全预应力后张法混凝土简支梁设计算例

更新时间:2024-04-19 18:25:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

全预应力混凝土简支梁设计算例

一、设计资料

1. 桥梁跨径及桥宽

标准跨径:Lk?30m(墩中心距),主梁全长:L=29.96m,计算跨径:Lf=29.16m,桥面净宽:净9+2×1m。

2. 设计荷载

公路—Ⅱ级车辆荷载,人群荷载3.5KN/m,结构重要性系数?0?1.1。

2

3. 材料性能参数 (1)混凝土

强度等级为C40,主要强度指标为: 强度标准值 fck?26.8MPa,ftk?2.4MPa 强度设计值 fcd?18.4MPa,ftd?1.65MPa 弹性模量 Ec?3.25?104MPa

⑵ 预应力钢筋采用1×7标准型_15.2_1860_II_GB/T 5224——1995钢绞线, 其强度 指标为:

抗拉强度标准值 fpk?1860MPa 抗拉强度设计值 fpd?1260MPa 弹性模量 Ep?1.95?105MPa 相对界限受压区高度 ?b?0.4

⑶普通钢筋采用HRB335钢筋,其强度指标为: 抗拉强度标准值 fsk?335MPa 抗拉强度设计值 fsd?280MPa 弹性模量 Es?2.0?105MPa 4.主梁纵横截面布置 各部分截面尺寸

跨中截面毛截面几何性质为:截面面积Ac=0.7018×10 mm;截面重心至构件上缘的距离

6

2

- 1 -

ycs=475.4 mm; 截面重心至构件下缘的距离ycx=824.6 mm; 截面惯性矩Jc=0.1548×1012 mm4。

5.内力计算

主梁内力计算的方法将在《桥梁工程》中进一步学习,在此仅列出内力计算的结果。 (1)恒载内力

按预应力混凝土分阶段受力的实际情况,恒载内力按下列三种情况分别计算: ①预制主梁(包括横隔梁) g1?15.3?1.35?16.66KN/m ②现浇混凝土板自重 g2?2.25KN/m

③后期恒载(包括桥面铺装、人行道及栏杆等) g3?6.27?0.24?6.51KN/m 恒载内力计算结果如表1所示。

表1 恒载内力计算结果

截面 位置 距支点截 面的距离 (mm) 预制梁自重 弯 矩 MG1k (KN?m) 跨中截面 1770.76 1328.05 0.00 121.45 剪 力 VG1k (KN) 0.00 121.45 现浇段自重 弯 矩 MG2k (KN?m) 239.15 179.36 剪力 VG2k (KN) 0.00 16.40 二期恒载 弯 矩 MG3k (KN?m) 691.94 518.95 剪力 VG3k (KN) 0.00 47.46 L4截面 变化点截面 支点截面 941.09 0.00 166.26 242.90 166.26 242.90 127.10 0.00 22.46 32.81 367.74 0.00 64.97 94.92 (2) 活载内力 活载内力计算结果如表2所示。

表2 活载内力计算结果

截面位置 距支点截 面的距离 (mm) 跨中截面 14580 7290 4600 0.00 最大弯矩 MQ1k (KN/m) 1676.59 1262.10 966.08 0.00 对应V (KN) 71.05 149.32 193.20 309.03 车辆荷载 最大剪力 VQ1k (KN) 97.67 175.05 226.72 374.65 对应M (KN/m) 1423.96 1276.12 1042.85 0.00 人群荷载 最大弯矩 MQ2k (KN/m) 140.94 103.72 71.26 0.00 对应V (KN) 0.01 10.22 13.80 16.34 最大剪力 VQ2k (KN) 4.84 11.22 14.07 16.34 对应M (KN/m) 70.52 81.80 64.72 0.00 L4截面 变化点截面 支点截面 注:车辆荷载按密集运行状态A级车道荷载计算,冲击系数1???1.1188。活载内力以2号梁为准。

(3)内力组合

①基本组合(用于承载能力极限状态计算)

Md?1.2(MG1K?MG2K?MG3K)?1.4MQ1K?1.12MQ2K

- 2 -

Vd?1.2(VG1K?VG2K?VG3K)?1.4VQ1K?1.12VQ2K

②短期组合(用于正常使用极限状态计算) Ms?(MG1K?MG2K?MG3K)?0.7MQ1K1?u?MQ2K

③长期组合(用于正常使用极限状态计算)

Ml?(MG1K?MG2K?MG3K)?0.4(内力组合结果如表3所示。

MQ1K1?u?MQ2K)

表3 内力组合计算结果

计算截面 荷载 基本 组合 最大 弯矩 跨中截面 L4截面 变化点截面 支点截面 Md (KN?m) 对 应 V (KN) 5744.48 99.48 142.05 5313.34 3891.78 44.46 65.94 3663.30 3357.65 25.41 36.85 3239.16 4312.70 442.66 479.79 4308.21 2919.77 288.95 306.06 2916.61 2519.11 242.78 252.39 2515.35 3154.02 590.10 637.31 3254.29 2111.64 388.38 409.61 2153.12 1809.83 328.29 340.38 1834.66 0.00 895.36 987.23 0.00 0.00 580.31 621.37 0.00 0.00 487.64 511.11 0.00 Sd 短期 组合 最大 剪力 Vd (KN) 对 应 M (KN?m) 最大 弯矩 Ms (KN?m) 对 应 V (KN) Ss 长期 组合 最大 剪力 Vs (KN) 对 应 M (KN?m) 最大 弯矩 Ml(KN?m) 对 应 V (KN) Sl 最大 剪力 Vl (KN) 对 应 M (KN?m) 二、预应力钢筋数量的确定及布置

