Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice
更新时间:2023-05-30 00:54:01 阅读量: 实用文档 文档下载
- monte carlo推荐度:
- 相关推荐
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
MonteCarlocalculationofthecurrent-voltagecharacteristicsofa
twodimensionallatticeCoulombgas
HansWeber1,MatsWallin2,andHenrikJeldtoftJensen3
1DepartmentofPhysics,Lule aUniversityofTechnology,S-97187Lule a,Sweden
arXiv:cond-mat/9601040v1 13 Jan 19962DepartmentofTheoreticalPhysics,RoyalInstituteofTechnology,S-10044Stockholm,SwedenofMathematics,ImperialCollage,LondonSW72BZ,UnitedKingdom3DepartmentAbstractWehavestudiedthenonlinearcurrent-voltagecharacteristicofatwodimen-sionallatticeCoulombgasbyMonteCarlosimulation.Wepresentthreedi erentdeterminationsofthepower-lawexponenta(T)ofthenonlinearcurrent-voltagecharacteristic,V~Ia(T)+1.Thedeterminationsrelyonbothequilibriumandnon-equilibriumsimulations.We ndgoodagreementbe-tweenthedi erentdeterminations,andourresultsalsoagreecloselywithexperimentalresultsforHg-Xethin lmsuperconductorsandforcertainsin-glecrystalthin- lmhightemperaturesuperconductors.
TypesetusingREVTEX
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
I.INTRODUCTION
Intwodimensionsthesuperconductingtransitioninzeromagnetic eldisaKosterlitz-
Thoulesstransition.[1–3]Thishasbeenveri edovertheyearsinbothexperiments[4]andin
manymodelsofsuperconductorsliketheXY,Villain,andCoulombgasmodels[1,5,6].The
importantdegreesoffreedominasystemundergoingaKosterlitz-Thoulesstransitionare
thermallyexcitedvortexpairs.TheKosterlitz-Thoulesstransitionissometimesalsoreferred
toasavortexunbindingtransition,asfortemperaturesbelowthetransitiontemperature
Tcallvorticesareboundinneutralpairs.ThesepairsstarttounbindatandaboveTc.
AtypicalwaytolookforaKosterlitz-Thoulesstransitioninexperimentsonthinsu-
perconducting lmsistoprobethecurrent-voltage(IV)characteristic[4,7,8].Boththe
linearandthenonlinearIVcharacteristicshavespeci c ngerprintsidentifyingaKosterlitz-
Thoulesstransition.VorticesdeterminetheIVcharacteristicforthefollowingreasons:If
avortexisdraggedacrossthesystemavoltageisinduced.Henceresistanceiszeroonlyif
therearenovorticesavailabletomoveacrossthesystem,andonlythenthesystemistruly
superconducting.Vorticesthatareboundinneutralpairsareunabletomovefreelyandto
causedissipation.Howeveranexternalappliedin-planesupercurrentyieldsaperpendicular
Lorentzforceactinginoppositedirectiononvorticeswithdi erentvorticity.Thisgivesa
net uxofvorticesacrossthesystem,whichshowsupasnonlinear(i.e.currentdependent)
resistance.
BelowtheKosterlitz-Thoulesstransitiontemperatureallvorticesareboundinneutral
pairsbythelogarithmicvortexinteraction,andthelinearresistanceisthuszero.Therefore
thesystemsuperconductsbelowtheKosterlitz-Thoulesstransition.Thelinearresistance
dropstozeroattheKosterlitz-Thoulesstransitionwithanexponentialfunctionalform,
R~ξ 2withlnξ~|T Tc| 1/2[3].Thisisconsistentwithexperiments,althoughthe
logarithmisacomplicationforquantitativecomparisonbetweentheoryandexperiment.A
niteappliedcurrentgivesapower-lawnonlinearIVcharacteristicoftheformV~Ia(T)+1.
Thecriticalcurrentisthuszero.AttheKosterlitz-ThoulesstransitiontheIVexponenta(T)
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
assumestheuniversalvalue2,soV~I3atT=Tc.ForT<Tconehasa(T)>2,andfor
T>Tconehasa(T)=0(forsmallenoughcurrents)[9].Experimentson,forexample,thinHg-Xealloy lms[4]andalsoforcertainsinglecrystalhightemperaturesuperconductors
[7,8],amongsome,havecon rmedthis.
SinceIVcharacteristicsarehardtocalculateanalyticallycomputersimulationisauseful
tool.IVcharacteristicsofvortexsystemshaverecentlybeencalculatedsuccessfullywith
MonteCarlosimulations[10].LinearandnonlinearIVcharacteristicsofvortexglasssuper-
conductorshavebeenreportedinRefs.[10,11].InarecentMonteCarlosimulationofthe
CoulombgasthelinearresistancewasusedtolocatetheKosterlitz-Thoulesstransition[12].
