Modeling-of-the-effect-of-particles-size-particles-distribution-and-particles-number-on
更新时间:2023-06-07 03:35:01 阅读量: 实用文档 文档下载
- 莫德林公学推荐度:
- 相关推荐
CompositesPartB86(2016)135e142
ContentslistsavailableatScienceDirect
CompositesPartB
journalhomepage:/loc
ate/compositesb
Modelingoftheeffectofparticlessize,particlesdistributionandparticlesnumberonmechanicalpropertiesofpolymer-claynano-composites:Numericalhomogenizationversusexperimentalresults
Y.Djebaraa,A.ElMoumenb,T.Kanitb,*,S.Madania,A.Imadb
ab
LaboratoiredeM ecaniquedesStructuresetMat eriaux,LMSM,Universit khdar,Batna,AlgeriaLaboratoiredeM ecaniquedeLille,LML,CNRS/UMR8107,Universit eLille1,Villeneuved'Ascq,France
articleinfo
Articlehistory:
Received22June2015Receivedinrevisedform3September2015
Accepted22September2015
Availableonline11November2015Keywords:
A.Polymer-matrixcompositesA.Particle-reinforcementB.Microstructures
putationalmodellingNano-composites
abstract
Themaingoalofthispaperistopredicttheelasticmodulusofpartiallyintercalatedandexfoliatedpolymer-claynano-compositesusingnumericalhomogenizationtechniquesbasedonthe niteelementmethod.Therepresentativevolumeelementwasemployedheretocapturenano-compositesmicro-structure,wherebothintercalatedexfoliatedandclayplateletscoexistedtogether.Theeffectivemacroscopicpropertiesofthestudiedmicrostructureareobtainedwithtwoboundaryconditions:pe-riodicboundaryconditionsandkinematicuniformboundaryconditions.Theeffectofparticlevolumefractions,aspectratio,numberanddistributionofparticlesandthetypeofboundaryconditionsarenumericallystudiedfordifferentcon gurations.ThispaperinvestigatealsotheperformanceofseveralclassicalanalyticalmodelsasMoriandTanakamodel,HalpinandTsaimodel,generalizedselfconsistentmodelthroughtheirabilitytoestimatethemechanicalpropertiesofnano-composites.Acomparisonbetweensimulationresultsofpolypropyleneclaynano-composites,analyticalmethodsandexperi-mentaldatahascon rmedthevalidityofthesetresults.
©2015ElsevierLtd.Allrightsreserved.
1.Introduction
Polymericcompositesreinforcedwithnanoscalere-inforcementssuchasnanotube-reinforced,silicananoparticle-reinforcedandnanoclay-reinforcedhaverecentlyattractedatremendousattentioninresearchersandindustrials,sincetheyexhibitenhancedmechanicalproperties.AccordingtoKojimaetal.[17];claynanoparticlesareclassi edbestcandidatestostrengthenpolymersmaterials,duetotheirmechanicalandphysicalproper-ties,theirhighaspectratio,theirhighavailabilityinnatureandproductionlowcost.
Generally,therearethreedifferenttechniquestocharacterizethebehaviorofnanocomposites:experimentalapproaches,analyticalmethodsbasedonthetheoriesofboundsandmodelsandnumericalmethodsbasedontherepresentativevolumeelement(RVE)coupledwith niteelementmethods(FEM).Itshouldbementionthatinexperimentalworksitisverydif culttocontrolthein uenceoftheparticlesize,particlesshapeandits
*Correspondingauthor.Tel.:þ33320434243;fax:þ33320337088.E-mailaddress:tou k.kanit@univ-lille1.fr(T.
Kanit)./10.1016/positesb.2015.09.0341359-8368/©2015ElsevierLtd.Allrightsreserved.
distributionsonthemacroscopicbehaviorofpolymerclaynano-composites(PCN).Forthat,someworksconfronttheexperimentaldatawithnumericalandanalyticalmethodstodeterminetheeffectofmorphologicalparameters.Theelasticpropertiesarethendeterminedbyapplyinganalyticalornumericalmethods.Themostimportantonesare:MoriandTanaka[21](MT),HalpinandTsai[11](HT)andgeneralselfconsistent(SC)method.Foranalyticalbounds,theusedmicromechanicalmethodsare:the rstorderboundsofVoigt[24];thesecondorderboundsofHashinandShtrikman[10]andthethirdorderboundsofBeranandMolyneux[1].Fornu-mericalcharacterization,thetechniqueofthehomogenizationbasedonRVEandFEMisintroducedinmanysituationsinordertoestimatetheeffectivepropertiesofnanocomposites.Forexample,FornesandPaul[9],Shengetal.[23],Hbaiebetal.[12],DongandBhattacharyya[3],FigielandBuckley[8]andPahlavanpouretal.[22].
