油气管道腐蚀检测
更新时间:2024-06-21 09:15:01 阅读量: 综合文库 文档下载
油气管道腐蚀的检测
摘要:油气管道运输中的泄漏事故,不仅损失油气和污染环境,还有可能带来重大的人身伤亡。近些年来,管道泄漏事故频繁发生,为保障管道安全运行和将泄漏事故造成的危害减少到最小,需要研究泄漏检测技术以获得更高的泄漏检测灵敏度和更准确的泄漏点定位精度。本文介绍几种检测方法并针对具体情况进行具体分析。
关键字:腐蚀检测 涡流 漏磁 超声波 引言:
在油气管道运输中管道损坏导致的泄漏事故不仅浪费了石油和天然气,而且泄露的有毒气体不仅污染环境,而且对人和动物造成重大的伤害,因此直接有效的检测技术是十分必要的,油气管道检测是直接利用仪器对管壁进行测试,国内外主要以超声波、漏磁和祸流等领域的发展为代表。[1] 1、涡流检测
电涡流效应的产生机理是电磁感应. 电涡流是垂直于磁力线平面的封闭的 旋涡!状感应电流, 与激励线圈平面平行, 且范围局限于感应磁场所能涉及的区 域. 电涡流的透射深度见图1, 电涡流集中在靠近激励线圈的金属表面, 其强度随透射深度的增加而呈指数衰减, 此即所谓的趋肤效应. [1]
电涡流检测金属表面裂纹的原理是: 检测线圈所产生的磁场在金属中产生电涡流, 电涡流的强度与相位将影响线圈的负载情况, 进而影响线圈的阻抗. 如果表面存在裂纹, 则会切断或降低电涡流, 即增大电涡流的阻抗, 降低线圈负载. 通过检测线圈两端的电压, 即可检测到材料中的损伤. 电涡流检测裂纹原理见图2.[2]
涡流检测是一种无损检测方法,它适用于导电材料。涡流检测系统适应于核电厂、炼油厂、石化厂、化学工厂、海洋石油行业、油气管道、食品饮料加工厂、酒厂、通风系统检查、市政工程、钢铁治炼厂、航空航天工业、造船厂、警察/军队、发电厂等各方面的需求.[2]
涡流检测的优点为:1.对导电材料和表面缺陷的检测灵敏度较高;2.检测结果以电信号输出,可以进行白动化检测;3.涡流检测仪器重量轻,操作轻便、简单;4.采用双频技术可区分上下表面的缺陷:5.不需要祸合介质,非接触检测;6.可以白动对准_!:件探伤;7.应用范围广,可检测非铁磁性材料。
涡流检测的缺点为:1.只适用于检测导电材料;2.受集肤效应影响,探伤深度与检测灵敏度相矛盾,不易两全:3.穿过式线圈不能判断缺陷在管道圆周上所处的具体位置;4.要有参考标准才能进行检测:5.难以判断缺陷的种类。[1] 2、超声波检测
超声波检测的基本原理基本原理见图3所示。
垂直于管道壁的超声波探头对管道壁发出一组超声波脉冲后,探头首先接收到由管道壁内表面反射的回波(前波),随后接收到由管道壁缺陷或管道壁外表面反射的回波(缺陷波或底波)。于是,探头至管道壁内表面的距离A与管道壁厚度T可以通过前波时间以及前波和缺陷波(或底波)的时间差来确定:
式中,
为第一次反射回波(前波)时间,
为第二次反射回波(底波或缺陷波)
时间,为超声波在介质中的声速、为超声波在管道中的声速。[3]
不过,仅仅根据管道壁厚度T曲线尚无法判别管道属内壁缺陷还是外壁缺陷,还需要根据探头至管道壁内表面的距离A曲线来判别。当外壁腐蚀减薄时,距离A曲线不变;而当内壁腐蚀减薄时,距离A曲线与壁厚T曲线呈反对称。于是,根据距离A和壁厚T两条曲线,即可确定管道壁缺陷,并判别管道是内壁腐蚀减薄缺陷还是外壁腐蚀减薄缺陷。[3]