ThenonlinearIVcharacteristicsattheKosterlitz-Thoulesstransitionhasbeencalculated
inRef.[13],anda nite-sizescalinganalysisaccuratelyveri edtherelationV~I3atthe
Kosterlitz-Thoulesstransition.
InthispaperwestudytheIVcharacteristicsofalatticeCoulombgasmodelbyMonte
Carlosimulationsofvortexdynamics.WecalculatetheIVexponenta(T)oftheCoulomb
gasinthreedi erentways:(1)BydirectMonteCarlocalculationofthenonlinearresistance,
(2)byaselfconsistentlinearscreeningconstructionfortheenergybarrierforcurrentin-
ducedvortex-pairbreakinggivingthermallyactivatedresistance,and(3)bya nitescaling
constructionfromdataforthelinearresistance.AllmethodsarebasedonMonteCarlo
simulations,andweapplybothequilibriumandnon-equilibriumsimulations.Thesethree
methodsgivethesameresults,givingusaconsistentandsimplepictureofnonequilibrium
responseinthissystem.Furthermore,wecompareourresultsfora(T)withexperiments.
Scalingargumentsgivethata(T)isauniversalscalingfunctionofareducedCoulombgas
temperatureX=T/Tc,andthisisveri edinexperiments[3].We ndcloseagreement
betweenourMonteCarloresultsandtheexperimentaluniversalscalingcurve,andthis
comparisonappearstobepresentedhereforthe rsttime.Theagreementbetweendif-
ferentmethods,andbetweenoursimulationsandexperiments,arethemainresultsofour
paper.SomeofourMonteCarloresultsforthenonlinearIVcharacteristicshavebeen
obtainedpreviously[13],asexplainedabove.
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
Thepaperisorganizedasfollows:InSectionIIwede nethelatticeCoulombgas
model.InSectionIIIwestudyvariousapproachestotheIVcharacteristics.InSectionIV
wedescribeourMonteCarlomethodsforcalculatingIVcharacteristics.InSectionVwe
presenttheMonteCarloresults.SectionVIcontainsdiscussionandconclusions.
TTICECOULOMBGAS
Ausefulstartingpointforcalculationswithsuperconductorsinthepresenseofcurrents
and eldsistheGinsburg-Landaumodel,withtheorderparameterΨ(r)=|Ψ(r)|eiφ(r)
describingthesuperconductingorderofthesystem.However,thismodeldoesnotfocus
particularlyonvortexdegreesoffreedom.Thevorticesconstitutetheessentialdegreesof
freedomneartheKosterlitz-Thoulesstransition.AnapproximationtotheGinsburg-Landau
modelwhichfocusesonlyonthevorticesisgivenbytheCoulombgasmodel.Herethermal
uctuationsinthemagnitudeofΨareneglected,sincetheyarerelevantonlyclosetothe
mean- eldtransitiontemperature,whichisassumedtobewellabovethevortextransition
temperatureTc.Inoursimulationsthemodelisdiscretizedandputonalattice.The
approximationmadeinthelatticediscretizationwillonlya ecttheshortrangebehaviorof
thevortices,asthelatticede nesthesmallestpossibleseparation.Thecriticalproperties
willhowevernotbee ected.Ingeneral,largelengthscalepropertiesshouldbereasonable
modeledbythelatticeCoulombgasclosetoTc.
ThelatticeCoulombgas[14,15]isde nedbythepartitionfunctionZonasquarelattice
ofsidelengthLusingperiodicboundaryconditions:
Z=Trnexp[ β(H µN)]
H=1(1)
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
gastemperature[3].Thetraceisoverni=0,±1onallsitesi,subjecttooverallneutrality,
ini=0.GijisthelatticeGreen’sfunctionforthelogarithmic2Dvortexinteraction,
Gij=1
2 cos(kx) cos(ky),(4)
wherekarethereciprocallatticevectors,kx,ky=2πn/L,n=0,...,L 1.
WewillcalculatetheresponsevoltagetoanappliedcurrentimposedontheCoulomb
gas.Theabovede nitiondoesnotincludeanynetcurrents.Howtoincludethemandto
calculateIVcharacteristicsbyMonteCarlosimulationisdescribedinthenextsection.
III.CURRENT-VOLTAGECHARACTERISTICS
Inthissectionwediscussvariousaspectsandapproachestothecurrent-voltagecharac-
teristicsof2DsuperconductorsclosetotheKosterlitz-Thoulesstransition.
A.Linearresistance
Abasicexperimentonasuperconductoristomeasurethelinearresistance.Suchmea-
surementsonthin lmsofbothconventionallow-Tcsuperconductors[4]andsinglecrystal
high-Tcmaterials[7,8],havebeensuccessfullyinterpretedintermsofthermallyexcited
vortex uctuationsanalyzedbyuseoftheCoulombgas[3].