FornesandPaul[9]proposedanexperimentalworktounder-standtheoriginofthesuperiorreinforcingef ciencyobservedinwellexfoliatedpolymerclaynanocompositescomparedtocon-ventionalreinforcementsusingcompositetheory.TheyfoundthatcompositetheoriesofHTandMTwereemployedtobetterunder-standingofthesuperiorreinforcementobservedforwell-exfoliated
136Y.Djebaraetal./CompositesPartB86(2016)135e142
nanocompositesrelativetoconventionalglass berscomposites.Shengetal.[23]employed2DalignedmicrostructurescombinedwithmicromechanicalmodelsofMT,HTandFEMtopredictthestiffnessofpolymerclaynanocomposites.Theparticleswereassumedtobeallalignedandisotropic.Hbaiebetal.[12]haveused2Dand3DFEMmodelsofthepolymer/claynanocompositeswithalignedandrandomlyorientedparticlestodeterminetheelasticpropertiesofthismaterial.TheycalculatedtheeffectiveYoung'smodulusforrandomandalignedparticlesandconfronttheresultstoMTmodel.TheauthorsconcludedthattheMTmodeldidnotpredictaccuratelythestiffnessofthecomposites.DongandBhat-tacharyya[3]predictedtheelasticmoduliofpolymerclaynano-compositesusingnumericaltechniquebasedonmappingthereal2Dmicro-nanostructuresofclayplatelets.Theresultswereveri edbythecomparisonofnumericalresultstoexperimentaldataandtheconventionalcompositestheoriesasHTandHuiandShia[13]models.TheresultsshowthatthenumericalsimulationsprovidethegreatinsighttowellpredicttheelasticmodulusofPoly-propylene(PP)/claynanocompositesincomparisontoconventionalcompositestheories.
Recently,Pahlavanpouretal.[22]evaluatedtheperformanceofcommonlyusedanalyticalmicromechanicalmodelstopredicttheelasticpropertiesofpolymer/claynanocompositeswiththehelpofnumericalsimulationsbasedFEM.Theresultsshowthatthecom-parisonbetweenanalyticalandsimulationsrevealedthattheMTmodelisthemostreliablemethodtobeusedforthepossiblerangesofmoduluscontrast,aspectratioandvolumefraction.Lie-lensetal.[18]giveabestpredictioncomparedtoMTmodelathighvolumefractionswhentherigiditycontrastbetweeneffectiveparticleandpolymerisalsohigh.TheSCschemeoverestimatesthe
axialYoung'smodulusforallstudiedcasesofPCN(polymerclaynanocomposites).
Themajorityofmicromechanicalanalyticalmodelsdonottakeintoaccountthein uenceoftheparticleshapeontheeffectivepropertiesofnanocomposites.Theclassicalmodels,theiraccuracyandtheirrangeofapplicability,basedonmoreorlesssuitablehypotheses,cannotbeestablishedintheabsenceofanexactso-lution,seeElMoumenetal.[7].ThiscanonlybeobtainedbysolvingnumericallytheboundaryvalueproblemforaRVEofnanocomposites.
Inthepresentpaper,themaingoalistopredicttheeffectofparticlesize,particlesnumberandparticlesdistributiononme-chanicalpropertiesofrandomlypartiallyintercalatedandexfoliatedpolymerclaynanocompositesusingnumericalhomogenizationtechniques.Severalmicrostructureswithdifferentvolumefractionsandaspectratiorangingfrom5%to40%aregenerated.FEMsimu-lationsofdetailedmicrostructuresareperformedwithdifferentboundaryconditions.Theeffectofboundaryconditionsinme-chanicalpropertiesofclaynanocompositesisalsoinvestigated.TheRVEsizeofmicrostructuresandtheireffectiveelasticpropertiesarecomparedandrelatedwithnumberofparticles.Theresultsarethencomparedwithbothofexperimentaldataofpolypropylenemont-morillonitenanocomposites(PP/MMT)andconventionalcompos-itestheoriesofanalyticalmodel.