首先根据跨中截面正截面抗裂要求,确定预应力钢筋数量。为满足抗裂要求,所需的有效预加力为:

NpeMsW?

e1p0.85(?)AWMs为荷载短期效应弯矩组合设计值,由表13.7.3查得Ms?3891.78KN?m,估算钢筋数量时,

- 3 -

可近似采用毛截面几何性质。

ep为预应力钢筋重心至毛截面重心的距离,ep?ycx?ap 。

假设ap?150mm,则ep?824.6?150?674.6mm

W?Wx?Jcycx?0.1548?1012824.6?0.1878?109mm3 3891.78?10690.1878?10Npe??4.860?106N 1674.60.85(?)690.7018?100.1878?10拟采用?S15.2钢绞线,单根钢绞线的公称截面面积Ap1?139mm2,抗拉强度标准值

fpk?1860MPa,张拉控制应力取?con?0.75fpk?1395MPa,预应力损失按张拉控制应力的20%

估算。

所需预应力钢绞线的根数为

np?Npe(1?20%)?conAp14.860?106??31.3根,取32根。 (1?20%)?1395?139采用4束8?S15.2预应力钢绞线束,则预应力钢筋截面面积Ap?32?139?4448mm2。采用HVM15-8型锚具,?80金属波纹管成孔,预留孔道直径为85mm。预应力筋束的布置。

预应力钢筋采用抛物线形式弯起,抛物线方程、弯起点距跨中的距离及曲线水平长度如表4。

表4 预应力钢筋弯起的抛物线方程、弯起点距跨中的距离及曲线水平长度

钢束编 号 1 2 3、4 曲线方程 起弯点距跨中的 距离(mm) 曲线水平长度(mm) 14800 12800 5800 y?200?4.43?10?6x2 y?120?4.94?10x?62 0 2000 9000 y?120?5.95?10x?62注:表中曲线方程以截面底边为

x坐标,以过弯起点的垂线为y坐标。

表5 预应力钢束的位置和倾角

各计算截面预应力钢束的位置和倾角如表5所示。

计 算 截 面 其距跨中的距离(mm) 跨中截面 0 200 120 钢束到梁底的距离(mm) 1号束 2号束 钢束与水平线夹角(度) 1号束 0 2号束 0 3、4 号束 0 所有 钢束 0 累计角度(度) 1号束 7.5104 2号束 7.2515 3、4 号束 3.9514 3、4 号束 120 所有 钢束 140 - 4 -

L4截面 7290 变化点截面 9980 支点截面 14580 435.3 641.1 1141.4 258.4 434.8 902.4 930 120 125.7 305.4 320 233.4 331.8 663.5 685 3.6994 5.0645 7.3988 7.5104 2.9969 4.5209 7.1269 7.2515 0 0.6677 3.8016 3.9514 1.6741 2.7302 5.5322 5.6662 3.811 2.4459 0.1116 0 4.2546 2.7306 0.1246 0 3.9514 3.2837 0.1498 0 锚固端截面 1170 14800 三、截面几何性质计算

截面几何性质应根据不同受力阶段分别计算。 1. 主梁混凝土浇筑,预应力钢筋张拉(阶段I)

混凝土浇筑并达到设计强度后,进行预应力钢筋的张拉,此时管道尚未灌浆,因此,其截面几何性质应为扣除预应力筋预留孔道影响的净截面。该阶段顶板的宽度为1600mm。

2. 灌浆封锚,吊装并现浇顶板600mm的连接段(阶段2)

预应力筋束张拉完毕并进行管道灌浆,预应力筋束已经参与受力。再将主梁吊装就位,并现浇顶板600mm的连接段,该段的自重荷载由上一阶段的截面承受,此时,截面几何性质应为计入预应力钢筋的换算截面性质,但该阶段顶板的宽度仍为1600mm。

3. 桥面铺装等后期恒载及活荷载作用(阶段3)

