自蔓延反应基本参数

更新时间:2023-10-18 00:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

① 高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入

微量的第VA族元素,形成n型和p型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。在开发能源方面是一种很有前途的材料。

②金属陶瓷、宇宙航行的重要材料。将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。 可应用于军事武器的制造

第一架航天飞机“哥伦比亚号”能抵挡住高速穿行稠密大气时磨擦产生的高温,全靠它那三万一千块硅瓦拼砌成的外壳。

硅橡胶具有良好的绝缘改组,长期不龟裂、不老化,没有毒性,还可以作为医用高分子材料。 硅油,是一种很好的润滑剂,由于它的粘度受温度变化的影响小,流动性好,蒸气压低,在高温或寒冷的环境中都能使用。硅元素进入有机世界,将它优异的无机性质揉进有机物里,使有机硅化合物别具一格,开辟了新的领域。硅以大量的硅酸盐矿和石英矿存在于自然界中。如果说碳是组成生物界的主要元素,那么,硅就是构成地球上矿物界的主要元素。

硅在地壳中的丰度为27.7%,在所有的元素中居第二位,地壳中含量最多的元素氧和硅结合形成的二氧化硅SiO2,占地壳总质量的87%。

我们脚下的泥土、石头和沙子,我们使用的砖、瓦、水泥、玻璃和陶瓷等等,这些我们在日常生活中经常遇到的物质,都是硅的化合物。硅,真是遍布世界,俯拾即是的元素。

单晶硅和多晶硅的区别是,当熔融的单质硅凝固时,硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则形成单晶硅。如果这些晶核长成晶面取向不同的晶粒,则形成多晶硅。 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。

晶态硅的熔点1410C,沸点2355C,密无定形硅是一种黑灰色的粉末。 硅的化学性质

硅在常温下不活泼,其主要的化学性质如下:

(1)与非金属作用

常温下Si只能与F2反应,在F2中瞬间燃烧,生成SiF4.

Si+F2 === Si+F4

加热时,能与其它卤素反应生成卤化硅,与氧反应生成SiO2:

Si+2F2 SiF4 (X=Cl,Br,I)

Si+O2 SiO2 (SiO2的微观结构)

在高温下,硅与碳、氮、硫等非金属单质化合,分别生成碳化硅SiC、氮化硅Si3N4和硫化硅SiS2等.

Si+C SiC 3Si+2N2 Si3N4 Si+2S SiS2

(2)与酸作用

Si在含氧酸中被钝化,但与氢氟酸及其混合酸反应,生成SiF4或H2SiF6:

Si+4HF SiF4↑+2H2↑

3Si+4HNO3+18HF === 3H2SiF6+4NO↑+8H2O

(3)与碱作用

无定形硅能与碱猛烈反应生成可溶性硅酸盐,并放出氢气:

Si+2NaOH+H2O === Na2SiO3+2H2↑

(4)与金属作用

硅还能与钙、镁、铜、铁、铂、铋等化合,生成相应的金属硅化物。

14 硅 Si 28.085 5(3)

碳 C 12 7 氮 N 14 8 氧 O 16 9 氟 F 19 10 氖 ...

熔点为1420℃,密度为2.34克/厘米3。

质硬而脆。在常温下不溶于酸,易溶于碱。金属硅的性质与锗、铅、锡相近,具有半导体性质。硅在地壳中资源极为丰富,仅次于氧,占地壳总重的四分之一还强,以二氧化硅或硅酸盐形式存在。最纯的硅矿物是石英或硅石。硅有两种同素异形体:一种为暗棕色无定形粉末,性质活泼,在空气中能燃烧;另一种为性质稳定的晶体(晶态硅)。一般硅石和石英用于玻璃和其它建材,优质的石英用于制作合金、金属和单晶。

氮化硅,子式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损,为原子晶体;高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机。

氮化硅陶瓷制品的生产方法有两种,即反应烧结法和热压烧结法。反应烧结法是将硅粉或硅粉与氮化硅粉的混合料按一般陶瓷制品生产方法成型。然后在氮化炉内,在1150~1200℃预氮化,获得一定强度后,可在机床上进行机械加工,接着在1350~1450℃进一步氮化18~36h,直到全部变为氮化硅为止。这样制得的产品尺寸精确,体积稳定。热压烧结法则是将氮化硅粉与少量添加剂(如MgO、Al2O3、MgF2、AlF3或Fe2O3等),在19.6MPa以上的压力和1600~1700℃条件下压热成型烧结。通常热压烧结法制得的产品比反应烧结制得的产品密度高,性能好

