2017年中考数学二次函数压轴题汇编(2)
更新时间:2024-01-16 11:25:01 阅读量: 教育文库 文档下载
1.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t). (1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
2.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ. (1)填空:b= ,c= ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;
(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.
3.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=
.
(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;
(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;
②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.
4.如图,在平面直角坐标系xOy中,已知A,B两点的坐标分别为(﹣4,0),(4,0),C(m,0)是线段A B上一点(与 A,B点不重合),抛物线L1:y=ax2+b1x+c1(a<0)经过点A,C,顶点为D,抛物线L2:y=ax2+b2x+c2(a<0)经过点C,B,顶点为E,AD,BE的延长线相交于点F. (1)若a=﹣,m=﹣1,求抛物线L1,L2的解析式; (2)若a=﹣1,AF⊥BF,求m的值;
(3)是否存在这样的实数a(a<0),无论m取何值,直线AF与BF都不可能互相垂直?若存在,请直接写出a的两个不同的值;若不存在,请说明理由.
5.如图,已知抛物线y=ax2﹣2
ax﹣9a与坐标轴交于A,B,C三点,其中
C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.
(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时,
+
均为定值,并求出该定值.
6.如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.
(1)求点D的坐标和抛物线M1的表达式;
(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;
(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.
①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值; ②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.
7.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点. (1)求这条抛物线的表达式及其顶点坐标;
(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;
(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止.当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
8.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴
经过A,B两点.
上,∠ACB=90°,抛物线y=ax2+bx+(1)求A、B两点的坐标; (2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.
9.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式;
(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由. 【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】
10.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
11.如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积; (3)若∠DMN=90°,MD=MN,求点M的横坐标.
12.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.
(1)求二次函数的解析式;
(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;
(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.
13.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.
14.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.
(1)求线段CD的长及顶点P的坐标;
(2)求抛物线的函数表达式;
(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S
OPMN=8S△QAB,且△QAB∽△OBN
四边形
成立?若存在,请求出Q点的坐标;若不存
在,请说明理由.
15.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
16.已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0. (1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根; (2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;
(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相
交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=S△ADE,求此时抛物线的表达式.
17.已知二次函数y=﹣x2+bx+c+1,
①当b=1时,求这个二次函数的对称轴的方程;
②若c=﹣b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?
③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,b>0,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足二次函数的表达式.
=,求
18.如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.
(1)①直接回答:△OBC与△ABD全等吗?
②试说明:无论点C如何移动,AD始终与OB平行;
(2)当点C运动到使AC2=AE?AD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=
x+
m的图象l与M有公共点.试写出:l与M的公共点为3个
时,m的取值.
19.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=
S△ACD,求点E的坐标;
(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由. 20.在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.
(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为 ,伴随直线为 ,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为 和 ;
(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D. ①若∠CAB=90°,求m的值;
②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值
时,求m的值.
21.我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:
(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式; (2)当抛物线的顶点在直线y=﹣2x上时,求b的值;
(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,An在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时满足条件的正方形AnBnCnDn的边长.
22.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正
半轴交于点C,其顶点为D.
(1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值;
(3)当△BCD是直角三角形时,求对应抛物线的解析式.
23.如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0). (1)求抛物线的解析式;
(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.
24.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,﹣)是抛物线上另一点. (1)求a、b的值;
(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;
(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.
25.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C. (1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积; (4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
26.如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).
(1)求抛物线的解析式;
(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.
(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
27.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0). (1)求抛物线的解析式;
(2)求证:直线l是⊙M的切线;
(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.
28.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴上,点B坐标为(4,t)(t>0),二次函数y=x2+bx(b<0)的图象经过点B,顶点为点D.
(1)当t=12时,顶点D到x轴的距离等于 ;
(2)点E是二次函数y=x2+bx(b<0)的图象与x轴的一个公共点(点E与点O不重合),求OE?EA的最大值及取得最大值时的二次函数表达式; (3)矩形OABC的对角线OB、AC交于点F,直线l平行于x轴,交二次函数y=x2+bx(b<0)的图象于点M、N,连接DM、DN,当△DMN≌△FOC时,求t的值.
29.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P. (1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
30.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0). (1)求抛物线的解析式;
(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E. ①当PE=2ED时,求P点坐标;
②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.
