二次函数与相似三角形综合题20160203
更新时间:2024-06-14 16:43:01 阅读量: 综合文库 文档下载
二次函数与相似三角形
例1 如图1,已知抛物线y??x2?x的顶点为A,且经过原,与x轴交于点O、B。 (1)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(2)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。
.......
分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况
2. 函数中因动点产生的相似三角形问题一般有三个解题途径
① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三..角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
解:⑴如图1,当OB为边即四边形OCDB是平行四边形时,CD∥=OB,
yAOBxOyABxOyABx14图1 例1题图
图2 1由0??(x?2)2?1得x1?0,x2?4,
4∴B(4,0),OB=4. ∴D点的横坐标为6
将x=6代入y??(x?2)2?1,得y=-3, ∴D(6,-3);
14C图1 D根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB是平行四边形,此时D点的坐标为(-2,-3),
当OB为对角线即四边形OCBD是平行四边形时,D点即为A点,此时D点的坐标为(2,1) ⑵如图2,由抛物线的对称性可知:AO=AB,∠AOB=∠ABO. 若△BOP与△AOB相似,必须有∠POB=∠BOA=∠BPO 设OP交抛物线的对称轴于A′点,显然A′(2,-1)
1∴直线OP的解析式为y??x
211由?x??x2?x,
24得x1?0,x2?6
.∴P(6,-3)
过P作PE⊥x轴,在Rt△BEP中,BE=2,PE=3, ∴PB=13≠4.
∴PB≠OB,∴∠BOP≠∠BPO, ∴△PBO与△BAO不相似,
同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该抛物线上不存在点P,使得△BOP与△AOB相似.
yAOA'BEx图2 P例2 (2013凉山州压轴题)如图,抛物线y=﹣x+x+4交x轴于A、B两点,与y轴交于点C,以OC、OA为边作矩形OADC交抛物线于点G.
(1)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(2)在(1)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
2
考点:二次函数综合题.
2
分析:(1)将A(3,0),C(0,4)代入y=ax﹣2ax+c,运用待定系数法即可求出抛物线的解析式;
(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长;
(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.
2
解答:解:(1)∵抛物线y=ax﹣2ax+c(a≠0)经过点A(3,0),点C(0,4), ∴
,解得
2
,
∴抛物线的解析式为y=﹣x+x+4; (2)设直线AC的解析式为y=kx+b, ∵A(3,0),点C(0,4), ∴
,解得
,
∴直线AC的解析式为y=﹣
4x+4. 3∵点M的横坐标为m,点M在AC上, ∴M点的坐标为(m,﹣
4 m+4), 32
∵点P的横坐标为m,点P在抛物线y=﹣x+x+4上,
2
∴点P的坐标为(m,﹣ m+m+4), ∴PM=PE﹣ME=(﹣m+m+4)﹣(﹣即PM=﹣m+
2
2
427m+4)=﹣m+m,
337m(0<m<3); 3(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,PF=22
﹣m+m+4﹣4=﹣m+m. 若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,
2
即(﹣m+m):(3﹣m)=m:(﹣ m+4), ∵m≠0且m≠3, ∴m=
.
∵△PFC∽△AEM,∴∠PCF=∠AME, ∵∠AME=∠CMF,∴∠PCF=∠CMF.
在直角△CMF中,∵∠CMF+∠MCF=90°, ∴∠PCF+∠MCF=90°,即∠PCM=90°, ∴△PCM为直角三角形;
②若△CFP∽△AEM,则CF:AE=PF:EM,
2
即m:(3﹣m)=(﹣m+m):(﹣m+4), ∵m≠0且m≠3,
∴m=1.
∵△CFP∽△AEM,∴∠CPF=∠AME, ∵∠AME=∠CMF,∴∠CPF=∠CMF. ∴CP=CM,
∴△PCM为等腰三角形.
综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为角形或等腰三角形.
或1,△PCM为直角三
点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解. 练习
?53?22533)E?0?0). x经过P(3,,1、已知抛物线y??x??2,?及原点O(0,33??(1)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于
B点,直线QA与直线PC及两坐标轴围成矩形OABC.是否存在点Q,使得△OPC与
△PQB相似?若存在,求出Q点的坐标;若不存在,说明理由.
(2)如果符合(2)中的Q点在x轴的上方,连结OQ,矩形OABC内的四个三角形
△OPC,△PQB,△OQP,△OQA之间存在怎样的关系?为什么?
yCOPBQAEx
(1)存在.
