初中九年级数学中考专题复习模拟检测试卷WORD(含答案) (126)

更新时间:2023-03-08 04:48:16 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选或选出的答案超出一个均计零分)

1.(3分)下列计算,正确的是( ) A.

=

B.|﹣2|=﹣

C.

=2

D.()﹣1=2

2.(3分)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是( ) A.96 B.69 C.66 D.99

3.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )

A.15° B.22.5° C.30° D.45°

的结

4.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+果是( )

A.﹣2a+b B.2a﹣b C.﹣b D.b

5.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:

甲 185 3.6 乙 180 3.6 丙 185 7.4 丁 180 8.1 平均数(cm) 方差 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )

A.甲 B.乙 C.丙 D.丁

6.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )

第1页(共33页)

A. B. C.

D.

7.(3分)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )

A.2 B. C. D.1

8.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )

A.15 B.30 C.45 D.60

9.(3分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为( )

第2页(共33页)

A.﹣12 B.﹣27 C.﹣32 D.﹣36

10.(3分)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( )

A.2<r< B.<r≤3 C.<r<5 D.5<r<

11.(3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )

A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)

12.(3分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是( ) A.当a=1时,函数图象经过点(﹣1,1) B.当a=﹣2时,函数图象与x轴没有交点 C.若a<0,函数图象的顶点始终在x轴的下方

第3页(共33页)

D.若a>0,则当x≥1时,y随x的增大而增大

二、填空题(本大题共6小题,每小题4分,共24分) 13.(4分)化简:

÷

= .

14.(4分)已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是 . 15.(4分)已知

是方程组

的解,则a2﹣b2= .

16.(4分)如图,在?ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则

的长为 .

17.(4分)如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为 .

18.(4分)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)

第4页(共33页)

三、解答题(本大题共7小题,共60分)

19.(8分)x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣

都成立?

20.(8分)为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ; (2)将条形统计图补充完整;

(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.

21.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).

(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1; (2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.

第5页(共33页)

22.(8分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F. (1)试判断直线BC与⊙O的位置关系,并说明理由; (2)若BD=2

,BF=2,求阴影部分的面积(结果保留π).

23.(8分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.

例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.

(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.

求证:对任意一个完全平方数m,总有F(m)=1;

(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”; (3)在(2)所得“吉祥数”中,求F(t)的最大值.

24.(10分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;

(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理

第6页(共33页)

由;

(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.

25.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.

(1)求抛物线的解析式及点D的坐标;

(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;

(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.

第7页(共33页)

参考答案与试题解析

一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选或选出的答案超出一个均计零分)

1.(3分)(2017?枣庄)下列计算,正确的是( ) A.

=

B.|﹣2|=﹣

C.

=2

D.()﹣1=2

【分析】根据立方根的概念、二次根式的加减运算法则、绝对值的性质、负整数指数幂的运算法则计算,即可判断. 【解答】解:

=2

=

,A错误;

|﹣2|=,B错误;

=2,C错误; ()﹣1=2,D正确, 故选:D.

【点评】本题考查的是立方根、二次根式的加减、绝对值的性质、负整数指数幂,掌握相关的概念和法则是解题的关键.

2.(3分)(2017?枣庄)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是( ) A.96 B.69 C.66 D.99

【分析】直接利用中心对称图形的性质结合69的特点得出答案. 【解答】解:现将数字“69”旋转180°,得到的数字是:69. 故选:B.

【点评】此题主要考查了生活中的旋转现象,正确想象出旋转后图形是解题关键.

3.(3分)(2017?枣庄)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重

第8页(共33页)

合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )

A.15° B.22.5° C.30° D.45°

【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°. 【解答】解:如图,过A点作AB∥a, ∴∠1=∠2, ∵a∥b, ∴AB∥b, ∴∠3=∠4=30°, 而∠2+∠3=45°, ∴∠2=15°, ∴∠1=15°. 故选:A.

【点评】本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.

4.(3分)(2017?枣庄)实数a,b在数轴上对应点的位置如图所示,化简|a|+

的结果是( )

A.﹣2a+b B.2a﹣b C.﹣b D.b

【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案. 【解答】解:由图可知:a<0,a﹣b<0, 则|a|+

第9页(共33页)

=﹣a﹣(a﹣b) =﹣2a+b. 故选:A.

【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.

5.(3分)(2017?枣庄)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:

甲 185 3.6 乙 180 3.6 丙 185 7.4 丁 180 8.1 平均数(cm) 方差 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )

A.甲 B.乙 C.丙 D.丁

【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【解答】解:∵

=

=

∴从甲和丙中选择一人参加比赛, ∵

=

∴选择甲参赛, 故选:A.

【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.

6.(3分)(2017?枣庄)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )

第10页(共33页)

A. B. C.

D.

【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.

【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;

B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;

C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确. D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误; 故选C.

【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.

7.(3分)(2017?枣庄)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )

A.2 B. C. D.1

【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.

【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在

第11页(共33页)

MN上的点F处, ∴FB=AB=2,BM=1, 则在Rt△BMF中, FM=故选:B.

【点评】此题考查了翻折变换的性质,适时利用勾股定理是解答此类问题的关键.

8.(3分)(2017?枣庄)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )

A.15 B.30 C.45 D.60

【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.

【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E, 又∵∠C=90°, ∴DE=CD,

∴△ABD的面积=AB?DE=×15×4=30. 故选B.

【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.

第12页(共33页)

9.(3分)(2017?枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为( )

A.﹣12 B.﹣27 C.﹣32 D.﹣36

【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.

【解答】解:∵A(﹣3,4), ∴OA=

=5,

∵四边形OABC是菱形, ∴AO=CB=OC=AB=5,

则点B的横坐标为﹣3﹣5=﹣8, 故B的坐标为:(﹣8,4), 将点B的坐标代入y=得,4=解得:k=﹣32. 故选C.

【点评】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.

10.(3分)(2017?枣庄)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( )

第13页(共33页)

A.2<r< B.<r≤3 C.<r<5 D.5<r<

【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.

【解答】解:给各点标上字母,如图所示. AB=

=2

,AC=AD==5,

时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有

=

,AE=

=3

,AF=

=

AG=AM=AN=∴

<r≤3

3个在圆内. 故选B.

【点评】本题考查了点与圆的位置关系以及勾股定理,利用勾股定理求出各格点到点A的距离是解题的关键.

11.(3分)(2017?枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )

第14页(共33页)

A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)

【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标. (方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.

【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

令y=x+4中x=0,则y=4, ∴点B的坐标为(0,4);

令y=x+4中y=0,则x+4=0,解得:x=﹣6, ∴点A的坐标为(﹣6,0).

∵点C、D分别为线段AB、OB的中点, ∴点C(﹣3,2),点D(0,2). ∵点D′和点D关于x轴对称,

第15页(共33页)

本文来源:https://www.bwwdw.com/article/7t7.html

Top