该阶段主梁全截面参与工作,顶板的宽度为2200mm,截面几何性质为计入预应力钢筋的换算截面性质。

各阶段几何性质计算结果如表6所示。

表6 各截面几何性质汇总表

阶段 截面 A (×106mm2) yx (mm) ys (mm) 510.2 513.8 517.6 564.9 556.2 552.9 549.5 568.1 496.4 493.5 490.5 528.3 ep (mm) 649.8 552.8 450.6 71.6 603.8 513.6 418.7 68.4 663.6 573.0 477.7 108.2 J (×1012mm4) W(×109mm3) Ws?Jys 0.2526 0.2551 0.2562 0.2812 0.2634 0.2614 0.2606 0.2908 0.3323 0.3297 0.3285 0.3510 Wx?Jyx Wp?Jep 0.1631 0.1667 0.1694 0.2161 0.1970 0.1935 0.1908 0.2257 0.2053 0.2018 0.1990 0.2404 0.1983 0.2371 0.2942 2.2205 0.2427 0.2814 0.3421 2.4143 0.2486 0.2840 0.3373 1.7149 阶段1 阶段2 阶段3 跨中 0.5891 0.5891 0.5891 0.9819 0.6340 0.6340 0.6340 1.0268 0.7240 0.7240 0.7240 1.1168 789.8 786.2 782.4 735.1 743.8 747.1 750.5 731.9 803.6 806.5 809.5 771.7 0.1289 0.1311 0.1326 0.1588 0.1465 0.1446 0.1432 0.1652 0.1649 0.1627 0.1611 0.1855 L4 变化点 支点 跨中 L4 变化点 支点 跨中 L4 变化点 支点 四、承载能力极限状态计算

- 5 -

(一)跨中截面正截面承载力计算

跨中截面尺寸及配筋如图13.7.2所示。此时hp?h?ap?1300?140?1160 mm;b?180mm;上翼缘板的平均厚度为h'f?150??2?下列数值中的较小值:

??1?上翼缘板的有效宽度取?410?80/(2200?180)?=166mm;

2?b'f?s?2200mm;

b'f?Lf3?291603?9720mm

b'f?b?12h'f?180?12?166?2172mm

综合上述计算结果,取b'f?2172mm 首先判别T梁类型

''6由于fcdbfhf?18.4?2172?166?6.634?10N

fpdAp?1260?4448?5.604?106N

所以fcdb'fh'f>fpdAp,说明该梁为第一类T梁。 由力的平衡条件求混凝土受压区高度:

fcdb'fx?fpdAp

得:x?fpdApfcdb'f?1260?4448?140.2mm?h'f?166mm

18.4?2172且x?140.2mm??bh0?0.4?1160?464mm

说明x轴位于受压翼缘内,且不是超筋梁,满足设计要求。 预应力钢束重心取矩得构件的抗弯承载力为: Mdu?fcdbfx(ho?)?18.4?2172?140.2?(1160? ?6106.8KN?m??0Md?5744.48KN?m

说明正截面抗弯强度满足要求。 (二)斜截面抗剪强度计算

由于变化点截面腹板宽度改变,并且该位置剪力、弯矩均较大,所以取变化点截面进行 计算。

1.复核主梁的截面尺寸

《公路桥规》规定,T形截面梁当进行斜截面抗剪强度设计时,其截面尺寸应满足

'x2140.2)?6106.8?106N?mm 2 - 6 -

?0Vd?0.051?10?3fcu,kbho

的要求。

由于ap?331.8mm,所以ho?h?ap?1130?331.8?968.2mm 代入上式得: 0.51?10?3fcu,kbho?0.51?10?340?180?968.2?562.131KN??0Vd?637.31KN

由于预应力对结构的抗剪有利,因此可考虑预应力的有利影响。即:

Vpb?0.75?10?3fpd?Apbsin?p?0.75?10?3?1260?4448?sin2.7302?200.1KN 所以:?0Vd?Vpb?637.31?200.1?437.21KN?0.51?10?3说明截面尺寸满足要求。

2.验算是否需要进行斜截面抗剪强度的计算

《公路桥规》规定,若?0Vd?0.5?10?3?2ftdbho 则不需要进行斜截面抗剪强度计算,仅需按构造要求配置箍筋。

由于 0.5?10?3?2ftdbho?0.5?10?3?1.25?1.65?180?968.2

fcu,kbho?562.131KN

?179.73KN??0Vd?637.31KN,说明需通过计算配置抗剪钢筋。

3.箍筋设计

《公路桥规》规定,主梁斜截面强度按下式计算:

?0Vd?Vcs?Vpb?0.45?10?3?1?2?3bh0(2?0.6p)fcu,k?sVfsd,V?0.75?10?3fpd?Apbsin?p中:p为斜截面内受拉纵筋的配筋率 p?100??100?式

Ap?Apbbho?100?4448?2.552?3.5,取p=2.552

180?968.2 fsd,V为箍筋的抗拉设计强度,取fsd,V?280MPa Vpb?200.1KN

代入上式得:

637.31?0.45?10?3?1.0?1.25?1.1?180?968.2?(2?0.6?2.552)40?280?sV?200.1 解

得:?sV?0.0026??sVmin?0.0012,满足最小配箍率的要求。

设取??8的单箍双肢箍筋,则asV?50.3mm,n?2,

2 - 7 -

所以: sV?AsV2?50.3??215mm b?sV180?0.002611h??1300?650mm,且小 于 400mm,所以满足设22 取sV?200mm, 由于sV?200mm小于计要求。

验算斜截面抗剪强度

此时?sV?AsV2?50.3??0.00279 bsV180?200

Vdu?Vcs?Vpb?0.45?10?3?1?2?3bh0(2?0.6p)fcu,k?sVfsd,V?0.75?10?3fpd?Apbsin?p?0.45?10?3?1.0?1.25?1.1?180?968.2?(2?0.6?2.552)40?280?0.00279?200.1

?450.413?200.1?650.513KN??0Vd?637.31KN

说明斜截面抗剪强度满足要求。

距支点相当于一倍梁高范围内箍筋加密,取sV?100mm。

(三) 斜截面抗弯强度验算

由于钢束均锚于梁端,数量上沿梁跨没有变化,并且钢束的弯起缓和,可以不进行该项强度的验算。

五、预应力损失计算

1.钢束与管道间摩擦引起的应力损失?l1

?l1??con?1?e?(???kx)?

