装药爆炸过程中聚能射流行为模拟

更新时间:2024-01-17 07:57:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

ANSYS 软件及应用

装药爆炸过程中聚能射流行为模拟

装药爆炸过程中聚能射流行为模拟

1. 聚能效应简介

聚能效应(Gathering energy effect),通常称为“门罗效应”, 即炸药爆炸后,爆炸产物在高温高压下基本是沿炸药表面的法线方向向外飞散的。因此,带有锥形凹槽的装药在引爆后,凹槽附近的爆轰产物飞散时将在装药轴线处汇聚,形成一股高速、高温、高密度的射流,这股射流在靶板较小的区域内形成较高的能量密度,致使炸坑较深。这种利用装药一端空穴以提高爆炸后局部破坏作用的效应称为聚能效应。

聚能效应的应用非常广泛,在军事上,可用来生产穿甲弹、碎甲弹、反坦克枪榴弹等,用于对付各种装甲目标;在工程爆破中,可在土层和岩石上打孔,其中在石油工程领域的应用最为典型;另外,聚能效应也可用于水下切割构件,在野外切割钢板、钢梁等。

图1显示了不同装药结构的穿孔能力。图1.a中爆轰产物向柱型装药四周均匀飞散,药柱底部爆轰产物作用于靶板;图1.b中装药锥孔部分的爆轰产物飞散时,向轴线集中会聚成速度和压力很高的气流,爆轰产物的能量集中在较小的面积上,在靶板上打出更深的孔;图1.c中装药锥孔部分加装金属药型罩,爆轰产物在推动罩壁向轴线运动的过程中,将能量传递给了金属罩,依靠罩的动能产生了更大的破坏作用;图1.d显示增大炸高可以使射流充分形成,提高侵彻能力。

图1. 不同装药结构的穿孔能力

图2为爆炸产物的飞散方向示意图。圆柱形的普通炸药柱爆轰时,爆轰产物以近似垂直药柱表面的方向朝四周飞散,如图2.a所示。而有锥孔的圆柱形药柱

爆炸后,锥孔部分的爆轰产物向轴线集中,汇聚成一股速度和密度都很高的气流,这时爆轰产物的能量集中在较小的范围内,即为聚能效应。爆轰产物向轴线汇聚过程中,一方面由于爆轰产物以一定速度沿垂直于锥孔表面的方向朝轴线汇聚;另一方面,由于稀疏波的作用,汇聚到轴线处的爆轰产物又会迅速地向周围低压区膨胀,使能量分散开。因此,爆轰产物只能在短时间内和距药柱端面某一近距离内保持高度集中,如图2.b所示。如果在成型装药的锥孔表面加上一个金属罩,则爆炸后的爆轰产物将推动罩壁向轴线运动,将能量传递给金属罩,这样就可以避免气体的高压膨胀引起能量再度分散。罩壁在轴线处碰撞时,罩内表面的速度比药型罩压垮闭合时的速度高出1~2倍,使金属中的动能进一步提高,形成高速的金属射流,如图2.c所示。

图2. 爆炸产物的飞散方向

图3显示了金属射流和杵的形成过程。由于金属罩体积基本不变,同样质量的金属收缩到较小的区域时,罩壁必然要增厚,即罩内壁的质点速度必然大于外表面速度,因此在轴线碰撞后,内壁成为射流,外壁成为杵,如图3所示。图中号码表示罩壁与射流和杵的对应位置。显然,药型罩外壁材料在杵上的排列位置与原排列顺序一致,而内壁材料在射流上的排列顺序则与原位置相反。

本文将采用ANSYS软件对聚能射流的形成过程进行模拟。

图3. 射流和杵的形成示意图

2. 数值建模与计算

本文将采用ANSYS软件的LS-DYNA模块对装药爆炸过程中的聚能射流行为进行模拟。由于装药结构具有对称性,为了减少计算量,选择装药结构的1/2进行建模计算。具体的模拟步骤如下: (1)建立模型

a. 添加单元类型,采用2D Solid 162单元建立装药模型; b. 添加炸药和药型罩材料模型,设置材料参数;

c. 建立几何模型,通过从点到线再到面的步骤进行模型建立。

图4所示为装药结构模型的1/2,其中蓝色部分为炸药,紫色部分为药型罩。

图4. 装药结构模型图

(2)划分网格

采用四边形单元对炸药和药型罩模型分别进行网格划分,划分网格后的模型如图5所示。

图5. 装药结构网格划分图

(3)求解设置

本文来源:https://www.bwwdw.com/article/822o.html

Top