.Bao,etal.,Phys.Rev.Lett.84,3978(2000).
[21]S.Sachdev,QuantumPhaseTransitions(Cambridge
UniversityPress,Cambridge,1999).
[22]S.Sachdev,A.V.Chubukov,andA.Sokol,Phys.Rev.
B51,14874(1995).
[23]Y.L.LiuandZ.B.Su,Phys.Lett.A200,393(1995).[24]G.Xu,etal.,Science289,419(2000).
[25]X.G.Wen,Phys.Rev.B65,165113(2002).
[26]C.M.Varma,P.B.Littlewood,S.Schmitt-Rink,
E.Abrahams,andA.E.Ruckenstein,Phys.Rev.Lett.63,1996(1989).
[27]S.Sachdev,Science288,475(2000).
正在阅读:
Anomalous critical behavior near the quantum critical point04-21
公共管理与私人部门管理的不同要求06-28
考勤制度(司发004)08-29
2018人教版四年级下册数学应用题(260题A4打印版)01-19
湖南省永久基本农田划定文件 - 图文06-10
部队当兵考军校考试科目和时间06-02
《上海交响乐团音乐厅》阅读理解及答案02-26
各种技术指标的应用讲解(非常详细)10-20
- 1Change Management in Families of Safety-Critical Embedded Systems
- 2Critical Casimir Effect in superfluid wetting films
- 3Measurement and correlation of critical heat flux in two-pha
- 4A Critical Review of Thermal Issues in Lithium-Ion Batteries
- 5OWASP - The Top 10 Most Critical Web Application Security Risks 2010
- 6B Cells and Antibody Play Critical Roles in the Immediate Defense of
- 7A CRITICAL INVESTIGATION INTO CSR WITHIN CHINA’S HOTEL INDUSTRY
- 8Methane adsorption characteristics on coal surface above critical temperature
- 9A critical question for HIV vaccine development Which antibodies to induce.
- 10Approximately self-similar critical collapse in 2+1 dimensions
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- critical
- Anomalous
- behavior
- quantum
- point
- near