式中:?con——按《公路桥规》规定,?con?0.75fpk?0.75?1860?1395MPa;

?——钢束与管道间的摩擦系数,??0.25;

k——管道每米局部偏差对摩擦的影响系数,k?0.0015;

x ——张拉端至计算截面的管道长度在纵轴上的投影长,以m计;

?——张拉端至计算截面间曲线管道部分的切线夹角之和,以弧度计。 各控制截面摩阻应力损失?l1的计算见表7。

- 8 -

表7 跨中(I—I)截面各钢束摩擦损失值?l1计算表

钢束号 计算截面 跨 中 截 面 1 2 3、4 总计(Mpa) x(m) 14.80 14.80 14.80 ?(弧度) 0.1311 74.61 0.1266 73.12 0.0690 53.95 255.63 ?l1(Mpa) x(m) 7.51 7.51 7.51 L4 截 面 ?(弧度) 0.0665 38.37 0.0743 41.00 0.0690 39.20 157.78 ?l1(Mpa) x(m) 变化点 截 面 4.82 4.82 4.82 ?(弧度) 0.0427 24.75 0.0477 26.45 0.0573 29.75 110.71 ?l1(Mpa) 支 点 截 面 x(m) 0.22 0.22 0.22 ?(弧度) 0.0019 1.14 0.0022 1.22 0.0026 1.37 5.10 ?l1(Mpa) 2. 锚具变形、钢丝回缩引起的应力损失?l2 ①按《公路桥规》规定,?l2可按平均值计算,即

?l2???LEp L; 式中:?L——锚具变形量,两端同时张拉时,?L?4mm L——张拉端到锚固端之间的距离,L?14800mm。

?l2???L4Ep??105?52.70MPa L14800②考虑反摩阻作用时钢束在各控制截面处的应力损失?l2的计算

- 9 -

要进行考虑反摩阻作用时钢束在控制截面处的应力损失?l2的计算,需首先确定反摩阻影响长度

Lf。

Lf???L?E??dp

??d?式中:?0——张拉端锚下控制张拉应力;

?0??lL

?l——扣除沿途管道摩擦损失后锚固端预拉应力。

反摩阻影响长度Lf如表8所示。

表8 反摩阻影响长度计算表

钢束号 1 1395 2 1395 3、4 1395 ?0??con(Mpa) ?l??0??l1(Mpa) ??d?(?0??l1)/L(Mpa/mm) 1320.39 1321.88 1341.05 0.00504 0.00494 0.00365 Lf(mm) 12438.5 12564.8 14628.0 当Lf?L时,离张拉端x处由锚具变形、钢筋回缩和接缝压缩引起的考虑反摩阻后的预应力损失??x为:??x????Lf?xLf

???2??dLf

当Lf?x时,表示该截面不受反摩阻的影响。

考虑反摩阻作用时钢束在各控制截面处的应力损失?l2的计算列于表9。

表9 锚具变形损失计算表

钢束号 截面 跨 1 2 3 总计 x(mm) 148000 148000 148000 - 10 -

中 截 面 ??(MPa) 125.42 124.16 106.65 ?l2(MPa) x(mm) 0.00 0.00 0.00 0.00 7510 7510 7510 L4 截 面 ??(MPa) 125.42 12416 106.55 ?l2(MPa) x(mm) 49.69 49.95 51.89 203.43 变 化 点 截 面 4820 4820 4820 ??(MPa) 125.42 124.16 106.65 ?l2(MPa) x(mm) ??(MPa) 76.82 76.53 71.51 296.35 支 点 截 面 220 220 220 125.42 124.16 106.65 ?l2(MPa) 123.20 121.98 105.04 455.26 由表9可以看出,考虑反摩阻计算的?l2其分布规律比按平均值计算的?l2更符合实际情况,因此,应力损失组合时以考虑反摩阻计算。

3. 分批张拉时混凝土弹性压缩引起的应力损失?l4

设预应力钢束张拉的顺序为4→3→2→1。

?l4??Ep???pc

式中:?Ep——预应力钢筋与混凝土弹性模量之比,?Ep1.95?105???6; 4Ec3.25?10Ep??pc——计算截面先张拉的钢筋重心处,由后张拉的各批钢筋产生的混凝土法向应力;

??pc?NpeiA?Npeiepi?epJ

Npei——第i束钢束的有效张拉力,为张拉控制应力减去摩擦损失和锚具变形损失后的张拉力,

Npei?(?con??l1i??l2i)ap1,ap1为一束预应力钢束的面积;