一.解答题(共30小题)
1.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t). (1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;
(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;
(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得
的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由
=
=
的值,可求得PH和OH,可求得
条件可证得△MOG∽△POH,由
P点坐标;当P点在第三象限时,同理可求得P点坐标. 【解答】解:
(1)∵B(2,t)在直线y=x上, ∴t=2,
∴B(2,2),
把A、B两点坐标代入抛物线解析式可得∴抛物线解析式为y=2x2﹣3x;
(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,
,解得
,
∵点C是抛物线上第四象限的点,
∴可设C(t,2t2﹣3t),则E(t,0),D(t,t), ∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,
∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t, ∵△OBC的面积为2, ∴﹣2t2+4t=2,解得t1=t2=1, ∴C(1,﹣1);
(3)存在.连接AB、OM. 设MB交y轴于点N,如图2,
∵B(2,2),
∴∠AOB=∠NOB=45°,
在△AOB和△NOB中
∴△AOB≌△NOB(ASA), ∴ON=OA=, ∴N(0,),
∴可设直线BN解析式为y=kx+, 把B点坐标代入可得2=2k+,解得k=, ∴直线BN的解析式为y=x+,
联立直线BN和抛物线解析式可得,解得或,
∴M(﹣,),
∵C(1,﹣1),
∴∠COA=∠AOB=45°,且B(2,2), ∴OB=2
,OC=
,
∵△POC∽△MOB, ∴
=
=2,∠POC=∠BOM,
当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,
∵∠COA=∠BOG=45°,
∴∠MOG=∠POH,且∠PHO=∠MGO, ∴△MOG∽△POH,
∴===2, ), , ,OH=OG=);
,
∵M(﹣,∴MG=,OG=∴PH=MG=∴P(
,
当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,
同理可求得PH=MG=∴P(﹣
,﹣
);
,OH=OG=,
综上可知存在满足条件的点P,其坐标为(,)或(﹣,﹣).
【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.
2.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止
运动,设运动时间为t秒.连接PQ. (1)填空:b=
,c= 4 ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;
(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.
【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入可得到抛物线的解析式,从而可确定出b、c的值;
(2)连结QC.先求得点C的坐标,则PC=5﹣t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2﹣CP2=AQ2﹣AP2列方程求解即可;
(3)过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG∽△ACO,依据相似三角形的性质可得到PG=t,AG=t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;
(4)连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到RH=QO=t,RH∥OQ,NR=AP=t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.
【解答】解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:y=﹣x2+x+4, ∴b=,c=4.
(2)在点P、Q运动过程中,△APQ不可能是直角三角形. 理由如下:连结QC.
∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角, ∴当△APQ是直角三角形时,则∠APQ=90°. 将x=0代入抛物线的解析式得:y=4, ∴C(0,4). ∵AP=OQ=t, ∴PC=5﹣t,
∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,
∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5. ∵由题意可知:0≤t≤4,
∴t=4.5不合题意,即△APQ不可能是直角三角形. (3)如图所示:
过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°. ∵PG∥y轴, ∴△PAG∽△ACO, ∴
=
=
,即
=
=,
∴PG=t,AG=t,
∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t. ∵∠MPQ=90°,∠D=90°,
∴∠DMP+∠DPM=∠EPQ+∠DPM=90°, ∴∠DMP=∠EPQ. 又∵∠D=∠E,PM=PQ, ∴△MDP≌PEQ,
∴PD=EQ=t,MD=PE=3+t,
∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t, ∴M(﹣3﹣t,﹣3+t). ∵点M在x轴下方的抛物线上,
∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=∵0≤t≤4, ∴t=
.
.
(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.
∵点H为PQ的中点,点R为OP的中点, ∴RH=QO=t,RH∥OQ. ∵A(﹣3,0),N(﹣,0), ∴点N为OA的中点. 又∵R为OP的中点, ∴NR=AP=t, ∴RH=NR, ∴∠RNH=∠RHN. ∵RH∥OQ, ∴∠RHN=∠HNO,
∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.
设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:解得:m=,n=4,
∴直线AC的表示为y=x+4.
同理可得直线BC的表达式为y=﹣x+4.
设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(﹣)+s=0,解得:s=2,
∴直线NR的表述表达式为y=x+2. 将直线NR和直线BC的表达式联立得:∴Q′(,
).