2.Generationofmicrostructuresand niteelementmesh2.1.Morphologyofmicrostructures
NanocompositesmorphologieswerereconstructeddigitallyusingPoissonprocess.RandomlydistributedparticlesweregeneratedinRVEwithanalgorithmimplementedinMATLABsoftware.ThealgorithmisbasedoncompositemicrostructuresandiselaboratedbyElMoumenetal.[7]forthecaseofmicrostructureswithellipsoidalparticles.Thealgorithmwasadaptedtointerca-latedandexfoliatedpolymerclayparticles.Thisprocessiswidelyusedforgeneratingofcompositesreinforcedwithsphericalorcy-lindricalparticles,seeElMoumenetal.[4].Theideaistoembedpointsrandomlyina2DplaneaccordingtoaPoissonlaw.Thesepointsrepresentthecenterofeachinclusionandthenastraightlinewitharandomorientationisgeneratedfromeachofthesepoints.
Inthisstudy,wehaveconsidereda2Dmicrostructureofpartiallyintercalatedandexfoliatedpolymerclaynanocomposites.Themorphologyofclayplatelets(MMT)werecarriedwithdifferentvaluesofaspectratios:z¼5,z¼10,z¼20,z¼40,embeddedandrandomlyorientedinaPPmatrixwithvariousvolumefractionsof4.5%,6%and10%.Fig.1showssomeexamplesofthegeneratedmicrostructuresofclayplateletsinthematrixincludingexfoliatedandintercalateddistribution.Thephysicalandmechanicalprop-ertiesaffectedtoeachphasearegivenbyShengetal.[23]andKimetal.[16]andlistedinTable1.Itshouldmentionthatbothofthematrixandclayparticlesareisotropicandtheparticlesareassumedtobeperfectlyboundtothematrix.2.2.Finiteelementmeshing
Oncethegeometryofthemicrostructureisperformed,ameshcanbegenerated.Theregular niteelementmeshissuperimposedontheimageofthemicrostructureusingtheso-calledmultiphaseelementtechnique.ThistechniquewasdevelopedbyLippmannetal.[19]andextensivelyusedbyElMoumenetal.[5]andElMoumenetal.[7]forhomogenizationofrealandvirtualcompositemicrostructuresrespectively.Indeed,theimageofthemicrostruc-tureisusedtoattributetheproperphasepropertyto
each
Y.Djebaraetal./CompositesPartB86(2016)135e142137
Fig.1.RVEincludingrandomlyorientedparticlesforanaspectratioz¼40andvolumefractionof:(a)4.5%,(b)6%and(c)10%ofparticles.
Table1
PhysicalpropertiesofPP/Claynano-composites.Wheren,E,kandmarethePoissonratio,Young'smodulus,bulkmodulusandshearmodulusrespectively.
computemacroscopicin-planebulkkappandshearmappmoduliaregivenby:
n
Matrix(PP)
Clayparticles(MMT)
0.350.26
E(MPa)176048,300
k(MPa)217339,931
m(MPa)
65219,167
Density(g/cm3)0.91.8
E¼
k
1001
andE¼
m
00:50:50
(1)
Therefore,wecande netheapparentmacroscopicbulkmoduluskappandtheapparentmacroscopicshearmodulusmappas:
integrationpointofaregularmesh,accordingtothecoloroftheunderlyingelement.Fig.2showsanexampleofaregularmeshwithgridof500by500 niteelements.