- 11 -

epi——第i束钢束的重心到截面重心轴的距离;

ep——计算钢束的重心到截面重心轴的距离;

- 12 -

表10 混凝土弹性压缩损失计算表

截面 张拉束有效张拉力张拉钢束偏心距 计算钢束偏心距 Σ??pc (Mpa) 各钢束应力损失 ?l4(Mpa) 2 0.00 0.00 3 0.00 4 46.32 Npei 3epi(mm) 2 3 0.00 669.8 589.8 4 669.8 669.8 589.8 总计 2 0.00 0.00 669.8 ep(mm) 3 0.00 4 2 号 (×10N) 跨中 3 2 1 3 4 7.72 7.61 6.99 1491.25 0.00 1469.93 0.00 1468.27 589.8 669.8 0.00 0.00 669.8 669.8 0.00 7.61 669.8 669.8 6.99 6.99 45.66 45.66 41.94 41.94 41.94 41.94 87.60 133.92 3 2 1 1449.95 1450.10 1453.32 0.00 0.00 350.9 0.00 527.8 350.9 666.2 527.8 350.9 总计 0.00 0.00 527.8 0.00 666.2 0.00 0.00 7.37 6.35 5.06 0.00 0.00 0.00 44.22 L4 变化点 666.2 666.2 0.00 6.35 666.2 666.2 4.52 5.06 38.10 38.10 27.13 30.36 30.36 27.13 68.48 112.68 3 2 1 1438.63 1436.72 1438.29 0.00 0.00 141.3 0.00 347.6 141.3 656.7 347.6 141.3 总计 0.00 0.00 347.6 0.00 656.7 0.00 0.00 7.12 4.91 3.45 0.00 0.00 0.00 42.72 656.7 656.7 0.00 4.91 656.7 656.7 2.98 3.45 29.46 29.46 17.88 20.70 20.70 17.88 50.16 92.88 支点 3 2 1 1432.91 1414.24 1412.97 0.00 0.00 0.00 430.0 0.00 0.00 430.0 0.00 0.00 3.13 0.80 0.00 0.00 0.00 4.80 18.78 4.80 -167.3 -167.3 0.00 430.0 430.0 0.00 0.80 -406.3 -406.3 -406.3 -167.3 430.0 430.0 2.04 -0.12 -0.12 12.24 -0.72 -0.72 总计 12.24 4.08 22.86 - 13 -

4. 钢筋松驰引起的预应力损失?l5

?l5?????(0.52式中:?——超张拉系数,取?=1.0;

?pefpk?0.26)??pe

?——钢筋松弛系数,取?=0.3;

?pe——传力锚固时的钢筋应力,?pe??con??l1??l2??l4。

钢筋松弛损失的计算结果见表11。

表11 钢筋松弛损失的计算结果表

钢束 截面 跨中 1 1320.4 1306.9 ?pe(MPa) 2 1279.9 1276.9 3 1253.4 1235.4 4 1207.1 1191.2 1 43.23 41.32 ?l5(MPa) 2 37.56 37.15 3 34.00 31.65 4 28.05 26.09 L4 变化点 支点 1293.4 1270.7 1274.2 1259.5 1243.6 1284.5 1200.8 1265.7 39.43 36.3 36.78 34.81 32.71 38.19 27.28 35.64 5. 混凝土收缩、徐变引起的应力损失?l6 取跨中截面进行计算。计算公式为:

?l6?0.9Ep?cs(t,t0)??Ep?pc?(t,t0)1?15??ps??

?pc?NpA?Npe2pJ?MGkepJe2psAJ

?ps?1?e2psi2?1?式中:?pc——构件受拉区全部纵向钢筋截面重心处,由预加力Np(扣除相应的应力损

失)和结构自重MGk产生的混凝土法向应力,

Np?(?con??l1??l2??l4)Ap;

?——构件受拉区全部纵向钢筋配筋率,不考虑普通钢筋时, ??ApA;

?cs(t,t)——预应力筋传力锚固龄期为t0,计算龄期为t时的混凝土收缩应变;

0 - 14 -

?(t,t)——加载龄期为t0,计算龄期为t时混凝土徐变系数;

0设预应力筋传力锚固龄期和加载龄期均为28天,计算时间为t=∞,该桥位于一般地区,年平均相对湿度为75%,构件的理论厚度由跨中截面计算,可

2Ac2?0.723?103?3得:h???226mm,由此查表可得: ?cs(t,t0)=0.215?10,

u6.402?(t,t)=1.633。

0混凝土收缩、徐变损失计算如表12所示。

表12 混凝土收缩、徐变损失计算表

截 面 eps?ep (mm) 663.6 573.0 ? ?ps 2.933 2.461 Np (KN) 5627.6 5571.7 MGk (KN·m) 2701.8 2026.4 ?pc (MPa) 11.93 11.80 ?l6 (MPa) 107.70 110.67 跨 中 0.00614 0.00614 L4 变化点 支 点 477.7 108.2 0.00614 0.00398 2.025 1.070 5573.4 5649.4 1435.9 0.0 11.33 5.41 111.13 77.74 6.预应力损失组合及有效预应力的确定如表13所示 表13 预应力损失组合表