,解得:x=,y=
,
,
【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定
系数法求二次函数的解析式、相似三角形的性质和判定、全等三角形的性质和判定,依据勾股定理列出关于t的方程是解答问题(2)的关键;求得点M的坐标(用含t的式子表示)是解答问题(3)的关键;证得NH为∠QHQ′的平分线是解答问题(4)的关键.
3.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y=
.
(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;
(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;
②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值; (3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.
【分析】(1)函数y=ax﹣3的相关函数为y=5,8)代入y=﹣ax+3求解即可;
(2)二次函数y=﹣x2+4x﹣的相关函数为y=
,①分为m
,将然后将点A(﹣
<0和m≥0两种情况将点B的坐标代入对应的关系式求解即可;②当﹣3≤x<0时,y=x2﹣4x+,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=﹣x2+4x﹣,求得此时的最大值和最小值,从而可得到当﹣3≤x≤3时的最大值和最小值;
(3)首先确定出二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围.
【解答】解:(1)函数y=ax﹣3的相关函数为y=5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1. (2)二次函数y=﹣x2+4x﹣的相关函数为y=
,将点A(﹣
①当m<0时,将B(m,)代入y=x2﹣4x+得m2﹣4m+=,解得:m=2+(舍去)或m=2﹣
.
当m≥0时,将B(m,)代入y=﹣x2+4x﹣得:﹣m2+4m﹣=,解得:m=2+
或m=2﹣
. 或m=2+
或m=2﹣
.
综上所述:m=2﹣
②当﹣3≤x<0时,y=x2﹣4x+,抛物线的对称轴为x=2,此时y随x的增大而减小,
∴此时y的最大值为
.
当0≤x≤3时,函数y=﹣x2+4x﹣,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣,当x=2时,有最大值,最大值y=.
综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣的相关函数的最大值为最小值为﹣;
(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.
,
所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.
如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点
∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1, ∴﹣n=1,解得:n=﹣1.
∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.
如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.
∵抛物线y=﹣x2+4x+n经过点(0,1), ∴n=1.
如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.
∵抛物线y=x2﹣4x﹣n经过点M(﹣,1), ∴+2﹣n=1,解得:n=.
∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2
个公共点.
综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤.
【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值是解题的关键.
4.如图,在平面直角坐标系xOy中,已知A,B两点的坐标分别为(﹣4,0),(4,0),C(m,0)是线段A B上一点(与 A,B点不重合),抛物线L1:y=ax2+b1x+c1(a<0)经过点A,C,顶点为D,抛物线L2:y=ax2+b2x+c2(a<0)经过点C,B,顶点为E,AD,BE的延长线相交于点F. (1)若a=﹣,m=﹣1,求抛物线L1,L2的解析式; (2)若a=﹣1,AF⊥BF,求m的值;
(3)是否存在这样的实数a(a<0),无论m取何值,直线AF与BF都不可能互相垂直?若存在,请直接写出a的两个不同的值;若不存在,请说明理由.
【分析】(1)利用待定系数法,将A,B,C的坐标代入解析式即可求得二次函数的解析式;
(2)过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,易证△ADG~△EBH,根据相似三角形对应边比例相等即可解题; (3)开放性答案,代入法即可解题;
【解答】解:(1)将A、C点带入y=ax2+b1x+c1中,可得:
,解得:
,
∴抛物线L1解析式为y=
;
同理可得:,解得:,
∴抛物线L2解析式为y=﹣x2+x+2;
(2)如图,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,
由题意得:,解得:,
∴抛物线L1解析式为y=﹣x2+(m﹣4)x+4m; ∴点D坐标为(∴DG=
=
,
,AG=
), ;
同理可得:抛物线L2解析式为y=﹣x2+(m+4)x﹣4m; ∴EH=
=
,BH=
,
∵AF⊥BF,DG⊥x轴,EH⊥x轴, ∴∠AFB=∠AGD=∠EHB=90°,
∵∠DAG+∠ADG=90°,∠DAG+∠EBH=90°, ∴∠ADG=∠EBH, ∵在△ADG和△EBH中,
,
∴△ADG~△EBH, ∴
=
,
∴=
,化简得:m2=12,
解得:m=±
;
(3)存在,例如:a=﹣,﹣; 当a=﹣时,代入A,C可以求得:
抛物线L1解析式为y=﹣x2+(m﹣4)x+m;
同理可得:抛物线L2解析式为y=﹣x2+(m+4)x﹣m; ∴点D坐标为(∵A(﹣4,0), ∴直线AF的解析式为y=∵B(4,0),
∴直线BF的解析式为y=联立①②解得,点F(﹣m,∴OF2=m2+(假设AF⊥BF,
∴△ABF是直角三角形, ∴OF=AB=4, ∴OF2=16, ∴m2+(
)2=16,
)2,
x﹣
),
②
x+
①
,
),点E坐标为(
,
);
化简得,m4+4m2﹣320=0,
解得,m=4(直线BF平行于x轴,不符合题意)或m=﹣4(直线AF平行于x轴,不符合题意),
所以,AF不可能和BF垂直,
同理可求得a=﹣时,AF不可能和BF垂直.