超声波检测是通过超声传感器将高频声波射入被检管道内,如果其内部有缺陷,则一部分入射的超声波在缺陷处被反射回来,再利用传感器将反射同来的信号接收,可以检出缺陷的位置和大小。超声检测的常用频率范围为0.5一10MHz。
管道腐蚀缺陷深度和位置的直接检测方法,是利用超声波的脉冲反射原理来测量管壁腐蚀后的厚度,对管道材料的敏感性小,检测时不受管道材料杂质的影响,超声波法的检测数据简单准确,能够检测出管道的应力腐蚀破裂和管壁内的缺陷。适用于大直径、厚管壁管道的检查。超声波检测具有检测成本低,现场使用方便,特别适用于检验厚度较大的管道。[4]
超声检测作为一种成熟的无损检测技术有着它白己的优点,但还存在以下几个方面的不足:1.必须去除表面涂层,或者对表面进行打磨处理,增加了劳动强度;2.管材为圆柱曲面,容易造成祸合不良,检测速度慢、时间一长:3.有一定的近场盲区,易造成漏检:4.检测结果带有土观因素,并与操作人员有关:5.腐蚀坑底或腐蚀表面对声波散射严重,造成回波信号降低;6.不适合在气管线和含蜡高的油管线进行检测,具有一定局限性;7.内、外壁回波难以判断,容易发生误判。 3、漏磁检测
最适合油管探伤检验的方法是漏磁法, 国内油田现用的旧油管修复检测线80%,[5]以上都采用了漏磁探伤方法 漏磁检测是以自动化为目的发展起来的一种自动无损检测技术,国外己经得到广泛应用。漏磁检测的基本原理是建立在铁磁性材料的高磁导率特性之上的。铁磁性材料的磁导率远大于其它非铁磁性介质(如空气)的磁导率。当用磁场作用于被测对象并采用适当的磁路将磁场集中于材料局部时,一旦材料表面存在缺陷,缺陷附近将有一部分磁场外泄出来。用传感器检测这一外泄漏磁场可以确定有无缺陷,进而可以评价缺陷的形状尺寸。 钢管缺陷瀚磁检测原理是钢管被永久磁铁磁化后,当钢管中无缺陷时,磁力线绝大部分通过钢管,见图:当管壁变薄,管内、外壁局部被磨损,有腐蚀坑、凹坑、通孔等缺陷时,钢管缺陷处的磁阻变大,聚集在管壁的部分磁通向外扩张,磁力线发生弯曲井且有一部分磁力线泄翻出钢管表面,利用磁感应元件(霍尔元件)在钢管表面相对切割磁力线产生感应电信号,通过对感应电信号的特征提取来对缺陷进行定性和定量分析。[6]
真实的缺陷具有比模拟缺陷复杂得多的儿何形状,况且它们千差万别地存在于不同的_1洲冲,要计算其漏磁场是很难的。在检测中,要使它们的漏磁场达到足以形成明确显示的程度是很有意义的,这里,必须考虑影响缺陷漏磁场强弱的各种因素。影响缺陷漏磁场的因素主要米口卜列三个方面。 (1)磁化场对漏磁场的影响
l)当磁化程度较低时,漏磁场偏小,且增加缓慢;
2)当磁感应强度达到饱和值的80%左右时,漏磁场不仅幅值较大,而且随着磁化场的增加会迅速增大;
3)漏磁场及其分量与钢管表面的磁感应强度大小成正比;
4)漏磁场及其分量与磁化场方向和缺陷侧壁外法向矢量之间的夹角余弦成正比。
(2)缺陷方向、大小和位置对漏磁场的影响 l)缺陷与磁化场方向垂直时,漏磁场最强:
2)缺陷与磁化场方向平行时,粼磁场儿乎为零;
3)缺陷在l:件表面的漏磁场最人,随着离开表面中心水平距离的增加漏磁场迅速减小;
4)缺陷深度较小时,随着深度的增加漏磁场增加较快,当深度增大到一定值后漏磁场增加缓慢;
5)缺陷信号的幅值与缺陷宽度对应,缺陷长度对翻磁信号儿乎没有影响; 6)缺陷宽度相同时,随深度的增加,漏磁场随之增人; (3)工件材质及工况对漏磁场的影响
钢材的磁特性是随其合金成分(尤其是含碳坛)、热处理状态而变化的,相同的磁化强度、相同的缺陷对不同的磁性材料,缺陷漏磁场不一样,土要表现为以下二点:
(l)对于儿何形状不同的被测物体,如果表面的磁性场相同而被测物体磁性不同,则缺陷处的漏磁场不同,磁导率低的材料漏磁场小:
(2)被测材料相同,如果热处理状态不同,则磁导率不一样,缺陷处的漏磁场也不同;
(3)当l:件表面有覆盖层(涂层、镀层)时,随着覆盖层厚度的增加,漏磁场将减弱。[1]
同样漏磁检测也存在它自己的特点。漏磁检测的优点是1.适用于检测中小型管道;2.不需要祸合,检测速度快,效率高:3.检测灵敏度高,可靠性好;4.可对缺陷进行量化处理:5.同磁粉相比便于操作,改善_l:作环境适合于对壁减和腐蚀坑等形式的缺陷普卉,检测效果突出;6.易于实现白动化。除此之外漏磁检测也有它的缺点,漏磁检测的缺点是:1.材料只适用于铁磁性金属材料,不适用I几1卜铁磁性金属;2.被检管道不能太厚,否则容易出现虚假数据:3.很难判断缺陷是在上表面还是在下表面:4.仪器重量比较人。 实例: 新疆某油田某天然气管线始于西气东输一线主力气田, 管径为 1 016 mm, 管线全长约160 km。鉴于管道完整性管理要求, 油田特委托ROSEN 公司对该管线进行了基于漏磁通原理的管道金属损失的内检测工作, 其完整的内检测过程主要包括以下几个步骤。
1)管道机械清洗 机械清管的主要目的是清出管内的污物、障碍物、沉积杂质和管壁结蜡, 最大程度地保证内检测效果的准确性。
2)管道变径检测 管道变径检测是对管道的通过性能( 最小通过直径) 进行测试, 其检测结果用于判断管道能否进行下一步的几何检测和漏磁检测。 3)电子几何清管器的内几何检测( EGP) 电子内几何检测是对管道内的管段、设备进行检测并模拟漏磁通检测的一项检测内容, 用以推论这条管线没有影响ROSEN 公司CDP 检测的主要障碍。 4)漏磁通金属损失检测(CDP)
(1)设置定标点 由于内检测器的里程轮在如此长距离的管线中行走, 由于打滑或者弯头的影响, 很容易导致累积误差, 导致以后找几何缺陷点出现困难。为了便于以后对此次漏磁检测工程中检测出来的缺陷点进行开挖验证或是进行维修补强, 必须在管线的沿途对行走距离进行修正。此次检测共设置了21 个BM5 型跟踪器和30 个BM7 型定标点。平均每隔5. 32 km设置一个定标点对内检测器在管线的行走距离进行修正。 (2)漏磁通金属损失检测 5)数据处理及最终报告
6)最终评价。[4]
除了这三种最常用的检测技术之外还有磁粉检测、渗透检测、射线检测等检测方法。下面对这几种方法进行简单的介绍。 4、磁粉检测
磁粉检测方法是美国人霍克(HOKE)1922年提出的口磁粉法是检测铁磁性材料表面或近表面的裂纹、折叠、夹渣等缺陷,并能确定缺陷位置和人小的一种简单易行的方法。检测时先将管道被检部分磁化,在被检测部位及周围产生磁场。如果有缺陷,缺陷处磁阻比材料本身磁阻大得多,因此在缺陷处磁力线会产生弯曲绕行现象。当缺陷位于管道表面或近表面时,一部分磁力线绕过缺陷暴露在空气中,产生所谓的漏磁现象。在管道表面撒上铁磁粉或涂上磁粉混浊液,则缺陷处的漏磁场会吸住部分磁粉而把缺陷显现出来。 磁粉检测所需的设备简单,操作方便,迅速可靠,对表面缺陷检测灵敏度高,缺陷较直观,成本低。但缺陷的显现程度与缺陷同磁力线的相对位置有关,当缺陷与磁力线垂直时显现得最清楚,当缺陷与磁力线平行时则不易显现出来。只能检测出缺陷的位置和在表面方向上的长度,不能检测出缺陷深度,检测灵敏度随缺陷深度而下降。