截 面 跨 中 ?l,I??l1??l2??l4(MPa) 1 74.61 2 3 4 平均 ?pe,I (MPa) 1 ?lI,I??l5??l6(MPa) 2 3 4 平均 ?pe,II (MPa) 115.09 141.60 187.94 129.81 1265.19 150.93 145.26 141.69 135.74 143.41 1121.78 L4 变化点 支 点 88.07 118.07 159.57 203.81 142.38 1252.62 151.99 147.83 142.32 136.77 144.73 1107.89 101.57 120.83 151.42 194.16 141.99 1253.01 150.56 147.91 143.84 138.41 145.18 1107.83 124.34 135.46 110.52 129.28 124.90 1270.10 114.04 112.55 115.93 113.38 113.98 1156.12 六、正常使用极限状态计算

(一)全预应力混凝土构件抗裂性验算

1.正截面抗裂性验算

正截面抗裂性验算以跨中截面受拉边缘的正应力控制。在荷载短期效应组合作用下应满足:

?st?0.85?pc?0

式中:?st——荷载短期效应组合作用下截面受拉边的应力,

- 15 -

?st?MG3k?0.7MQ1k/(1??)?MQ2kMG1kM?yn1x?G2k?yn2x??y0x Jn1Jn2J0Jn1、yn1x、Jn2、yn2x、J0、y0x分别为阶段1、阶段2、阶段3的截面惯性矩和截

面重心至受拉边缘的距离,可由表13.7.6查取;

弯矩设计值MG1k、MG2k、MG3k、MQ1k、MQ2k可由表13.7.1和表13.7.2查取;1???1.1188。

代入上式可得

1770.76?106239.15?106691.94?0.7?1676.59/1.1188?140.94?st??789.8??743.8??106?803.61212120.12885?100.14654?100.16496?10

=21.24MPa

?pc为截面下边缘的有效预压应力: ?pc?NpAn?NpepnJnynx

Np??peIIAP?1121.78?4448?4.990?106N

epn?ypn?649.8mm

代入上式可得

4.990?1064.990?106?649.8?pc???789.8?28.35MPa 6120.5891?100.12885?10?st?0.85?pc?21.24?0.85?28.35??2.86?0

计算结果表明,正截面抗裂性满足要求。 2.斜截面抗裂性验算

斜截面抗裂验算以主拉应力控制,一般取变化点截面计算其上梗肋、形心轴、下梗肋处在荷载短期效应组合作用下的主拉应力,应满足?tp?0.6ftk的要求。 ?tp为荷载短期效应组合作用下的主拉应力:

?tp??cx2?(?cx2)2??2

?cx???pc?MG3k?0.7MQ1k/(1??)?MQ2kMG1kMyn1?G2kyn2?y0 Jn1Jn2J0 - 16 -

??VG3k?0.7VQ1k/(1??)?VQ2k?peApesin?pVG1kVSn1?G2kSn2?S0?Sn1 bJn1bJn2bJ0bJn1上述公式中车辆荷载和人群荷载产生的内力值,按最大剪力布置荷载,即取最大剪力

对应的弯矩值,其数值由表13.7.1~表13.7.3查取。变化点截面几何性质由表13.7.6查取。

各计算点的位置示意图。各计算点的部分断面几何性质按表14取值,表中A1为图中阴影部分的面积,S1为阴影部分对截面形心轴的面积矩,yx1为阴影部分的形心到截面形心轴的距离,d为计算点到截面形心轴的距离。

表14 计算点几何性质

计算点 受力阶段 A1(×10mm) 62yx1(mm) 425.2 457.1 402.3 387.6 419.5 372.2 628.9 600.0 659.0 d(mm) 287.6 319.5 260.5 27.0 59.0 0.0 432.4 400.5 459.5 S1(×10mm) 93 上梗肋 阶段1 阶段2 阶段3 0.2872 0.2872 0.3772 0.3341 0.3341 0.4241 0.1837 0.2061 0.2061 0.1221 0.1313 0.1517 0.1295 0.1401 0.1578 0.1155 0.1237 0.1358 形心轴 阶段1 阶段2 阶段3 下梗肋 阶段1 阶段2 阶段3 变截面处的有效预压力

NP??pe,IIAp?1107.83?4448?4.928?106N;epn?ypn?450.6mm

000预应力筋弯起角度分别为?p1?5.0645,?p2?4.5209,?p3??p4?0.6677,0平均弯起角度为:?p?2.7302。

将以上数值代入上式,分别计算上梗肋、形心轴、下梗肋处的主拉应力。

上梗肋处

4.928?1064.928?106?450.6?pc???287.6?3.55MPa 6120.5891?100.1326?10941.09?106127.10?106?cx?3.55??287.6??319.50.1326?10120.1432?1012367.74?0.7?1042.85/1.1188?64.726??10?260.5?7.63MPa 120.1611?10

166.26?103?0.1221?10922.46?103?0.1313?109 ???180?0.1326?1012180?0.1432?1012 - 17 -