kapp¼
1
traceð<s>Þandmapp¼<s12>4
(2)
Thesign<s>meansaveragevalueofthelocalstresss.3.2.Convergenceofmacroscopicelasticproperties
Theconvergenceofthemacroscopiceffectivepropertiesisob-tainedstudyingthewill-knowmeshdensity.Itisde nedasthenumberof niteelementsnecessarytomeshelementaryvolumeofnanocomposites.Forthatpurpose,aspeci c2Dmicrostructuremadeofrandomclayparticlesisconsidered.Thenumberofpar-ticlesandthegeometryofthemicrostructureareunchanged,butdifferentmeshresolutionsareused.Fig.3showstheresultsofcomputationsofthemacroscopicelasticpropertiesasafunctionofthenumberofused niteelementsforeachmeshresolution.Thenumberofnodesincreasesfrom341(meshcontains100elements)to2,51,001(meshcontains250,000elements),keepingthesamemicrostructurecontaining100particlesoccupying10%oftotalsurface.Fig.3showsthatthehomogenizedproperties rstrapidlydecreasefor nermeshesandtendstostabilizeforlarge
volumes.
putationalhomogenization3.1.Boundaryconditions
Twotypesofboundaryconditionsareconsideredtobepre-scribedontheboundaryofthedomain.Inthecaseoflinearelas-ticity,theseconditionsare:kinematicuniformboundaryconditions(KUBC)andperiodicityconditions(PBC).ItshouldbenotedthattheminimalsizerequiredtoestimatetheeffectivepropertiesismuchlowerforPBCcomparedtoKUBC.TheresultsproducedbytheperiodicboundaryconditionsconvergemorerapidlythantheonesobtainedbyKUBC,seeKanitetal.[14].
Inheterogeneousmaterials,2Dmacroscopiceffectivebulkandshearmoduliwerecalculatedbysolvingtwofundamentalbound-aryvalueproblemswithimposedaveragestrain,Kanitetal.[14].Themacroscopicimposedstraintensors,EkandEm,usedto
Fig.2.Meshingtechnique:(a)polymerclaynano-compositesimageand(b)associatedmesh.
138Y.Djebaraetal./CompositesPartB86(2016)135e142
3.3.Numericalresults
Inthispart,theeffectofclayparticlesdistributionandparticlesnumber,aspectratioandthetypeofboundaryconditionsontheeffectiveelasticpropertiesofPP/nano-clayparticlesispresented.Foreachmicrostructureofnanocomposites,containingrandomparticles,ndifferentrealizationswerecreatedtoestimatetheelasticmoduliandtostudytheeffectofdistribution.Thedifferencebetweencreatedrealizationsis:orientationanddispositionofparticles,itsdistributionandthesizeofmicrostructures.Thenumberofrealizations,consideredforeachvolumesizecontainingNparticles,isgiveninTable2.Forillustration,Fig.4givesanexampleofthegeneratedpartiallyintercalatedandexfoliatedrealizationwithsamevolumefractionsbutdifferentdistributions.Thesimulationsareperformedwiththe niteelementmethod.Dependingonboundaryconditionsanddifferentrealizations,macroscopiclinearproperties,in-planebulkandshearmoduli,werecalculatedto ndtheelasticbehavior.ThesetobtainedresultsfortheapparentandeffectivepropertiesofeachaspectratioarepresentedinFigs.5e7.ThesecurvesexplainthevariationofthemacroscopicpropertiesofPP/claynano-compositeswiththechangeinnumberofparticlesN.These guresshowalsothe uc-tuationoftheresultsfordifferentrealizations,themeanvaluesanditsintervalofcon dencefortheapparentproperties.Itappearsthat,forbothboundaryconditions,theerrordecreaseswhenthenumberofparticlesincreases,andtendstozeroforlargevolumes.Forthesereasons,onerealizationisenoughtodescribethe
elastic
Fig.3.Variationofmacroscopicbulkmoduliwithchangingthenumberof niteel-ementsforvariousmeshgrids.
Table2
Numberofdifferentrealizationsusedforeach xednumberofparticles.Nn
1050
3050
5040
10030
15020
20020
This gurealsoshowsthatthenumberof niteelementsinwhichitbeginsconvergenceisapproximately81,000elements/100par-ticles.Itappearsthatameshdensityof81,000elementsper100particlesisnecessarytogetaprecisionof1%.
Fig.4.Examplesofconsideredrealizationsntostudytheeffectofparticlesdistributionforanaspectratioof40and10%ofvolumefraction:(a)n¼30,(b)n¼50and(c)n¼100particles.