磁粉检测作为一种成熟的无损检测技术,土要应川在焊缝和l;件表面或近表面裂纹检测。因为管道土要缺陷形式是壁减和腐蚀坑,如果应用磁粉检测会增人劳动强度,工作环境恶劣,检测效果并不是很好,所以磁粉检测不适用于管道腐蚀的检测工作。[7] 5渗透检测
渗透检测是探杏物体表面开口缺陷的一种方法,物体可以是铁或非铁磁性金属材料以及非金属材料[8]。方法是先将渗透剂渗入缺陷,在施加显像剂以后,由I.表面上形成显像膜,缺陷中的渗透剂就通过毛细作用被吸出至材料表面。从缺陷渗出的渗透剂以迹象的形式显示出缺陷,并比实际缺陷大,易于发现,肉眼就能看出材料的缺陷。
渗透探伤的优点有设备、材料简单;对表面缺陷可靠性高。而渗透检测存在的不足之处是对表面清洁度要求高;难以确定缺陷深度;受操作人员的影响大等。[1]
6、射线检测
射线实时成像检验技术是随着成像物体的变动图像迅速改变的电子学成像方法,和胶片射线照相检验技术儿乎是同时发展的。早期的射线实时成像检验系统是X射线荧光检验系统,采用荧光屏将X射线照相的强度转化为可见光图像[9]。对管道进行放射线检杳的方法是:利用放射线检杏管道,计量壁厚腐蚀深度,管道截面部位的壁厚通过照片上的尺寸计举,通过扩人率算出实际壁厚。实际上利用这种方法只能计晕管道截面部位的壁厚,它不能计景截面以外的平面部位的壁厚,最主要的是射线的散射不容易控制,容易发生泄漏[10]。 7、工业CT检测
CT技术始于20世纪70年代,首先是在医疗诊断领域中的成功应用,随后推广到无损检测和其他领域。日前在一l二业CT方面发展最快的是X射线和丫射线。在管道检测方面,20世纪80年代初,前苏联就采用cT技术检测功210mm铝管。[11]
CT成像法可显示管道内部的剖面图像,优点是对腐蚀和堵塞结果明显,而且还可定量显示腐蚀后的壁厚和结垢的堵塞率,是一种理想的检测方法,但是普
通的CT成像装置用大电流、高功率的强X射线源,用儿百个检测器组成阵列,在儿百个方向上取投影数据,设备人而笨,成本太高[12] 结束语:
本文对现有的油气管道腐蚀的检测技术进行了简单的介绍,随着科学技术的不断发展,现有的检测技术将不断得到改善,同时也会有新的检测技术出现,石油气因为腐蚀而泄漏的事故也会不断减少。 参考文献
[1]王亚东 钢管漏磁检测技术的研究 硕士研究生学位论文;
[2]陈晓雷 王秀琳 基于涡流技术的检测系统设计 郑州轻工业学院学报( 自然科学版);
[3]钟家维 沈建新 贺志刚 喻西崇 管道内腐蚀检测新技术和新方法; [4]张伟 蔡青青 张磊 张勇 周卫军 漏磁检测技术在新疆某油田的应用 [5]权高军 漏磁检测技术在油管修复中的应用 [6]基于小波分析的输油管道泄漏检测方法研究 [7]穿越河流输油管道的安全性评估 [8]马铭刚,程望琦,王怡之,等.无损检测.第一版.北京:石油工业出版社,1986.1一4
[9]郑世才.射线实时成像检验技术.无损检测,2000,22(7):328
[10]李艳芝,李景辉.利用图像片判断管道腐蚀深度的方法—可以在现场使用的检卉判断技术.焊管,2003,23(2):57~59
[11]陈金根.CT技术与无损检测.无损检测,1991,13(4):91一95
[12]顾本立,李虹.在役管道CT检测仪.无损检测,2001,23(l):23~24
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 油气
- 腐蚀
- 管道
- 检测