64.97?0.7?226.72/1.1188?14.07?103?0.1517?10912 180?0.1611?101107.83?4448?sin2.73020?0.1221?109?180?0.1326?1012=0.92MPa ??tp?形心轴处

7.637.632?()?0.922??0.11MPa 224.928?1064.928?106?450.6?pc???27.0?8.82MPa

0.5891?1060.1326?1012941.09?106127.10?106?cx?8.82??27.0??59.0?8.57MPa 12120.1326?100.1432?10166.26?103?0.1295?10922.46?103?0.1401?109

???180?0.1326?1012180?0.1432?101264.97?0.7?226.72/1.1188?14.0739??10?0.1578?10 180?0.1611?10121107.83?4448?sin2.73020?0.1295?109?180?0.1326?1012=0.95MPa

?tp?下梗肋处

8.578.572?()?0.952??0.10MPa 22?pc

4.928?1064.928?106?450.6???432.4?15.61MPa 6120.5891?100.1326?10

941.09?106127.10?106?cx?15.61??432.4??400.50.1326?10120.1432?1012367.74?0.7?1042.85/1.1188?64.72??106?459.5?9.09MPa 120.1611?10

166.26?103?0.1155?10922.46?103?0.1237?109 ???180?0.1326?1012180?0.1432?101264.97?0.7?226.72/1.1188?14.0739??10?0.1358?10 180?0.1611?10121107.83?4448?sin2.73020?0.1155?109?180?0.1326?1012=0.81MPa

?tp?9.099.092?()?0.812??0.07MPa 22- 18 -

主应力的计算结果表明,上梗肋处主拉应力最大,即?tp,max范规定的限制值0.7ftk??0.11MPa小于规

?0.7?2.4?1.68MPa,说明斜截面抗裂性满足要求。

(二)主梁变形(挠度)计算

1.使用阶段的挠度计算

使用阶段的挠度值,按短期荷载效应组合计算,并应考虑长期影响系数??,对C40混凝土,??=1.60,刚度B0?0.95EcJ0。

预应力混凝土简支梁的挠度计算可忽略支点附近截面尺寸及配筋的变化,近似按等截面计算。截面刚度按跨中尺寸及配筋情况确定,即取

B0?0.95EcJ0?0.95?3.25?104?0.1650?1012?0.5093?1016N?mm2

荷载短期效应组合作用下的挠度值,可简化为按等效均布荷载作用情况计算:

5MsL2 fs??48B0式中:Ms?3891.78?106N?mm,L?29160mm 则

253891.78?106?29160fs???67.6mm 16480.5093?10自重产生的挠度值按等效均布荷载作用情况计算:

5MGkL2 fG??48B0MGk?MG1k?MG2k?MG3k

?(1770.76?239.15?691.94)?106?2701.85?106N?mm

252701.85?106?29160fG???47.0mm 16480.5093?10消除自重产生的挠度,并考虑挠度长期影响系数后,使用阶段挠度值为

fl???(fs?fG)?1.60?(67.6?47.0)?32.96mm?L29160??48.6mm 600600 说明使用阶段的挠度值满足要求。

2.验算是否需要设置预拱度 由预加力产生的反拱度

预加力引起的反拱度近似按等截面梁计算,截面刚度按跨中截面净截面确定,即取

- 19 -

B0?0.95EcJ0?0.95?3.25?104?0.1288?1012?0.3979?1016N?mm2

反拱长期增长系数采用??=2.0。 预加力引起的跨中挠度为

fp?????lM1MPdx B0式中:M1——所求变形点作用竖向单位力P=1引起的弯矩图;

MP——预加力引起的弯矩图。

对等截面梁其变形值可用图乘法确定,在预加力作用下,跨中的反拱可按下式计算

fp????2?ML/2?MpB0

?ML/2——跨中截面作用单位力P=1时,所产生的M1图在半跨范围内的面积:

?ML/21lll2???? 22416Mp——半跨范围M1图重心(距支点L3处)所对应的预加力引起的弯矩图的纵坐标

Mp?Npep

Np——有效预加力,近似取L4截面的有效应力

Np??pe,IIAp?1107.89?4448?4.928?106N

ep——距支点L3处的预应力钢束的偏心距,

ep?yx0?ap

yx0——L3截面处换算截面重心到下边缘的距离,yx0?805.5mm

ap——由表13.7.4中的曲线方程求得,ap?177.25mm

则Mp?Npep?4.928?10?(805.5?177.25)?3.096?10N?mm 由预加力产生的反拱为

2291602??2.972?10916fp??2.0???165.4mm 0.3979?10?1669将预加力引起的反拱与按荷载短期组合效应影响产生的长期挠度值相比较,可知

- 20 -

fp?165.4mm???fs?1.6?67.6?108.2mm

由于预加力引起的长期反拱值大于按荷载短期组合效应影响产生的长期挠度值,所以不必设置预拱度。

七、持久状况应力验算

按持久状况设计的预应力混凝土受弯构件,尚应计算其使用阶段正截面的法向应力、受拉钢筋的拉应力及斜截面的主压应力。计算时荷载取其标准值,不计分项安全系数,汽车荷载应考虑冲击系数。