氮化硅陶瓷是一种烧结时不收缩的无机材料。它是用硅粉作原料,先用通常成型的方法做成所需的形状,在氮气中及1200℃的高温下进行初步氮化,使其中一部分硅粉与氮反应生成氮化硅,这时整个坯体已经具有一定的强度。然后在1350℃~1450℃的高温炉中进行第二次氮化,反应成氮化硅。用热压烧结法可制得达到理论密度99%的氮化硅。氮化

硅的强度很高,尤其是热压氮化硅,是世界上最坚硬的物质之一。它极耐高温,强度一直可以维持到1200℃的高温而不下降,受热后不会熔成融体,一直到1900℃才会分解,并有惊人的耐化学腐蚀性能,能耐几乎所有的无机酸和30%以下的烧碱溶液,也能耐很多有机酸的腐蚀;同时又是一种高性能电绝缘材料。氮化硅陶瓷可做燃气轮机的燃烧室、机械密封环、输送铝液的电磁泵的管道及阀门、永久性模具、钢水分离环等。氮化硅摩擦系数小的特点特别适合制作为高温轴承使用,其工作温度可达1200℃,比普通合金轴承的工作温度提高2.5倍,而工作速度是普通轴承的10倍。利用氮化硅陶瓷很好的电绝缘性和耐急冷急热性可以用来做电热塞,用它进行汽车点火可使发动机起动时间大大缩短,并能在寒冷天气迅速启动汽车。氮化硅陶瓷还有良好的透微波性能、介电性以及高温强度,作为导弹和飞机的雷达天线罩,可在6个马赫甚至7个马赫的飞行速度下使用。

实验中钨铼热电偶测得的中心燃烧温度高达2000℃,远高于α-Si3N4向β- Si3N4的相转变温度(1400),作为稀释剂而加入的α-Si3N4会部分转变成β相。

在氯化铵添加剂存在的情况下,硅粉与氮气的反应依赖于反应中的燃烧温度(T)。在氮化硅粉体的生成中涉及到3个反应机制:低温(1200-1450)中温(1450-1750) 高温(>1750) 反应完毕后,排除的气体用去离子水吸收,溶液成酸性,检验含有一定量的HCl,少量的SiCl4,检测未溶于水的气体发现含有少量H2以及大量的N2,自蔓延热力学反应方程:、

两种机理 (vapor-liquid-solid, VLS)(vapor-solid, VS机理) 在低温机制阶段,以上反应产生的热量很少,热量主要来自Si与N2的反应。

当反应温度超过1450℃时,进入中温机制阶段。在中温阶段,主要是依据反应8进行,晶须的生长以VLS机理为主。在该阶段生成的Si3N4含有70%-90%的α相。在高温阶段,NH4Cl对反应机制和产物的形成起不到作用。因为高温的原因,硅粉气化并与氮气发生反应,VS作用比较明显

由于添加剂氯化铵的存在,在蔓延燃烧高温合成氮化硅粉体过程中,反应机制不仅仅是单纯的硅粉氮化反应。 氮渗透方程式?》

反应起始氮气压力对合成产物影响较大,试验中,当氮气压力小于3MPa时,反应不能进行。在一定的氮压范围,燃烧温度和反应速度虽氮压的提高而提高。

反应压力大于8MPa时,产物倾向于生成β-Si3N4粉体,起始氮气压力越大,反应越激烈,燃烧速度越快,反应周期越短。

氮化硅的热容量(Cp=99.065j·mol-1·k-1)比其他氮化物大,因此热传递慢,导致起燃的时间长,燃烧合成的速率比较慢,合成时间长。生产实践表明:在炉料相近的条件下,α-Si3N4的合成时间是氮化铝、氮化钛等的7-10倍。 β--Si3N4的合成时间是氮化铝、氮化钛等的2-3倍,有时长达40min以上。在反应釜内氮气的温度在经历短暂的快速升温(40℃/min)后即趋于平稳,变化非常小。氮化硅粉体在合成过程中,氮耗量非常大。高压釜内压力在反应进行20分钟左右时,氮气压力不再随温度的升高儿升高,反而出现下降。说明反应进行完毕,反应完毕后反应釜内的温度高达500℃,平均反应速度0.5mm/s。 实验表明氮气压力越高,反应釜中温度越高。

提高氮气压力,可抑制-Si3N4分解反应

本文来源:https://www.bwwdw.com/article/82tf.html

Top