【点评】本题考查了待定系数法求解析式,还考查了相似三角形的判定和相似三角形对应边比例相等的性质;本题作出辅助线并证明△ADG~△EBH是解题的关键.
5.如图,已知抛物线y=ax2﹣2
ax﹣9a与坐标轴交于A,B,C三点,其中
C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.
(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时,
+
均为定值,并求出该定值.
【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;
(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(
,a).依据两点的距离公式可求得AD、
AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可; (3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可. 【解答】解:(1)∵C(0,3). ∴﹣9a=3,解得:a=﹣. 令y=0得:ax2﹣2 ∵a≠0, ∴x2﹣2
x﹣9=0,解得:x=﹣
或x=3
.
ax﹣9a=0,
∴点A的坐标为(﹣∴抛物线的对称轴为x=(2)∵OA=∴tan∠CAO=∴∠CAO=60°.
,0),B(3.
,0).
,OC=3, ,
∵AE为∠BAC的平分线, ∴∠DAO=30°. ∴DO=
AO=1.
∴点D的坐标为(0,1) 设点P的坐标为(
,a).
依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2. 当AD=PA时,4=12+a2,方程无解.
当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去), ∴点P的坐标为(
,0).
当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4. ∴点P的坐标为(
,﹣4).
,0)或(
,﹣4).
m+3=0,
综上所述,点P的坐标为(
(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣解得:m=
,
x+3.
∴直线AC的解析式为y=
设直线MN的解析式为y=kx+1.
把y=0代入y=kx+1得:kx+1=0,解得:x=﹣, ∴点N的坐标为(﹣,0). ∴AN=﹣+将y=
=
.
.
x+3与y=kx+1联立解得:x=
.
∴点M的横坐标为
过点M作MG⊥x轴,垂足为G.则AG=+.
∵∠MAG=60°,∠AGM=90°, ∴AM=2AG=∴
+
=
+2+
=
=
.
+
=
=
=
.
【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M的坐标和点N的坐标是解答问题(3)的关键.
6.如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.
(1)求点D的坐标和抛物线M1的表达式;
(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;
(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.
①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值; ②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.
【分析】(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.在Rt△ADH中,解直角三角形,求出点D坐标,利用待定系数法即可解决问题; (2)如图1﹣1中,设P(2,m).由∠CPA=90°,可得PC2+PA2=AC2,可得22+(m﹣6)2+22+m2=42+62,解方程即可;
(3)①求出D′的坐标;②构建方程组,利用判别式△>0,求出抛物线与直线AE有两个交点时的m的范围;③求出x=m时,求出平移后的抛物线与直线AE的交点的横坐标;结合上述的结论即可判断.
【解答】解:(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.
∵四边形CDHO是矩形, ∴OC=DH=6, ∵tan∠DAH=∴AH=3, ∵OA=4, ∴CD=OH=1, ∴D(1,6),
把D(1,6),A(4,0)代入y=ax2+bx中,则有解得
,
,
=2,
∴抛物线M1的表达式为y=﹣2x2+8x.
(2)如图1﹣1中,设P(2,m).
∵∠CPA=90°, ∴PC2+PA2=AC2,
∴22+(m﹣6)2+22+m2=42+62, 解得m=3±
,
∴P(2,3+
),P′(2,3﹣).
(3)①如图2中,
易知直线AE的解析式为y=﹣x+4, x=1时,y=3, ∴D′(1,3),
平移后的抛物线的解析式为y=﹣2x2+8x﹣m, 把点D′坐标代入可得3=﹣2+8﹣m, ∴m=3. ②由
,消去y得到2x2﹣9x+4+m=0,
当抛物线与直线AE有两个交点时,△>0, ∴92﹣4×2×(4+m)>0, ∴m<
,
或2﹣
(舍弃),
③x=m时,﹣m+4=﹣2m2+8m﹣m,解得m=2+综上所述,当2+
≤m<
时,抛物线M2与直线AE有两个交点.