Y.Djebaraetal./CompositesPartB86(2016)135e142139
Fig.5.Variationofthehomogenizedelasticpropertiesversusnumberofparticlesfordifferentboundaryconditionsand4.5%of
particles.
behaviorofnano-compositesforvolumeslargerthanthedeter-ministicRVE.ThesameresultsareshownbyElMoumenetal.[5]forrandomcompositesreinforcedwithnaturalparticles.Foreachmodulus,thetwovaluesofboundaryconditions,KUBCandPBC,convergetowardstothesamelimitstartingfrom50particles.Itappearsalsothatthedistributionofparticlesdoesnotaffecttheelasticpropertiesinvolumeslargerthan50particlesfordifferentaspectratios.Itshouldbementionthattheparticlevolumefrac-tionsandtheaspectratioaretheprincipalmorphologicalparam-eterswhichin uencetheelasticpropertiesofnano-compositeestimatedwithnumericalsimulations.Forillustration,theeffectivepropertiesfound,inthecaseofPBC,arereportedinTable3andcomparedwithanalyticalmethodssuchasVoigt(V)andReuss(R)bounds,HashinandShtrikman(HS)boundsandgeneralizedselfconsistentestimatesofChristensenandLo[2].Thistablegivesacomparisonoftheanalyticalapproximationmethodsbrie yrecalledintheintroductiontothe niteelementresultsregardingthesetgeneratedmicrostructuresfordifferentratios.Itisclearfromthistableand guresthattheestimationsprovidedbytheapproximationschemesareclosetothecorresponding niteelementsimulationsinthecaseoflowvolumefractions.Themaximumdifferencebetweennumericalandanalyticalresultsisobtainedinthecaseofheightvolumefractionofparticleswithlargeaspectratio.Thisdifferenceisaroundof15%.Forillustration,anexampleofthedeformedmicrostructuresofnano-compositesispresentedinFig.8forcomputationsofthebulkandshearmodulus.
Fig.6.Variationofthehomogenizedelasticpropertiesversusnumberofparticlesfordifferentboundaryconditionsand6%ofparticles.
4.Experimentalresultsversusnumericalandanalyticalapproaches
Theobjectiveofthissectionistopresentaconfrontationbe-tweennumerical,analyticalandexperimentalresultsoftheesti-matedelasticmoduli.Thenumericalresultsareobtainedusingthehomogenizationtechniqueandtheanalyticalonesbymicro-mechanicalmodels.ThemostimportantmicromechanicalmodelsaretheVR,HSboundsandHTmodel.Thesemodelsgenerallyconsiderthevolumefractionandtheaspectratioofparticlesinsidethematrix.Fortheexperimentalresults,Table4presentsthevaluesoftheelasticmodulus,extractedfromtheliterature,seeDongandBhattacharyya[3];asafunctionofparticleweightfractions.
Sincethevolumefractionisaveryimportantparameterin niteelementsimulationsandmicromechanicalmodels,itisveryimportanttoestablishaquantitativerelationbetweentheweightratioandthevolumefraction,toproperlycomparethesimulationresultswiththoseofexperimentaldata.Foratwo-phasecompositematerialconsistingofamatrixandparticles,thevolumefractioncanbecalculatedfromtheweightfractionwf,matrixdensityrm,andclayparticledensityrfasfollows:
P¼
ww.frf
r(3)
ffþ1Àwf
rm
140Y.Djebaraetal./CompositesPartB86(2016)135e142
4.1.NumericalpredictionofnanocompositesYoung'smodulusThesamemethodologyusedinthelastsectionfornumericalhomogenizationofbulkandshearmoduliisusedinthispartforelasticmodulus.Numericalbulkandshearmoduliaredeterminedfordifferentvolumefractionsofclayparticleswithdifferentas-pectsratio.Thus,theeffectiveelasticmodulusEeffandeffectivePoissonrationeffofthepolymerclaynanocompositesarecalculatedaccordingtothe2DisotropyrelationsasgivenbyMeilleandGar-boczi[20]:
E
eff
¼
4
þn
eff
keffÀmeff
¼k(4)
Table5givesthesetobtainednumericalresultsconfrontedtotheresultsofmicromechanicalmodels.Itappearsthattheanalyt-icalmodelsgiveagoodpredictionofYoung'smodulusinthecaseoflowervolumefractionswithsmallaspectratio.However,thedif-ferencebetweenanalyticalandnumericalresultsbecomesimpor-tantbyincreasingthevolumefractionandtheaspectratioofparticles.
