鄂州市2018年中考数学试题及答案(Word可编辑)
更新时间:2024-03-24 02:44:01 阅读量: 综合文库 文档下载
机密★启用前
鄂州市2018年初中毕业及高中阶段招生考试
数 学 试 卷
考生注意:
1.本卷共三道大题,27道小题,共4页,满分120分,考试时间为120分钟。 2.1—14小题必须使用2B铅笔填涂,其他各题一律使用0 5毫米黑色签字笔解答 3.II卷试题答案一律填写在答题卡上指定的答题区域内,写在本卷上无效。 4.不准使用计算器。
卷I(选择题)
一、选择题{42分)
1.下列计算中,正确的是( )
24 6 32 66 3 2
A、x+x=x B、2x +3y=5xy C、(x)=x D、x ÷x=x
x?3有意义的x的取值范围是( ) x?4 A、x>3 B、x≥3 C、 x>4 D 、x≥3且x≠4
3有一组数据如下:3、a、4、6、7,它们的平均数是5,那么这组数据的方差是( )
2使代数式A、10
B、10
C、2
D、2
4.根据下图所示,对a、b、c三种物体的质量判断正确的是( )
A、a 5.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置 的小正方体块的个数,那么这个几何体的主视图是( ) 6如图,在梯形ABCD中,AD//BC,AC⊥AB,AD=CD,cos∠DCA=是( ) A.3 4 ,BC=10,则AB的值5B、6 C、8 D、9 7.如图,直线y=mx与双曲线y= k交于A、B两点,过点A作AMx ⊥x轴,垂足为M,连结BM,若S?ABM=2,则k的值是( ) A.2 B、m-2 C、m D、4 8、在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是( ) 9、为了求1?22?23???22008的值,可令S=1?22?23???22008,则2S=因此2S-S=22009?1,所以1?22?23???22008=22009?122?23?24???22009 , 仿照以上推理计算出1?5?5???520092010232009的值是( ) 201052009?15?1 ?1?1A、5B、5C、D、 44 10、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x,那么x满足的方程是( ) A、50(1?x)?182 C、50(1+2x)=182 11、如图,直线AB:y= 2 B.50?50(1?x)?50(1?x)?182 D.50?50(1?x)?50(1?2x)?182 21x+1分别与x轴、y轴交于点A、点B,直线CD:y=x+b分别与x2轴、y轴交于点C、点D.直线AB与CD相交于点P,已知S?ABD=4,则点P的坐标是( ) A、(3, 5) 2B.(8,5) C.(4,3) D.( 15,) 24 12、如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D ,AD=9、BD=4,以C为圆心、CD为半径的圆与⊙O相交于P、Q两点,弦PQ交CD于E,则PE·EQ的值是( ) A.24 B、9 C、6 D、27 13.已知=次函数y=ax+bx+c的图象如图.则下列5个代数式:ac,a+b+c,4a-2b+c, 2 2a+b,2a-b中,其值大于0的个数为( ) A.2 B 3 C、4 D、5 14.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移 动,则当PA+PD取最小值时,△APD中边AP上的高为( ) A、21717 B、 48C、 D、3 17171717 卷II(非选择题) 二、填空题(18分) 15四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰三角形。现从中随机抽 取2张,全部是中心对称图形的概率是_________. 16已知在△ABC中,AB=6,AC=8,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一 个圆锥,其表面积为S1,把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S2,则S1:S2等于_________ 7把抛物线y=ax+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象 的解析式是y=x-3x+5,则a+b+c=__________ 18小明同学在东西方向的沿江大道A处,测得江中灯塔P在北偏东60°方向上,在A处 正东400米的B处,测得江中灯塔P在北偏东30°方向上,则灯塔P到沿江大道的距离为____________米、 19在⊙O中,已知⊙O的直径AB为2,弦AC长为3,弦AD长为2.则DC2=______ 20、如图,四边形ABCD中,AD∥BC已知BC=CD=AC=23, AB=6,则BD的长为________. 三、解答题(2l题6分,26题l0分,27题12分,其余每题8分.共60分) 21、如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8. (1)自由转动转盘,当它停止转动时,指针指向的数正好能被8 整除的概率是多少? (2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为 223 4. (注:指针指在边缘处,要重新转,直至指到非边缘处) 22、关于x的方程kx?(k?2)x?2k?0有两个不相等的实数根. 4(1)求k的取值范围。 (2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在, 说明理由 23、如图所示,某居民楼Ⅰ高20米,窗户朝南。