Thelinearresistivityisde nedbyρ=E/jforj→0,wherejistheappliedsupercurrent
densityandEistheresultinginducedelectric eld.Somewordsaboutnotation:Since
resistanceandresistivityhavethesamedimensionintwodimensionsandoursystemis
homogeneous,theyarethesame,andtheywewillbothbedenotedbyR.Rwillbe
reservedforlinearresistance,andwillnotbeusedtodenotenonlinearresistance.An
appliedsupercurrentisdenotedbyI=jL,andvoltageisV=EL.
TodeterminethelinearresistanceinsimulationsoftheCoulombgasfromE/jforsmall
jhasitslimitations,aswehavetorepeatthecalculationatasequenceofcurrentdensities
j,tomakesurethatjissmallenoughtobeinthelinearregime.Ifthepurposeisto
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
measureonlythelinearresistance,andnotEasfunctionofj,adi erentapproachisto
usetheNyquistformula[16],
whichrelates
the
linear
resistancetotheequilibriumvoltage
uctuations:
R=1
2T
GiventheJosephsonrelationweseeimmediatelythattheKuboformulaequalstheNyquist
relation.
Thelinearresistancehasbeensuccessfullyusedinasimulation[12]tolocatethe
Kosterlitz-ThoulesstransitiontemperatureTcofthe2DlatticeCoulombgas.They nd
the nitesizescalingrelationatTc:
L2R1+ ∞ ∞dt Iv(t)Iv(0) canbeused.1
dt~τ 1,where φisthegradientofthephaseoftheGinsburg-Landau
orderparameter[18].Therefore,weexpectthelinearresistance,Eq.(5),toscalelike
R~ξ 2atTc.AtTcthecorrelationlengthdivergesandiscutofbythe nitesizeLofthe
latticeandhenceRL2=constatTc,tolowestorder.Thescalingrelationhasalogarithmic
correctionwhichhasbeenincludedinEq.(6).Thiscorrectionisreadilyobtainedfromthe
correspondingcorrectiontermsfor1/ andλ[19].
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
B.Thermallyactivatedresistance
Theabovescalingargumentledtoa nitesizescalingformulawhichisusefulforlocating
thetransitiontemperaturefromMonteCarlodatafortheresistanceof nitesamples.Here
wewilldoamoredetailedanalysisthatwillalsoleadtothesameformula.Theanalysishere
doesnotdirectlyinvolvescalingarguments,butconsiderstheinteractionsbetweenvortices
intheCoulombgas.Theanalysiswillgiveexpressionsfortheresistancefromthermally
activatedfreevorticesintheCoulombgasinthepresenceofanappliedsupercurrent.This
moredetailedanalysiswillbeusefulinlatersectionswhenweanalyzeMonteCarlodatafor
theCoulombgas.
AccordingtotheJosephsonrelationthevoltageVcausedbyvortexmotionis
V~d φ
I~nF(7)
Tomakeanestimateofthedensityoffreevorticesweproceedbythefollowingsimplemodel.
TheenergyE(r)ofavortexpairofseparationr>r0inthepresenceofacurrentIis[17]:
E(r)=E0+E1ln(r
2π
(k)
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
Hereλisthevortexscreeninglength,and (k)isthepartofthedielectricfunction, (k),
describingthepolarizationoftheboundpairs.Thetwo arerelatedby
1
(k)k2
2
2πVl(k)eik·r.
WecanobtainanapproximateexpressionforVl(r)bymakinguseofthefactthat (k)only
dependsweakly(inmostofkspace)onk.Foragivendistancer,theFourierintegralpicks
upitsmaincontributionfromthekvaluesaround2π/r.Hence
Vl(r) Vl(r=1)≈ 1
(2π/r)ln(r/λ)(9)
whereweuse insteadof ,asthetemperatureisbelowTc.
Accordingtothisdiscussionthecoe cientE1isgivenby[20]
E1=1
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
TheenergyE(r)inEq.(8)hasa
maximumatseparationr =E1/Iandtheenergy
neededtoseparateavortexpairtothisdistanceis[4]:
E=E(r ) E(r=1)=E1ln(r ) I(r 1)
E=E1ln(E1(11)
nF.
AssumingthatΓisdeterminedbyactivationoverthebarrier Ewegetthefollowing
productionrate[17]
Γ∝e E
2T∝
∝
2Te 1I) E1+I) E12TeE1
keepingtheimportanttermforsmallbut niteIwearriveat:
R∝ E12T(15)
AgivencurrentIgivesrisetoa“currentlengthscale”r fromthemaximumconditionin
Eq.(8).Asthelatticeofthesystemhasa nitesize,thissetsanupperlimittothe“current
length”andhencealowerlimittothecurrentproducingnonlinearresistance.Thesmallest
currentgivingnonlinearresistanceisI =E1/r withr =Landhenceforcurrentssmaller
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
thanI theresistancewillbecuto bythe nitesizeLofthelatticeandtheresistance
becomesohmic.TheNyquistresistanceiscalculatedwithI=0andhence
R∝ 12T.(16)
ThismeansthatwecanscalethelinearresistanceRfromtheNyquistrelationEq.(5)withtheexponentE1/2T.Thisexponentispreciselya(T),theexponentofthenonlinear
IVcharacteristics(seeEq.(18)below),hence:
f(T)=RLa(T)(17)
shouldcollapseontoasinglecurvefordi erentlatticesizesL.I.e.f(T)shouldnotdepend
onlatticesizeL.Theresistanceweuseforthisscalingwillbetheonedeterminedfromthe
voltage uctuationsEq.(5).Theexponentdeterminedfromresistancedataatzerocurrent
willbedenotedaR(T).