【点评】本题考查二次函数综合题、一次函数的应用、解直角三角形、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程组,利用判别式解决问题,属于中考压轴题.
7.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点. (1)求这条抛物线的表达式及其顶点坐标;
(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的
坐标;
(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止.当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
【分析】(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;
(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;
(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值. 【解答】解:
(1)根据题意,把A(0,6),B(6,0)代入抛物线解析式可得解得
,
,
∴抛物线的表达式为y=﹣x2+2x+6, ∵y=﹣x2+2x+6=﹣(x﹣2)2+8, ∴抛物线的顶点坐标为(2,8);
(2)如图1,过P作PC⊥y轴于点C,
∵OA=OB=6, ∴∠OAB=45°,
∴当∠PAB=75°时,∠PAC=60°, ∴tan∠PAC=
,即
=m,
,
设AC=m,则PC=∴P(
m,6+m),
m)2+2
m+6,解得m=0
把P点坐标代入抛物线表达式可得6+m=﹣(或m=
﹣,
经检验,P(0,6)与点A重合,不合题意,舍去, ∴所求的P点坐标为(4﹣
,+);
(3)当两个动点移动t秒时,则P(t,﹣t2+2t+6),M(0,6﹣t),
如图2,作PE⊥x轴于点E,交AB于点F,则EF=EB=6﹣t, ∴F(t,6﹣t),
∴FP=﹣t2+2t+6﹣(6﹣t)=﹣t2+3t,
∵点A到PE的距离竽OE,点B到PE的距离等于BE,
∴S△PAB=FP?OE+FP?BE=FP?(OE+BE)=FP?OB=×(﹣t2+3t)×6=﹣t2+9t,且S△AMB=AM?OB=×t×6=3t,
∴S=S四边形PAMB=S△PAB+S△AMB=﹣t2+12t=﹣(t﹣4)2+24, ∴当t=4时,S有最大值,最大值为24.
【点评】本题为二次函数的综合应用,涉及待定系数法、直角三角形的性质、二次函数的性质、三角形的面积及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中构造Rt△PAC是解题的关键,在(3)中用t表示出P、M的坐标,表示出PF的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.
8.如图,直线y=﹣
x+
分别与x轴、y轴交于B、C两点,点A在x轴
经过A,B两点.
上,∠ACB=90°,抛物线y=ax2+bx+(1)求A、B两点的坐标; (2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.
【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;
(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;
(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值. 【解答】解: (1)∵直线y=﹣
x+
分别与x轴、y轴交于B、C两点,
∴B(3,0),C(0,∴OB=3,OC=∴tan∠BCO=∴∠BCO=60°, ∵∠ACB=90°, ∴∠ACO=30°, ∴
=tan30°=
,即, =
,
),
=,解得AO=1,
∴A(﹣1,0);
(2)∵抛物线y=ax2+bx+
经过A,B两点,
∴,解得,
∴抛物线解析式为y=﹣
x2+
x+;
(3)∵MD∥y轴,MH⊥BC,
∴∠MDH=∠BCO=60°,则∠DMH=30°, ∴DH=DM,MH=
DM,
DM=
DM,
∴△DMH的周长=DM+DH+MH=DM+DM+∴当DM有最大值时,其周长有最大值, ∵点M是直线BC上方抛物线上的一点, ∴可设M(t,﹣∴DM=﹣∴DM=﹣
t2+t2+
t2+t+t+
t+
),则D(t,﹣
t+
t+),
),
),则D(t,﹣﹣(﹣
t+
)=﹣
,
t2+
t=﹣
2
(t﹣)+
,
∴当t=时,DM有最大值,最大值为此时
DM=
×
=
. ,
即△DMH周长的最大值为
【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、
二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.
9.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式;
(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由. 【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】
【分析】(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;
(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y=x﹣2,设D(m,0),得到E(m,m﹣2),P(m,m2﹣m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,),E(5,),根据三角形的面积公式即可得到结论;
(3)设M(n,n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+,于是得到N(,﹣);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,根据勾股定理列方程即可得到结论.