设Q点的坐标为(m,n),则n??2253m?m, 332533?m2?mBQPBm?33?nm?333?要使△OCP∽△PBQ,,则有,即 ??CPOC3333解之得,m1?23,m2?2.
当m1?23时,n?2,即为Q点,所以得Q(23,2)
2533?m2?mBQPBm?33?nm?333?要使△OCP∽△QBP,,则有,即 ??OCCP3333解之得,m1?33,m2?3,当m?3时,即为P点, 当m1?33时,n??3,所以得Q(33,?3). 故存在两个Q点使得△OCP与△PBQ相似.
Q点的坐标为(23,,2)(33,?3).
(2)在Rt△OCP中,因为tan?COP?CP3??.所以?COP?30. OC3?当Q点的坐标为(23,2)时,?BPQ??COP?30. 所以?OPQ??OCP??B??QAO?90.
?△PQB,△OPQ,△OAQ都是直角三角形. 因此,△OPC,又在Rt△OAQ中,因为tan?QOA?QA3??.所以?QOA?30. AO3?即有?POQ??QOA??QPB??COP?30. 所以△OPC∽△PQB∽△OQP∽△OQA, 又因为QP⊥OP,QA⊥OA?POQ??AOQ?30,
?
(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数. 解答: 解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4, ∴A(﹣4,0),B(0,4). 2∵点A(﹣4,0),B(0,4)在抛物线y=﹣x+bx+c上, ∴, 解得:b=﹣3,c=4, 2∴抛物线的解析式为:y=﹣x﹣3x+4. (2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m. ∵OA=OB=4,∴∠BAC=45°, ∴△ACD为等腰直角三角形,∴CD=AC=4+m, ∴CE=CD+DE=4+m+4=8+m, ∴点E坐标为(m,8+m). 2∵点E在抛物线y=﹣x﹣3x+4上, 2∴8+m=﹣m﹣3m+4,解得m=﹣2. ∴C(﹣2,0),AC=OC=2,CE=6, S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12. (3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m). ∵△ACD为等腰直角三角形,△DBE和△DAC相似 ∴△DBE必为等腰直角三角形. i)若∠BED=90°,则BE=DE, ∵BE=OC=﹣m, ∴DE=BE=﹣m, ∴CE=4+m﹣m=4, ∴E(m,4). 2∵点E在抛物线y=﹣x﹣3x+4上, 2∴4=﹣m﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3, ∴D(﹣3,1); ii)若∠EBD=90°,则BE=BD=﹣m, 在等腰直角三角形EBD中,DE=BD=﹣2m, ∴CE=4+m﹣2m=4﹣m, ∴E(m,4﹣m). 2∵点E在抛物线y=﹣x﹣3x+4上, 2∴4﹣m=﹣m﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2, ∴D(﹣2,2). 综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2). 点评: 本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.
5.(2013?绍兴压轴题)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.
(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E. ①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标. 考点: 二次函数综合题.3718684 分析: (1)解方程(x﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),确定点B的坐标为(3,0);将y=(x﹣3)(x+1)22配方,写成顶点式为y=x﹣2x﹣3=(x﹣1)﹣4,即可确定顶点D的坐标; (2)①根据抛物线y=(x﹣3)(x+1),得到点C、点E的坐标.连接BC,过点C作CH⊥DE于H,由勾股定理得出CD=,CB=3,证明△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q的坐标(﹣9,0),运用待定系数法求出直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6,解方程组,即可求出点P的坐标; ②分两种情况进行讨论:(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,所以点M不存在. 解答: 解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧), ∴当y=0时,(x﹣3)(x+1)=0, 解得x=3或﹣1, ∴点B的坐标为(3,0). 22∵y=(x﹣3)(x+1)=x﹣2x﹣3=(x﹣1)﹣4, ∴顶点D的坐标为(1,﹣4); (2)①如右图. 2∵抛物线y=(x﹣3)(x+1)=x﹣2x﹣3与与y轴交于点C, ∴C点坐标为(0,﹣3). ∵对称轴为直线x=1, ∴点E的坐标为(1,0). 