C.NonlinearIVexponent
Wearegoingtomakeuseofacoupleofdi erentexpressionsforthepowerlawexpo-
nenta(T)ofthenonlinearIVcharacteristics.
characteristic:
V∝ E12TFromEq.(15)wegetthenonlinearIVI∝Ia(T)+1(18)
TheexponentcalculatedbymonitoringthevoltageresponseVasafunctionofanapplied
supercurrentIwillbedenotedaIV(T).Ona nitesystemwewillobtainanonlinearvoltage
responseonlyabovea niteappliedcurrent,givenbyI ~E1/L,suchthatthecurrentlength
r isshorterthanthesizeLofthesystem,asdiscussedabove.
D.SelfconsistentIVcharacteristic
AnotherexpressionfortheIVcharacteristicisobtainedifweincludetherdependence
inE1inEq.(10).Thelengthdependencecanina rstapproximation(inanexpansionin
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
derivativesofE1(r))beincludedsimplybyreplacingE1inEq.(15)by1/ (2
π/r )intheextremumequationI=E1/r .Ourrationaleforthischoiceisthatattheseparationr the
vortexpairisbrokenapartandwethereforeusethesti ness1/ (r)ofthesystematthis
separation.We ndtheappropriate (r)bysolvingselfconsistentlytheequation
I=1
(k )2π(19)
Theselfconsistent obtainedbysolvingEq.(19)willbedenoted .Therelationbetween
theexponenta(T)andthedielectricfunction isaccordingtoEqs.(15)and(10)givenby
theexpression(seeAmbegoakaretal.[17])
a(T)AHNS=1
T 2(21)
AsoneimmediatelyrealisesEq.(21)isnotconsistentwiththeactivationargumentused
toderiveEq.(20).InordertoreconcileEq.(21)witharateequationlikeEq.(13)
Minnhagenetal.havemadethefollowingsuggestion.Theyassumethattheactivationis
correctlyrepresentedbyΓinEq.(14).Therecombination,whichinEq.(13)isrepresented
1+bbytheinnocentlylookingtermn2F,isontheotherhandsupposedtobereplacedbynF
withb=2/(E1/T 2).Thesoleargumentforthisreplacementisunfortunatelysofar
simplytheobservationthatonethencanderiveEq.(21)fromanequationlikeEq.(13).
Nonetheless,weshallseebelowthatfortemperaturesbelowTcEq.(21) tsthesimulation
datamuchbetterthanEq.(20)does.Howeveramotivationforarecombinationterm
di erentfromtheoneinEq.(13)hasnotbeenpresented.AtTcbothrelationsreproduce
thesameexponenta(T=Tc)=2.
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
IV.MONTECARLOSIMULATION
Inthissectionwedescribehowwecalculatecurrent-voltagecharacteristicsbyMonte
CarlosimulationofthelatticeCoulombgas.
ThealgorithmtosimulatethelatticeCoulombgasworksasfollows[15]:Firstwepick
anearest-neighborpair(i,j)oflatticesitesatrandom.Thenwetrytoincreasenibyone
andtodecreasenjbyone,thuspreservingoverallvortexneutrality, ini=0.ThisMonte
Carlomoveofinsertinganeutralpairwillbeinterpretedastransferofoneunitvortexfrom
sitejtoi.Iftheenergychangeis Eweacceptthistrialmoveaccordingtothestandard
Metropolisalgorithm[22]withprobabilityexp( E/T).ThesesimpleMonteCarlomoves
canbothcreate,annihilate,andmovevortices.Thermodynamicaveragesarecomputedas
MonteCarlotimeaveragesoverthesequenceofgeneratedcon gurations.