【解答】解:(1)∵抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)
,抛物线解析式为y=x2
在抛物线上,∴,解得:
﹣x﹣2;
(2)令y=x2﹣x﹣2=0,解得:x1=﹣2,x2=4,当x=0时,y=﹣2,∴B(4,0),C(0,﹣2),设BC的解析式为y=kx+b,则,解得:
,∴
y=x﹣2, 设D(m,0), ∵DP∥y轴,
∴E(m,m﹣2),P(m,m2﹣m﹣2), ∵OD=4PE,
∴m=4(m2﹣m﹣2﹣m+2), ∴m=5,m=0(舍去),
∴D(5,0),P(5,),E(5,),
∴四边形POBE的面积=S△OPD﹣S△EBD=×5×﹣1×=
;
(3)存在,设M(n,n﹣2), ①以BD为对角线,如图1, ∵四边形BNDM是菱形, ∴MN垂直平分BD, ∴n=4+, ∴M(,),
∵M,N关于x轴对称, ∴N(,﹣); ②以BD为边,如图2, ∵四边形BNDM是菱形, ∴MN∥BD,MN=BD=MD=1,
过M作MH⊥x轴于H, ∴MH2+DH2=DM2,
即(n﹣2)2+(n﹣5)2=12, ∴n1=4(不合题意),n2=5.6, ∴N(4.6,),
同理(n﹣2)2+(4﹣n)2=1, ∴n1=4+(不合题意,舍去),n2=4﹣,
∴N(5﹣
,﹣
),
③以BD为边,如图3, 过M作MH⊥x轴于H, ∴MH2+BH2=BM2,
即(n﹣2)2+(n﹣4)2=12, ∴n1=4+,n2=4﹣(不合题意,舍去),
∴N(5+
,
),
综上所述,当N(,﹣)或(4.6,)或(5﹣,﹣
),以点B,D,M,N为顶点的四边形是菱形.
)或(5+
,
【点评】本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法求一次函数、二次函数的解析式、勾股定理,三角形的面积公式、菱形的性质、根据题意画出符合条件的图形是解题的关键.
10.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式; (2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;
(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴
于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标. 【解答】解:
(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点, ∴
,解得
,
∴抛物线解析式为y=﹣x2+4x+5;
(2)∵AD=5,且OA=1, ∴OD=6,且CD=8, ∴C(﹣6,8),
设平移后的点C的对应点为C′,则C′点的纵坐标为8, 代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3, ∴C′点的坐标为(1,8)或(3,8), ∵C(﹣6,8),
∴当点C落在抛物线上时,向右平移了7或9个单位, ∴m的值为7或9;
(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9, ∴抛物线对称轴为x=2, ∴可设P(2,t),
由(2)可知E点坐标为(1,8),
①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,
则∠BEF=∠BMP=∠QPN, 在△PQN和△EFB中
∴△PQN≌△EFB(AAS), ∴NQ=BF=OB﹣OF=5﹣1=4, 设Q(x,y),则QN=|x﹣2|, ∴|x﹣2|=4,解得x=﹣2或x=6,
当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7, ∴Q点坐标为(﹣2,﹣7)或(6,﹣7); ②当BE为对角线时, ∵B(5,0),E(1,8),
∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4), 设Q(x,y),且P(2,t),
∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5, ∴Q(4,5);
综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).
【点评】本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后C点的对应点的坐标是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.
11.如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积; (3)若∠DMN=90°,MD=MN,求点M的横坐标.
【分析】(1)待定系数法求解可得;
(2)设点M坐标为(m,﹣m2+2m+3),分别表示出ME=|﹣m2+2m+3|、MN=2m﹣2,由四边形MNFE为正方形知ME=MN,据此列出方程,分类讨论求解可得;
(3)先求出直线BC解析式,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3)、点D(a,﹣a+3),由MD=MN列出方程,根据点M的位置分类讨论求解可得.