4.2.Confrontationofexperimental,numericalandanalyticalresultsFig.9showstheconfrontationofnumericalresultswiththepredictionsoftheHTmodel,HSboundsandtheexperimentaldata.Thevariationisgivenasafunctionofthevolumefractionofclayparticlesatvariousaspectratiorangingfromz¼5toz¼40.Fromthis gureitappearsthat:
Thereisagoodagreementbetweenbothofnumericalsimula-tionandexperimentaldatafordifferentvolumefractions.AthighervolumefractionsthereisasmalldifferencethatmaybeassociatedtothesizeofexperimentalsamplesasshownbyKanitetal.[15]andElMoumenetal.[5].Inexperimentalcharacterization,withincreasingofthevolumefractionsthenumbersofparticlesisalsoincreasedandleadstocreation
of
Fig.7.Variationofthehomogenizedelasticpropertiesversusnumberofparticlesfordifferentboundaryconditionsand10%ofparticles.
Table3
Comparisonbetweennumericalresultsanddifferentanalyticalmodels.TheerroriscalculatedbetweenGSCandtheresultsofnumericalsimulations.z5
P(%)4.5610
10
4.5610
20
4.5610
40
4.5610
Effectivepropertieskeffkeffkeffkeff
R226968123046922400722227068123046922400722227068123046922400722227068123046922400722
HSÀ229669923407162463763229669923407162463763229669923407162463763229669923407162463763
GSC229669923407162463764229669923407162463764229669923407162463764229669923407162463764
εr(%)2.3132.954.334.556.154.185.726.078.808.9714.677.019.168.8012.9912.5117.2810.1913.4512.6515.9218.5118.46
Numericalresults234972024097472575811239273924827792684873245776325468092771896253079326368302919905
HSþ28059613023106836291365280596130231068362913652805961302310683623136528059613023106836291365
V387214854438176389492503387214854438176389492503387214854438176389492503387214854438176389492503
meffmeffmeff
keffkeffkeff
meffmeffmeff
keffkeffkeff
meffmeffmeff
keffkeff
meffmeffmeff
Y.Djebaraetal./CompositesPartB86(2016)135e142141
Fig.8.Exampleofdeformedmicrostructuresforcomputationtest:(a)initialmicrostructure,(b)computationofbulkmodulus,(c)computationofshearmodulus.
Table4
ExperimentalYoung'smodulusofPP/claynanocompositesversusvolumefractions,see.YuDongetal.(2009).wf00.030.050.0850.10
P0
0,0150,0260,0420,053
z010
5<z<10z5<5
ExperimentalE(MPa)17601970204321312097
TheHTmodelresultsclearlyoverestimatetheelasticmodulus,becausethedifferencebetweenthismodelandthenumericalsimulationandexperimentaldataincreaseswithincreasingthevolumefractionandtheaspectratioofparticles,excludingthecaseofthesmallaspectratios(z¼5andz¼10),wheretheHTmodelgivesareasonablepredictionoftheelasticmodulus.TheresultsoftheHTmodelarewelllocatedbetweenupperandlowerHSbounds,butinthecaseofhighratio,z¼40,theresultsareclearlydivergedouttheHSbounds.5.Conclusion
Inthispaper,wehavepresentedaconfrontationbetweennu-merical,experimentalandanalyticalresultsofsamplesrepresent-ingPPmatrix/claynanocomposites.Numericalhomogenizationishandledby niteelementmethodbasedontherepresentativevolumeelement(RVE)andcomparedtotheclassicalanalyticalmodelsandexperimentaldata.Anoriginalmethod,basedonPoissonprocess,hasbeenusedtogenerateautomaticallythemicrostructureofPP/claynanocompositesrepresentingthisma-terial.Thismethodconsistsinrandomlyplacingnon-overlappingexfoliation/intercalationparticlesintheRVE.Severalmicrostruc-turesweregenerateddependingontheaspectratioofparticlesrangingfrom5to40fordifferentvolumefractions.Themeshofthemicrostructuresisobtainedusingtheso-calledmulti-phaseelementmethod.Thevalidityoftheobtainedresultsreliesmainlyonthehypothesisthatthemicrostructuresarestatisticallyrepre-sentativeandthenumberofusedelementisenoughtoachieveagoodconvergenceofmacroscopicproperties.Theseconditionswereperformedbystudyingthemeshdensity.Itappearstheex-istenceofasmalldifference(0.01%)betweentheresultsobtainedbydifferentmicrostructuresofnanocomposites.TwodifferentboundaryconditionsaswellaskinematicuniformandperiodicboundaryconditionswereimposedinordertoassesstheeffectoftheseconditionsonthemicrostructuresofPP/claynanocomposites.Itappearsthattheoverallpropertiesestimatedonthevolumecontainingmorethan50particlesareindependentofboundaryconditions.Thissizecanbeconsideredastheminimumvolumeforwhichthenumericalresultsarerepresentatives.Thein uenceoftheshapewashighlightedthroughthecomparisonofnumericalresultsperformedonthemicrostructureswithdifferentaspectratio.Itappearsadifferenceintheelasticmoduliregardingtheaspectratio,especiallyinthecaseofhighparticlevolumefractions.Theconfrontationofthenumericalresultstothesomeofthemostusedanalyticalmodels(asVRandHSbounds,HTandGSCmodels)andexperimentalapproachesispresented.Globally,inthecaseoflowervolumefractionandsmallaspectratio,alltheanalyticalmodelsprovidegoodapproximationsfordifferentstudiedcon g-urations.However,whentheaspectratioand/orparticles
volume
Table5
ComparisonbetweenanalyticalpredictionsandnumericalresultsofPP/MMT.TheerrorrepresentsthedifferencebetweennumericalresultsandHTanalyticalmodel.z
P(%)
Eeff(MPa)R
5
4.56104.56104.56104.5610
184018681948184018681948184018681948184018681948
HSÀ214321922329214321922329214321922329214321922329
Numericalresults220522802467225723712605232824552738241625262763
Error(%)1.51.138.735.929.5419.614.2519.3830.7420.9427.8841.28
HT216523062703239926213240271530453953305634984705
HSþ286331573967286331573967286331573967286331573967
V385445526414385445526414385445526414385445526414
10
20
40
Fig.9.Confrontationofnumerical,experimentalandanalyticalYoung'smodulusofPP/claynanocomposites.
clusteredparticles.ThisparticleclusteringcausesadecreaseinelasticmodulusasclearlyshowninFig.9,seeforexampleHbaiebetal.[12].
142Y.Djebaraetal./CompositesPartB86(2016)135e142
fractionsbecomeimportant,theVRboundsandHTmodelsare
largelydivergescomparedtoexperimentalresultsand niteelementsimulatedresults.ThisstudythenshowsthattheexplicitanalyticalmodelsmaycorrectlyestimatetheeffectivemechanicalpropertiesofPP/ClaynanocompositesbasedMMT,expectthecaseofhighvolumefractionsandaspectratiolessthan10.References
[1]BeranMJ,eofclassicalvariationalprinciplestodetermine
boundsfortheeffectivebulkmodulusinheterogeneousmedia.QApplMath1966;24:107e18.
[2]ChristensenRM,LoKH.Solutionsforeffectiveshearpropertiesinthreephase
sphereandcylindermodels.JApplMechPhysSolids1979;27(4):315e30.[3]DongY,BhattacharyyaD.Mappingtherealmicro/nanostructuresforthe
predictionofelasticmoduliofpolypropylene/claynanocomposites.Polymer2010;51:816e24.
[4]ElMoumenA,KanitT,ImadA,ElMinorH.Effectofoverlappinginclusionson
effectiveelasticpropertiesofcomposites.MechResCommun2013;53:24e30.[5]ElMoumenA,ImadA,KanitT,HilaliE,ElMinorH.Amultiscaleapproachand
posPartBEng2014;66:247e54.
[7]ElMoumenA,KanitT,ImadA,ElMinorH.Effectofreinforcementshapeon
physicalpropertiesandrepresentativevolumeelementofparticles-reinforcedcomposites:statisticalandnumericalapproaches.MechMater2015;83:1e16.[8]FigielL,BuckleyCP.Onthemodellingofhighlyelastic owsofamorphous
thermoplastics.IntJNon-linearMech2009;44(4):389e95.