TocalculateIVcharacteristicsworksasfollows[10,11]:Anappliedcurrentdensityj
givesaLorentzforceofjh/(2e)onaunitvortex.TheLorentzforcecanbeincorporatedin
theMonteCarlomoves[10]byaddingto Eanextratermjh/(2e)iftheunitvortexmoves
inthedirectionoppositetotheLorentzforce,subtractingthistermifitmovesinthesame
direction,andmakingnochangein Eifitmovesinaperpendiculardirection.Biasingthe
MonteCarlomovesinthiswaytakesthesystemoutofequilibriumandcausesanet uxof
vorticesinadirectionperpendiculartothecurrent.Thisgeneratesavoltagegivenbythe
Josephsonrelation:
V=h
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
equilibriumvoltage uctuationsintheabsenceofanynetcurrents.FordiscreteMonte
Carlotimeitisgivenby[16,23],inourunits,
R=1
(k)=1 2π
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
jumpcriteriontellsusthat1/ (k=0)jumpsfrom4TcatT=Tc to0atT=Tc+[9].Apracticaldi cultyforlocatingTcfromMonteCarlodataonsmalllatticeswiththis
procedureisthatextrapolationtothek=0limitrequireslargelattices,asthesmallest
nonzerokis2π/L.Thecorrespondingquantityto1/ (k=0)inthetwodimensionalXY
modeliscalledthehelicitymodulusγ[5].Bothquantitieshavebeenusedtolocatethe
Kosterlitz-ThoulesstransitiontemperatureinMonteCarlocalculations[5,25,19].
InthedataanalysisinthenextsectionweuseanalternativeproceduretolocateTcfrom
thelinearresistance[12].WeobtainthelinearresistanceRfromtheNyquistformulain
Eq.(5)forasequenceofsystemsizesLandtemperaturesT.AccordingtoEq.(6)data
forL2Rfordi erentsystemsizesshouldbecomesystemsizeindependentatthecritical
temperature,whichisourcriteriontolocateTc.Thiscircumventsthedi cultiesofusing
1/ (k=0).ThetwodeterminationsgivewithinerrorbarsthesamevalueforTc.
V.RESULTS
WepresentMonteCarlosimulationresultsforthreedi erentdeterminationsoftheIV
exponenta(T)forthe2DCoulombgasmodel.Theresultsweshowhereareforthechemical
potentialµ=0.0andlatticesizeL=32ifnotdi erentlystated.
A.NonlinearIVexponent
Our rstmethodconsistsinadirectmeasurementoftheelectric eldEinducedbyan
appliedcurrentdensityj.InFig.1aresultsfortheIVcharacteristicofthetwo-dimensional
Coulombgasareshown.Thedashedlineintheln(E)versusln(j)plothasslopethree
andrepresentstheslopeatT=Tcaccordingtotheuniversaljumpcondition[9].The
solidcurvesrepresentresultsfordi erenttemperatures.Forveryhighcurrentthevoltage
responsesaturates.Thisisbecausewhenallattemptstomovethevorticesinthedirection
oftheLorentzforcearealreadyaccepted,furtherincreasingthecurrentcannotgivemore
voltage.Forlowenoughcurrentthereisacrossovertoohmicresistance,whenthecurrent
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
lengthequalsthesystemsize,andthenonlineardependenceoftheresistanceonthecurrent
vanishes.Theregimewhereweprobethenon-linearIVcharacteristicisforthis gure
approximatelyfromlnj≈ 1.5upto≈ 0.5.AccordingtotheKosterlitz-Thoulesstheory
theslopeofthelinesshouldbe3atthecriticaltemperature,andthiscriteriacanbeusedto
determineTc.Wewillhoweveruseanindependentdetermination[12]ofTcforthissystem,basedonthe nitesizescalingrelationEq.(6).
InFig.1bwedemonstratethee ectsofthe nitelatticesizeforlowdrivingcurrents
attemperaturesbelowTc.ThedatashownareforT=0.15andlatticesizesareL=8
(triangles),12(opensquares),16(stars),24(opencircles),and32( lledcircles).
The nitesizee ectsforthelowertemperaturescanbeunderstoodinthefollowingway.
(SeethediscussionabovefollowingEq.(15).)The nitelatticesizeisimportantbecause
pairexcitationoverthebarriergivenbytheperiodicitylengthLwilladdtothedissipation
duetounbindingofpairsoverthebarriergivenbythepairsizer .Theinducedelectric
eldwillaccordinglybeoftheform
E=R(L)j+constantjE1/2T+1,(26)
wherethe rsttermR(L)followsfromEq.(16)andR(L)→0asL→∞.Thesecond
terminEq.(26)isgivenbyEq.(15)andwillremain niteinthelimitL→∞.Thisis
clearlydemonstratedinFig.1bwhereweseethatthecrossoverinEq.(26)betweenthe
linearandnonlinearregimeappearsatahigherdrivingcurrentforthesmaller8×8lattice
asthecurrentlength(E1/I=ξI~L)associatedwiththecurrentdensityjexceedsthesize
ofthelattice.
InFig.2theexponentaIV(X)isshownasafunctionofthereducedtemperature
X=T/Tc.ThedashedhorizontallinerepresentstheuniversaljumpconditionforaIV(X).
