学习高数的心得体会

更新时间:2023-12-21 07:23:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

学习高数的心得体会

转眼间,大一将要结束了,记得刚开始接触高数的时候,确实觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路,就能把题目解出来。所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。每一次高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积分的个知识点,各类解法,总结下,曲面积分:

对面积的曲面积分:对坐标的曲面积分:????f(x,y,z)ds???Dxyf[x,y,z(x,y)]1?zx(x,y)?zy(x,y)dxdy22??P(x,y,z)dydzDxy?Q(x,y,z)dzdx?R(x,y,z)dxdy,其中:号;号;号。?Qcos??Rcos?)ds??R(x,y,z)dxdy?????R[x,y,z(x,y)]dxdy,取曲面的上侧时取正????P[x(y,z),y,z]dydz,取曲面的前侧时取正Dyz??P(x,y,z)dydz???Q(x,y,z)dzdx?????Q[x,y(z,x),z]dzdx,取曲面的右侧时取正Dzx两类曲面积分之间的关系:??Pdydz?Qdzdx?Rdxdy????(Pcos??????(?P?x??Q?y??R?z)dv???Pdydz??Qdzdx?Rdxdy???(Pcos???Qcos??Rcos?)ds高斯公式的物理意义——通量与散度:?div??0,则为消失...??P?Q?R散度:div????,即:单位体积内所产生的流体质量,若?x?y?z??通量:??A?nds???Ands???(Pcos??Qcos??Rcos?)ds,??因此,高斯公式又可写?成:divAdv?????????Ands在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。

其实我觉得,高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。我们必须知道解题过程中每一步的依据。最初,我以为只要把定理内容记住,能做题就行了。然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。于是,我试着开始认真地学习每一个定理的推导。尽管这个过程并不轻松,但我却认为非常值得。因为只有通过自己去探索的知识,才是掌握得最好的。 前几天在网上看到一个日志感觉挺玩的,就摘下来了: 拉格朗日,傅立叶旁,我凝视你凹函数般的脸庞。 微分了忧伤,积分了希望,我要和你追逐黎曼最初的梦想。 感情已发散,收敛难挡,没有你的极限,柯西抓狂。 我的心已成自变量,函数因你波起波荡。

低阶的有限阶的,一致的不一致的,我想你的皮亚诺余项。 狄利克雷,勒贝格杨,

一同仰望莱布尼茨的肖像,拉贝、泰勒,无穷小量, 是长廊里麦克劳林的吟唱。

打破了确界,你来我身旁,温柔抹去我,

阿贝尔的伤,我的心已成自变量,函数因你波起波荡。 低阶的有限阶的,一致的不一致的,是我想你的皮亚诺余项。

本文来源:https://www.bwwdw.com/article/82a5.html

Top