1.跨中截面混凝土法向正应力验算

?NpNpepn1MG1kMG2kMG3k?MQ1k?MQ2k??kc???????0.5fck ?Wns1Wns1Wns2W0s?An1?Np??pe,IIAp?1121.78?4448?4.990?106N

epn1?ypn1?649.8mm

4.990?1064.990?106?649.81770.8?106239.1?106?kc????6990.5891?100.2526?100.2526?100.2634?109 ?691.9?1676.6?140.9?106?11.10MPa?0.5f?0.5?26.8?13.4MPa

ck90.3323?102.跨中截面预应力钢筋拉应力验算

?p??pe,???ep?kt?0.65fpk

?kt为按荷载效应标准值MGK(对后张法构件不包括主梁自重)计算的预应力钢筋重

心处混凝土的法向应力,

?kt?MG2k?MG3k?MQ1k?MQ2kW0p

?239.1?691.94?1676.6?140.96?10?11.06MPa 90.2486?10?p??pe,II??ep?kt?1121.78?6?11.06?1188.13MPa

?0.65fpk?0.65?1860?1209MPa

3.斜截面主应力验算

一般取变化点截面计算其上梗肋、形心轴、下梗肋处在标准值效应组合作用下的主压应力,应满足?cp?0.6fck的要求。

?cp为荷载标准值效应组合作用下的主压应力:

- 21 -

?cp??cxk?cxk2?(?cxk2)2??k2

MG3k?MQ1k?MQ2kMG1kMG2k???pc?yn1?yn2?y0

Jn1Jn2J0V?VQ1k?VQ2k?Asin?pVG1kVSn1?G2kSn2?G3kS0?pe,IIpeSn1 bJn1bJn2bJ0bJn1?k?上梗肋处

4.928?1064.928?106?450.6?pc???287.6?3.55MPa 6120.5891?100.1326?10

?cxk941.09?106127.10?106?3.55??287.6??319.50.1326?10120.1432?1012367.74?1042.85?64.726??10?260.5?8.26MPa 120.1611?10

166.26?103?0.1221?10922.46?103?0.1313?109 ?K??180?0.1326?1012180?0.1432?101264.97?226.72?14.07?103?0.1517?10912 180?0.1611?101107.83?4448?sin2.73020?0.1221?109?180?0.1326?1012=1.36MPa ??cp?8.268.262?()?1.362?8.48MPa 22形心轴处

4.928?1064.928?106?450.6?pc???27.0?8.82MPa 6120.5891?100.1326?10?cxk941.09?106127.10?106?8.82??27.0??59.0?8.57MPa

0.1326?10120.1432?1012166.26?103?0.1295?10922.46?103?0.1401?109

?180?0.1326?1012180?0.1432?1012?k?64.97?226.72?14.07?103?0.1578?10912 180?0.1611?101107.83?4448?sin2.73020?0.1295?109?180?0.1326?1012=1.41MPa ??cp?

8.578.572?()?1.412?8.80MPa 22- 22 -

下梗肋处

?pc

4.928?1064.928?106?450.6???432.4?15.61MPa 6120.5891?100.1326?10941.09?106127.10?106?15.61??432.4??400.512120.1326?100.1432?10367.74?1042.85?64.72??106?459.5?7.97MPa 120.1611?10166.26?103?0.1155?10922.46?103?0.1237?109

?180?0.1326?1012180?0.1432?1012?cxk

?k?64.97?226.72?14.07?103?0.1358?10912 180?0.1611?101107.83?4448?sin2.73020?0.1155?109?180?0.1326?1012=1.21MPa ??cp7.977.972??()?1.212?8.15MPa

22主压应力的计算结果表明,上梗肋处主压应力最大,为?cp,max范规定的限制值0.6fck?8.80MPa小于规

?0.6?26.8?16.08MPa,说明斜截面抗裂性满足要求。

八、短暂状态应力验算

预应力混凝土结构按短暂状态设计时,应计算构件在制造、运输及安装等施工阶段,

由预加力(扣除相应的应力损失)、构件自重及其它施工荷载引起的截面应力。对简支梁,以跨中截面上、下缘混凝土法向应力控制。

1.上缘混凝土应力

??tctNp1An1?Np1epn1Wns1?MG1k?0.7ftk Wns16式中:Np1??pe,IAp?1265.19?4448?5.628?10N

epn1?ypn1?649.8mm

代入上式得:

5.628?1065.628?106?649.81770.76?106?????2.08MPa?06990.5891?100.2526?100.2526?10tct2.下缘混凝土应力

t?cc?Np1An1?Np1epn1Wnx1?MG1k?0.75fck Wnx1 - 23 -

代入数值计算得:

6665.628?105.628?10?649.81770.76?10t?cc????21.12MPa 6990.5891?100.1631?100.1631?10?0.75fck?0.75?28.6?21.45MPa

计算结果表明,在预加应力阶段,梁的上缘不出现拉应力,下缘混凝土的压应力满足规

范要求。

- 24 -

本文来源:https://www.bwwdw.com/article/7t2p.html

Top