[9]FornesTD,PaulDR.Modelingpropertiesofnylon6/claynanocomposites
usingcompositetheories.Polymer2003;44(17):4993e5013.
[10]HashinZ,ShtrikmanS.Avariationalapproachtothetheoryoftheelastic
behaviorofmultiphasematerials.JMechPhysSolids1963;11:127e40.
[11]HalpinJC,TsaiSW.Environmentalfactorsincompositematerials.AFMLTR
67e423,AirForceMaterialsLaboratoryReport.1967.
[12]HbaiebK,WangQX,ChiaYHJ,CotterellB.Modelingstiffnessofpolymer/clay
nanocomposites.Polymer2007;48(3):901e9.
[13]HuiCY,ShiaD.Simpleformulaefortheeffectivemoduliofunidirectional
alignedcomposites.PolymEngSci1998;38(5):774e82.
[14]KanitT,ForestS,GallietI,MounouryV,JeulinD.Determinationofthesizeof
therepresentativevolumeelementforrandomcomposites:statisticalandnumericalapproach.IntJSolidsStruct2003;40:3647e79.
[15]KanitT,NguyenF,ForestS,JeulinD,ReedM,SingletonS.Apparentand
effectivephysicalpropertiesofheterogeneousmaterials:putMethodsApplMechEng2006;195(33e36):3960e82.
[16]KimDH,FasuloPD,RodgersWR,PaulDR.Structureandpropertiesof
polypropylene-basednanocomposites:effectofPP-g-MAtoorganoclayratio.Polymer2007;48(18):5308e23.
[17]KojimaY,UsukiA,KawasumiM,OkadaA,FukushimaY,KarauchiT,etal.
Mechanicalpropertiesofnylon6-clayhybrid.JMaterSci1993;6:1185e9.[18]LielensG,PirotteP,CouniotA,DupretF,posPartAApplSciManuf1998;29:63e70.
[19]LippmannN,SteinkopffT,SchmauderS,GumbschP.3D- putMaterSci1997;9:28e35.
[20]MeilleS,GarbocziEJ.Linearelasticpropertiesof2Dand3Dmodelsofporous
materialsmadefromelongatedobjects.ModelSimulMaterSciEng2001;9:371e90.
[21]MoriT,TanakaK.Averagestressinmatrixandaverageelasticenergyof
materialswithmis ttinginclusions.ActaMetall1973;21(5):571e4.
[22]PahlavanpourM,HubertP,L e
vesqueM.Numericalandanalyticalmodelingofthestiffnessofpolymereclaynanocompositeswithalignedparticles:putMaterSci2014;82:122e30.
[23]ShengN,BoyceMC,ParksDM,RutledgeGC,AbesJI,CohenRE.Multiscale
micromechanicalmodelingofpolymer/claynanocompositesandtheeffectiveclayparticle.Polymer2004;45(2):487e506.
[24]VoigtW.Ueberdiebeziehungzwischendenbeidenelasticit
正在阅读:
Modeling-of-the-effect-of-particles-size-particles-distribution-and-particles-number-on06-07
让人终生受益匪浅的语录06-09
简 历 自 荐 信06-03
2016《5年高考3年模拟》高考化学人教版配套复习练习:专题26 物质的结构与性质05-05
作物需水量与灌溉用水量 - 图文04-13
铁路工务车间大修副主任年度工作总结03-16
德馨书院第一届医德文化节总策划书04-21
三旧改造拆迁补偿协议书11-05
中国跳棋教材01-24
- 1Global Warming and its Effect
- 2The distribution of spacings between quadratic residues
- 3Size dependent interface energy and its applications
- 4Petrel 2014 Fracture modeling裂缝建模
- 5Tectonic controls on the distribution of large copper and go
- 6Copy number variants, diseases and gene expression
- 7Size dependent interface energy and its applications
- 8Information flow based event distribution middleware
- 9Effect of Annealing Temperature of ZnO on the Energy
- 10Size the Day - 雷抒雁《日子》赏析
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- particles
- distribution
- Modeling
- effect
- number
- size