连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3), ∴CH=DH=1, ∴∠CDH=∠BCO=∠BCH=45°, ∴CD=,CB=3,△BCD为直角三角形. 分别延长PC、DC,与x轴相交于点Q,R. ∵∠BDE=∠DCP=∠QCR, ∠CDB=∠CDE+∠BDE=45°+∠DCP, ∠QCO=∠RCO+∠QCR=45°+∠DCP, ∴∠CDB=∠QCO, ∴△BCD∽△QOC, ∴==, ∴OQ=3OC=9,即Q(﹣9,0). ∴直线CQ的解析式为y=﹣x﹣3, 直线BD的解析式为y=2x﹣6. 由方程组,解得. ∴点P的坐标为(,﹣); ②(Ⅰ)当点M在对称轴右侧时. 若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G. ∵∠CMN=∠BDE,∠CNM=∠BED=90°, ∴△MCN∽△DBE, ∴==, ∴MN=2CN. 设CN=a,则MN=2a. ∵∠CDE=∠DCF=45°, ∴△CNF,△MGF均为等腰直角三角形, ∴NF=CN=a,CF=a, ∴MF=MN+NF=3a, ∴MG=FG=∴CG=FG﹣FC=∴M(a, a, a). , a,﹣3+代入抛物线y=(x﹣3)(x+1),解得a=∴M(,﹣); 若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G. ∵∠CMN=∠BDE,∠CNM=∠BED=90°, ∴△MCN∽△DBE, ∴==, ∴MN=2CN. 设CN=a,则MN=2a. ∵∠CDE=45°, ∴△CNF,△MGF均为等腰直角三角形, ∴NF=CN=a,CF=a, ∴MF=MN﹣NF=a, ∴MG=FG=a, 点评: 本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.
6.(2013?恩施州压轴题)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把
2
△AOB沿y轴翻折,点A落到点C,抛物线y=x﹣4x+3过点B、C和D(3,0).
(1)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(2)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
考点: 二次函数综合题. 分析: (1)由待定系数法求出直线BD和抛物线的解析式; (2)首先确定△MCD为等腰直角三角形,因为△BND与△MCD相似,所以△BND也是等腰直角三角形.如答图1所示,符合条件的点N有3个; (3)如答图2、答图3所示,解题关键是求出△PBD面积的表达式,然后根据S△PBD=6的已知条件,列出一元二次方程求解. 22解答: (1)抛物线的解析式为:y=x﹣4x+3=(x﹣2)﹣1, ∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1). 直线BD:y=﹣x+3与抛物线的对称轴交于点M,令x=2,得y=1, ∴M(2,1). 设对称轴与x轴交点为点F,则CF=FD=MN=1, ∴△MCD为等腰直角三角形. ∵以点N、B、D为顶点的三角形与△MCD相似, ∴△BND为等腰直角三角形. 如答图1所示: (I)若BD为斜边,则易知此时直角顶点为原点O, ∴N1(0,0); (II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上, ∵OB=OD=ON2=3, ∴N2(﹣3,0);
正在阅读:
2013年6月广东成人学士学位英语考试试题及选择题答案08-28
05继电保护设备检修规程06-01
2018领导个人述职述廉报告范文与2018领导干部个人述职述廉报告汇编12-28
七个痴呆量表综合05-11
2017海南土地估价师《管理法规》 - 基本条文总则试题整理12-28
18秋学期《工程力学(二)》在线作业203-08
第二语言习得 复习资料10-16
计算机审计实训报告11-17
蒙代尔-弗莱明模型10-20
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 三角形
- 函数
- 20160203
- 相似
- 综合
- 合约管理部工作职责及工作标准
- 做个最好的自己 心理健康教案教案
- 统计学计算题答案
- 模板施工方案
- 380AL动车组一级修作业指导书8.1
- 2013二建施工管理精讲讲义,重点中的重点 - 图文
- 核销申请书
- 骨髓赋与女命骨髓赋(王亭之) - 图文
- 2019年中国豆乳饮料市场深度调查与未来发展趋势报告(定制版)目
- 空心楼盖施工方案
- 景观绿化施工方案(施组)
- 移动通信课设说明书 - 图文
- 甲级单位编制卫生瓷项目可行性报告(立项可研+贷款+用地+2013案
- 计量经济学主要复习范围
- 人教版二年级上册数学期中考试卷练习
- 校园欺凌工作总结
- 全国高等教育自学考试市场营销练习题一
- 上海事业单位行政职业能力测试每日一练试题(3.18)
- (新课标)2016高考化学大一轮复习 第5章物质结构-元素
- 党员教育管理方面方面存在的问题表现及整改措施