该楼内 一楼住户的窗台离地面距离CM为2米,窗户CD高1.8米。现计划在I楼的正南方距I楼30米处新建一居民楼Ⅱ。当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I楼所有住户的采光,新建Ⅱ楼最高只能盖多少米? 24、如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知 △ABC的边BC长120米,高AD长80米。学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图)。其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上。现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元。 (1)当FG长为多少米时,种草的面积与种花的面 积相等? (2)当矩形EFGH的边FG为多少米时,△ABC空 地改造总投资最小?最小值为多少? 25、如图所示,在梯形ABCD中,AD//BC,AB⊥BC, 以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6 (1)求边AD、BC的长。 (2)在直径AB上是否存在一动点P,使以A、D、P 为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由。 26、某土产公司组织20辆汽车装运甲、乙、丙三种土 特产共120吨去外地销售。按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息, 解答以下问题 土特产种类 甲 乙 丙 (1)设装运甲种土特产的车辆数为x,装运 8 6 5 每辆汽车运载量(吨) 乙种土特产的车辆数为y,求y与x 16 10 每吨土特产获利(百元) 12 之间的函数关系式. (2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安 排方案。 (3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值。 27.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正 方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO (1)试比较EO、EC的大小,并说明理由 (2)令m?S四边形CFGHS四边形CNMN;,请问m是否为定值?若是,请求出m的值;若不是,请说明理由 (3)在(2)的条件下,若CO=1,CE= 12,Q为AE上一点且QF=,抛物线y=mx2+bx+c33经过C、Q两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否 存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。 鄂州市2018年初中毕业及高中阶段招生考试 数学试卷参考答案及评分标准 一、选择题:(每小题3分,共42分) 1、C 2.D 3 C 4. C 5.B 6. B 7. A 8. A 9.D 10.B 11.B 12.D 13.A 14.C 二、填空题(每小题3分,共18分) 15、 116、2∶3 6 17、 11 20、42 18、2003 19、 2?3或2?3 三、解答题(第21题6分,第26题10分,第27题12分,其余每题8分,共42分) 21、(1) 1……………………………………………………………3分 8 (2)当自由转动转盘停止时,指针指向区域的数小于7的概率 (答案不唯一) …………………………………………………………6分 22、(1)由△=(k+2)2-4k· k>0 ∴k>-1 ………………2分 4又∵k≠0 ∴k的取值范围是k>-1,且k≠0……………………4分 (2)不存在符合条件的实数k 理由:设方程kx2+(k+2)x+ k=0的两根分别为x1、x2,由根与系数关系有: 4k?21x1+x2=?,x1·x2=, k4又 11k?2??0=0 则 ?=0 ∴k??2 x1x2k由(1)知,k??2时,△<0,原方程无实解 ∴不存在符合条件的k的值。………………………………………………8分 23、设正午时,太阳光线正好照在I楼的窗台处,此时新建居民楼II高x米,过C作CF ⊥l于F,在Rt△ECF中, EF=x-2,FC=30,∠ECF=30° ∴tan30??EFx?2∴x?103?2 ?FC30 (103?2)答:新建居民楼II最高只能建米。…8分 24、(1)设FG=x米,则AK=(80-x)米 由△AHG∽△ABCBC=120,AD=80可得: HG80?x3∴ HG?120?x ?12080 233BE+FC=120-=x……2分 (120?x)221313∴ (· 120?x)(·80?x)??x·x解得x=40 2222 ∴当FG的长为40米时,种草的面积和种花的面积相等。……………………5分 (2)设改造后的总投资为W元 W= (· 120?12=6(x-20)2+26400 ∴当x=20时,W最小=36400 答:当矩形EFGH的边FG长为20米时,空地改造的总投资最小,最小值为26400元。 …………………………………………………………………………………………8分 25、(1)方法1:过D作DF⊥BC于F 在Rt△DFC中,DF=AB=8,FC=BC-AD=6 ∴DC2=62+82=100,即DC=10 ………1分 设AD=c,则DE=AD=x,EC=BC=x+6 ∴x+(x+6)=10 ∴x=2 ∴AD=2,BC=2+6=8 ……………………4分 方法2:连OD、OE、OC, 由切线长定理可知∠DOC=90°,AD=DE,CB=CE 设AD=x,则BC=x+6 由射影定理可得:OE2=DE·EC…………………………………………2分 即:x(x+6)=16 解得x1=2, x2=-8(舍去) ∴AD=2, BC=2+6=8 ……………………………………………4分 (2)存在符合条件的P点 设AP=y,则BP=8-y,△ADP与△BCP相似,有两种情况: ① △ADP∽△BCP时,有3133x)(·80?x)·6??x·x·10?x(120?x)·4?6x2?240x?288002222 ADAP2y8?,即?