【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0), ∴设抛物线的函数解析式为y=a(x+1)(x﹣3), 将点C(0,3)代入上式,得:3=a(0+1)(0﹣3), 解得:a=﹣1,
∴所求抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)由(1)知,抛物线的对称轴为x=﹣如图,设点M坐标为(m,﹣m2+2m+3), ∴ME=|﹣m2+2m+3|,
∵M、N关于x=1对称,且点M在对称轴右侧,
=1,
∴点N的横坐标为2﹣m, ∴MN=2m﹣2,
∵四边形MNFE为正方形, ∴ME=MN,
∴|﹣m2+2m+3|=2m﹣2, 分两种情况:
①当﹣m2+2m+3=2m﹣2时,解得:m1=当m=
时,正方形的面积为(2
、m2=﹣
(不符合题意,舍去), ;
(不符合题意,舍
﹣2)2=24﹣8
②当﹣m2+2m+3=2﹣2m时,解得:m3=2+去), 当m=2+
时,正方形的面积为[2(2+
,m4=2﹣
)﹣2]2=24+8
.
;
综上所述,正方形的面积为24+8
或24﹣8
(3)设BC所在直线解析式为y=kx+b, 把点B(3,0)、C(0,3)代入表达式,得:
,解得:
,
∴直线BC的函数表达式为y=﹣x+3,
设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3),
①点M在对称轴右侧,即a>1,
则|﹣a+3﹣(﹣a2+2a+3)|=a﹣(2﹣a),即|a2﹣3a|=2a﹣2, 若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2, 解得:a=
或a=
<1(舍去);
若a2﹣3a<0,即0≤a≤3,a2﹣3a=2﹣2a, 解得:a=﹣1(舍去)或a=2; ②点M在对称轴左侧,即a<1,
则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a, 若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a, 解得:a=﹣1或a=2(舍);
若a2﹣3a<0,即0≤a≤3,a2﹣3a=2a﹣2, 解得:a=
(舍去)或a=
;
综上,点M的横坐标为、2、﹣1、.
【点评】本题主要考查二次函数的综合问题,熟练掌握待定系数法求函数解析式及两点间的距离公式、解方程是解题的关键.
12.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.
(1)求二次函数的解析式;
(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;
(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.
【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题; (2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+
m,0),
由E、B关于对称轴对称,可得=2,由此即可解决问题;
(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可; 【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,
把(0,0)代入得到a=,
∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.
(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+
m,0),
∵E′在抛物线上,易知四边形EBE′C是正方形,抛物线的对称轴也是正方形的对称轴,
∴E、B关于对称轴对称, ∴
=2,
解得m=1或6(舍弃), ∴B(3,0),C(1,﹣2), ∴直线l′的解析式为y=x﹣3.
(3)如图2中,
①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3). ②当N′=N′B′时,设P(m,m﹣3), 则有(m﹣解得m=∴P2(
)2+(m﹣3﹣
或,
)2=(3, ),P3(
,
,
).
)
)2,
综上所述,满足条件的点P坐标为(0,﹣3)或(或(
,
).
【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.
13.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).
(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.
【分析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;
(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;
(3)当四边形PMQN为正方形时,则可证得△COQ∽△QAB,利用相似三角
正在阅读:
冀教版八年级下英语教案设计(新)05-26
地质遥感文献综述10-11
中国医科大学2016年1月课程考试《传染病护理学》考查课试题参考答案09-05
我们都是小蚂蚁作文500字06-27
ETF基金介绍与基本策略规划04-15
立轴钻机系列及配套设备06-19
五年级数学上册9套试卷(精编答案版)03-21
Linux考试题12-04
2017年十年期银行利息02-15
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 压轴
- 汇编
- 中考
- 函数
- 数学
- 2017
- 在线考试系统毕业论文
- 实验报告格式示例
- 0906130204-廖浩伟-操作系统安全课程设计报告
- 微免试卷选择题整理
- 2012年泉州市丰泽区初中毕业学业质量检测语文试题及参考答案
- 五年级英语句型转换专项练习
- 2013年环境污染物排放量统计年报--摘自环保部官网
- 工作报告董事长定稿(宏伟印刷传)
- 尾矿库管理制度
- 呈凌书记阅示- 长寿新闻网
- 计算机二级考试VB一般程序设计习题
- 基于哈夫曼的图片压缩
- 常用的数量关系式 1
- 第四单元《长方体(二)》单元测试题2017春北师大版数学五年级下册小学数学试题试卷
- 电影与幸福感2019尔雅答案100分
- 中国农业银行个人电子银行交易限额标准
- 基于UML表示的数字城市GIS图形库建模及其实践 - 0000
- 智慧渔业方案(渔业水产信息化解决方案) - 图文
- 新北师大版一年级数学下册全册教案-带教学反思 - 图文
- SAP应用中常用的TCODE - 图文