TheplussesrepresentexperimentaldatafromasuperconductingHg-Xe lm[4,26].The
lledcirclesaretheresultsforaIV(T)fromFig.1.Theotherthreedatasetsarefor
latticesizesL=16(stars),24(opencircles),and48(triangles).Asonecanseethereare
noapparent nitesizee ectsinthedata.Inthevicinityofthecriticaltemperaturethe
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
experimentaldataarereproducedbytheMonteCarlosimulations.
ThereducedtemperaturevariableXusedinFig.2fortheexperimentisalsofromRef.[26]andforthelatticeCoulombgasdataweuseTc=0.218[12]determinedfroma nite
sizescalinganalysisusingEq.(6).
TheinsetinFig.2showsaselectionofexperimentaldataanalyzedalongthelines
describedinRef.[26].Thedataintheinset(plusses)arethesameasinthemain
gure,theotherdataareforBi2Sr2CaCu2Oxsinglecrystal( lledsquares)[7],andfor
Bi1.6Pb0.4Sr2Ca2Cu3Oxsinglecrystal(opensquares)[8].
TheMonteCarlodatapresentedherefora(X)areallforµ=0.0.Wealsodidthesame
analysisforMonteCarlodataforL=32andµ= 0.4, 0.2and0.2.Theclosest ttothe
experimentalresultsisproducedbyµ=0.0.Resultsfordi erentµdi erfromtheµ=0.0
results,bythatµ=0.2hasaslightlylargerderivativeatX=1andthesmallerµare
correspondinglylesssteep.
B.SelfconsistentIVcharacteristic
Inourseconddeterminationoftheexponenta(T)wewillmakeuseoftherelations
between anda(T)inequations(20-21).Theanalysisisbasedontheselfconsistent
solutionofEq.(19).Foragivencurrentdensityj,asetof (k)willbecalculatedfor
di erenttemperatures.TheselfconsistentsolutiontoEq.(19)for isshowninFig.3,
in(a)dataforT=0.18isshownandin(b)T=0.24.Thesolidanddashedstraightlines
represent =k /j2π,givenbyEq.(19),fordi erentcurrentdensitiesj.Theopencircles
represent (k )asafunctionofkfordi erentcurrentdensities.Thechoiceofthedirection
alongwhich (k )isprobedisperpendiculartothecurrentdensityj,ie.paralleltothe
vortexdriftcausedbythecurrentdensityj.Theintersectionbetweena (k )curveandthe
correspondingstraightlineisthesolutiontoEq.(19),thesearemarkedwith lledcircles.
InFig.3aforT=0.18<Tc=0.218weseethattheselfconsistentsolutiondependsonly
weaklyonthechoiceofprobingcurrentaslongasthecurrentisnottoolarge.InFig.3b
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
forT=0.24>Tcwesee,however,thatthereisnowellde nedlimitingsolutionfor as
j→0.ThisisbecausethesystemisabovetheKosterlitz-Thoulesstemperatureandvortex
pairswillalwaysdissociateirrespectiveofj.InFig.4thefunction isshownasafunctionoftemperature.Thesolidcirclesrepresent fromtheselfconsistentEq.(19)forthe xed
currentdensityj=0.03125.ThedatashownhererepresentstheconstructionshowninFig.
3.
Theresultsfromtheselfconsistentsolutionfor areanalyzedinFig.5.Herethe lled
circlesrepresenttheexponentaIV(T)fromFig.2.Theupsidedowntrianglesrepresent
aAHNS(T)fromEq.(20)withthesolutionfromFig.3andthetrianglesarethecorre-
spondingsolutiontoEq.(21).OnecanclearlyseethattheexpressioninEq.(21),derived
byMinnhagenetal.[21],reproducestheexponentaIV(T)forT<Tc.Notehowever,itis
onlyacoincidencethatEq.(20),derivedbyAmbegoakaretal.[17],worksfortemperatures
aboveTcinthis gureasthelimiting(j→0)solutionfor1/ isnotwellde nedforthese
temperatures,asalreadydiscussedinconnectionwithFig.3b.Asthesimulationdata
aIV(T)( lledcircles)alsomatchedtheexperimentaldatainFig.1wemustconcludethat
belowTctheinterpretationaccordingtoEq.(21)isclearlythemoreappropriate.