∴y=…………6分BCPB88?y 5 ②△ADP∽△BPC时,有ADAP2y?,即?∴y=4 ……………7分 BPBC8?y8 故存在符合条件的点P,此时AP= 8或4 ……………………………………8分 5 26、(1)8x+6y+5(20―x―y)=120 ∴y=20―3x ∴y与x之间的函数关系式为y=20―3x ……………………3分 (2)由x≥3,y=20-3x≥3, 20―x―(20―3x)≥3可得3?x?52 3又∵x为正整数 ∴ x=3,4,5 ………………………………………………5分 故车辆的安排有三种方案,即: 方案一:甲种3辆 乙种11辆 丙种6辆 方案二:甲种4辆 乙种8辆 丙种8辆 方案三:甲种5辆 乙种5辆 丙种10辆…………………………7分 (3)设此次销售利润为W元, W=8x·12+6(20-3x)·16+5[20-x-(20-3x)]·10=-92x+1920 ∵W随x的增大而减小 又x=3,4,5 ∴ 当x=3时,W最大=1644(百元)=16.44万元 答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆, 最大利润为16.44万元。 …………………………………………10分 27、(1)EO>EC,理由如下: 由折叠知,EO=EF,在Rt△EFC中,EF为斜边,∴EF>EC, 故EO>EC …2分 (2)m为定值 ∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO―EC)=CO·(EO―EC) S四边形CMNO=CM·CO=|CE―EO|·CO=(EO―EC) ·CO ∴m?S四边形CFGH……………………………………………………4分?1S四边形CMNO 13212 ∴EF=EO=1???QF 333(3)∵CO=1,CE?,QF?∴cos∠FEC= 1∴∠FEC=60°, 2 180??60?∴?FEA??60???OEA,?EAO?30? 22∴△EFQ为等边三角形,EQ?…………………………………………5分 3 作QI⊥EO于I,EI= 3311EQ? EQ?,IQ=2323∴IO= 31211,)??∴Q点坐标为(……………………………………6分 33 333 31,),m=1 33 ∵抛物线y=mx2+bx+c过点C(0,1), Q(∴可求得b??3,c=1 2∴抛物线解析式为y?x?3x?1……………………………………7分 (4)由(3),AO?当x?3EO?233 22213时,y?(3)2?3?3?1?<AB 3333231,) …………………8分 33∴P点坐标为(∴BP=1?12?AO 33方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下: 2234383,1)或(,1)①BK?3时,BK?∴K点坐标为(999 223332②BK时,BK?323233?2343,1)或(0,1)…………10分∴K点坐标为(3 3 故直线KP与y轴交点T的坐标为 571…………………………………………12分 (0,?)或(0,)或(0,?)或(0,1)333 方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°,过P作PR⊥y轴于R,则∠RTP=60°或30° ①当∠RTP=30°时,RT?23?3?23 232?3?33 ②当∠RTP=60°时,RT?∴T1(0,),T2(0,?),T3(0,?),T4(0,1) 735313……………………………12分
正在阅读:
鄂州市2018年中考数学试题及答案(Word可编辑)03-24
2010-2018年会计师事务所行政处罚原因汇总分析11-13
2015年粉笔模考第十二季试题04-02
《列方程解决问题》的听课反思11-02
企业重组案例分析汇编05-07
最新-高中历史 落实课标要求 第13课 辛亥革命全套学案(学生版)03-13
2018最新试题资料-2018年全国各地中考语文试卷议论文阅读试题汇编(带答案)10-31
幼儿园老师2022年个人述职报告范文03-25
工业设计专业英语 何人可 16课12-13
屋面、地面、墙体隐蔽工程验收记录文本05-01
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 鄂州市
- 数学试题
- 中考
- 答案
- 编辑
- 2018
- Word
- 工程规划、施工图审查流程图
- 律师点名申请由她来审案
- 陈淑娴-追绿色梦,创生态课
- GMDSS业务题库
- 中国复合气瓶行业市场前景分析预测年度报告(目录) - 图文
- 东荣二矿煤质科开展360廉政风险防控机制建设实施方案
- 初中英语教学案例分析
- A浅谈中学作文评改的新做法
- 职业学校语文教学的反思与探索
- 最新人教A版必修5高中数学 2.5 等比数列的前n项和教案1(精品)
- 构建自主互助学习型课堂 深化课堂改革
- 兴和县民族小学章程
- 2016-2022年中国成人用品市场竞争规模及十三五投资规划研究报告
- 国外互助养老模式的经验借鉴与启示
- 高二化学组期中考试试卷分析
- (答案)集团客户专线代维考试题库
- 经典幽默小故事脑筋急转弯
- 文科综合能力测试
- 食品安全科普知识竞赛题(有答案)资料
- 校企合作下项目引领模块教学法在Java程序课程的改革探讨-最新教