C.LinearResistance
Wewillnowturntoourlastdeterminationoftheexponenta(T).Theresultspresented
aboveallreliedonnon-equilibriumMonteCarlosimulations,i.e.witha niteapplied
supercurrentdensityj.Wewillnowpresenttheequilibriumdeterminationforj=0basedon
nitesizescalingofMonteCarlodataforthelinearresistancegivenbytheNyquistformula
(5)togetherwithEq.(17).InFig.6wedemonstrateadatacollapseofthelinearresistance
forseverallatticesizes.FromEq.(17)weseethatthelinearresistancedatacanbe
collapsedontoasinglecurve,thusrepresentingthethermodynamiclimit,byanappropriate
choiceateachtemperatureToftheexponentaR(T).Wedothisinthefollowingway.For
agiventemperaturewe ndtheexponentaRwhichminimizestheerrorofthe tde ned
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
as
TheobtainedscalingexponentaRasafunctionoftemperatureisshowninFig.7.AsacomparisonwealsoshowdataforaIV(T)fromFig.2,obtainedfromdirectevaluation
oftheIVcharacteristic.The nitesizescalinganalysisinFig.6breaksdownforlow
temperatures.ThiscanbeseenbythedeviationofaR(T)fromthedataforaIV(T)at
T=0.15.InFig.7thisdeviationisalsoevident.Acarefulinspectionofthescalingat
temperaturesT=0.15andT=0.18revealsthattheorderofthelatticessizesisreversed
forT=0.15comparedwiththehighertemperatures.Thismayberelatedtothedi culties
toconvergethesimulationatlowtemperature. aL,L′(R(L)L R(L′)L′a)2.TheconsideredlatticesizesareL,L′=6,8,12,16,24,32.
VI.DISCUSSION
WehavecalculatedthenonlinearIVexponentaIV(T)ofthetwodimensionallattice
Coulombgas.Ourresultsarebasedonthreedi erentdeterminations.Adirectcalculation
parisonwithexperiments
[4,7,8,26]onHg-Xe lmsandsinglecrystalhighTcsuperconductorsshowgoodagreement.
Oursecondmethodisbasedonasimpleselfconsistentcalculationofthedielectric
function attheunbindingseparation,andtheIVexponentcanthenbecalculated.Here
weespeciallyfocusonthecomparisonoftworelationsbetweena(T)and .The rstrelation
Eq.(20)[17]isbasedonordinarydi usionintwodimensionswitharecombinationrate
proportionalton2F.Thesecondexpressionfora(T)giveninEq.(21)hasbeenderivedfrom
ascalinganalysis[21].
We ndthattheexponentdeterminedbyEq.(21)fortemperaturesbelowTcisclose
tothemoredirectdeterminedaIV(T)andwillthereforealso ttheexperimentsforthese
temperatures.
ThethirdmethodisbasedonequilibriumMonteCarlosimulations.Fromthescaling
relationEq.(17)forthelinearresistancewecanderiveaR(T).We ndthatthescaling
exponentaR(T)toahighdegreeofaccuracy tsthedirectdeterminedaIV(T)forabroad
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
rangeoftemperatures.Thisprovidesalinkbetweentheequilibriumandnonequilibrium
responsepropertiesofthesystem:A nitemesoscopiclinearresistanceina nitesample
belowTcisduetothermallyactivatedvortexmotionacrosssomepotentialbarrier,generated
byinteractionswithallothervorticesinthesystem.Whena nitecurrentisimposedacross
thesystem,newnonequilibriumcon gurationsareaccessedwherevorticesaredrivenaway
fromtheirequilibriumpositionsbythe niteLorentzforce,thusgivingnonlinearresponse.
OurdatashowsthatthebarrierovercomebytheLorentzforce,givingnonlinearresponse,
isessentiallythesamebarrierasintheequilibriumcase,i.e.,thepotentialbarrierinthe
caseofa nitecurrentappearstobedeterminedbyequilibriumstatesinthesystem.This
isconsistentwiththescalingansatz,discussedabove,ofacertaincurrentlengthscale(r )
associatedwiththe nitecurrent,suchthatforlengthsshorterthanthecurrentlengthscale
anequilibriumstateisstillattained,whichgivesapotentialbarrieressentiallyequaltothat
intheequilibriumcase.
Aninterestingpossibilityarisesheretomeasure nitesizee ectsonthelinearresistance
inlithographicJosephsonjunctionarrays.Theideawouldheretotakeadvantageof nite
sizeroundings,ratherthanasusualwantthemtobeassmallaspossible,andtryingto
texperimentaldataonverysmallarraystoour nitesizescalingformulas.Thiswould
provideanunusualexperimentaltestof nitesizescaling.Itisalsoimportanttoanalyze
thedataintermsofthereducedtemperaturescale,asTcissampledependent.Accordingto
Eq.(17)itshouldbepossibletoscalethelinearresistanceofsamplesofdi erentsizesonto
asinglescalingfunctionusingtheexponenta(X)fromthenonlinearIVcharacteristics.
Ourconclusionsare:(1)Simulationofnonequilibriumvortexdynamicsallowcalculation
ofalatticesizeindependentIVexponenta(T)asafunctionoftemperatureT.(2)This
curvefora(T)agreesnicelywithexperimentsinanintervalaroundTc,andthisappearsto
bereportedhereforthe rsttime.(3)Thiscurvecanbeobtainedfromasimplephenomeno-
logicaltheoryforthenonlinearIVcharacteristic.(4)Thiscurvecanalsobeobtainedfrom
asimulationoftheequilibriumvortexdynamics.Thisprovidesausefullinkbetweendriven
di usionandequilibriumdynamicsoftwo-dimensionalvortexsystems.
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
WeacknowledgestimulatingdiscussionswithP.MinnhagenandK.Holmlund.H.W.was
supportedbygrantsfromCarlTrygger,M.W.wassupportedbygrantsfromtheSwedish
NaturalScienceResearchCouncil(NFR)andH.J.J.wassupportedbytheBritishEPSRC.
We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent $a(T)$ of the nonlinear current-voltage characteristic, $V
REFERENCES
[1]J.M.KosterlitzandD.J.Thouless,J.Phys.C5,L124(1972);6,1181(1973).
[2]V.L.Berezinskii,Zh.Eksp.Teor.Fiz.61,1144(1971)[Sov.Phys.JETP34,610(1972)].
[3]P.Minnhagen,Rev.Mod.Phys.59,1001(1987).
[4]A.M.Kadin,K.EpsteinandA.M.Goldman,Phys.Rev.B27,6691(1983).
[5]S.TeitelandC.Jayaprakash,Phys.Rev.B27,598(1983).
[6]J.Villain,J.dePhys.36,581(1975).
[7]tyshev,Pis’maZh.Eksp.Teor.Fiz.51,197-200(1990)
[JETPLett.51,224-227(1990)].
[8]A.K.Pradhan,S.J.Hazell,J.W.Hodby,C.Chen,Y.Hu,andB.M.Wanklyn,Phys.
Rev.B47,11374(1993).
[9]D.R.NelsonandJ.M.Kosterlitz,Phys.Rev.Lett.39,1201(1977).
[10]M.WallinandS.M.Girvin,Phys.Rev.B47,14642(1993).
[11]R.A.Hyman,M.Wallin,M.P.A.Fisher,S.M.Girvin,andA.P.Young,Phys.Rev.
B51,15304(1995).
[12]M.WallinandH.Weber,Phys.Rev.B51,6163(1995).
[13]J.-R.LeeandS.Teitel,Phys.Rev.B50,3149(1994).
[14]J.V.Jos´e,L.P.Kadano ,S.Kirkpatrick,andD.R.Nelson,Phys.Rev.B16,1217
(1977).
[15]J.-R.LeeandS.Teitel,Phys.Rev.Lett.64,1483(1990);Phys.Rev.B46,3247(1992).
[16]F.Reif,Fundamentalsofstatisticalandthermalphysics,McGraw-Hill(1965).
[17]V.Ambegoakar,B.I.Halperin,D.R.Nelson,andE.D.Siggia,Phys.Rev.Lett.40,
正在阅读:
Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice05-30
浙江省宁波市2020年新高考选考适应性考试 历史 含答案08-05
自然堂STP营销战略分析03-27
某商贸中心空调系统毕业设计说明书(含开题报告、文献综述、外文04-11
社交能力提升小组计划书09-20
秋之韵作文550字07-14
“先学后教”教学模式在初中化学教学中的应用-2019年文档12-03
西藏自治区林芝市高二下学期期末考试英语试题(藏文班)04-11
中外美术史名词解释选择简答 全08-25
- 1Two- and Three-Dimensional Smectic Ordering of Single-Handed Helical Polymers
- 2The Characteristics and Translation of English
- 3LATTICE - 配置问题
- 4The Characteristics of Shakespeares Tragedies
- 5A package of Linux scripts for the parallelization of Monte
- 6Three-dimensional visualization
- 7An equivalent current source model and Laplacian weightedest
- 8The Untwisted Stabilizer in Simple Current Extensions
- 9Multiple Description Vector Quantization with Lattice Codebooks Design and Analysis
- 10The One With Two Parts
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- characteristics
- calculation
- dimensional
- current
- voltage
- lattice
- Monte
- Carlo
- two
- 遗传BP算法在双色球彩票预测中的应用_李维良
- 廉洁运城微信考试五答案
- 第9课 改变世界的工业革命测试题
- 标准数据结构实验课程列表
- 电力电子课程设计报告
- 习题——蛋白质代谢与合成
- 浅议电子合同的成立
- 厦门国际银行2010年年报
- 2016-2022年中国压花短毛绒面料行业市场专项调研及投资前景可行性预测报告(目录)
- 中国中式乐器市场产销调研与盈利空间预测报告(2014-2019)
- 江苏省涟水县徐集中学九年级物理11月23日周测(无答案) 人教新课标版
- 北京大学2006年博士研究生入学考试英语试题
- 2015依法治国网络知识竞赛试题
- 基于51单片机酒精浓度监测仪设计与实现
- 骨干教师培训心得体会
- 如何设计轻型输送机项目可行性研究报告(技术工艺+设备选型+财务概算+厂区规划)投资方案
- 牵引变电所综合自动化系统的选择原则和方法
- 磁性橡胶胶料的混炼工艺与性能
- 韩集小学“教师队伍建设年”自查报告
- 当代世界发展大趋势:板块经济