Joint Temporal Density Measurements for Two-Photon State Characterization
更新时间:2023-08-18 20:04:01 阅读量: 资格考试认证 文档下载
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
JointTemporalDensityMeasurementsforTwo-PhotonStateCharacterization
OnurKuzucu,1FrancoN.C.Wong,1SunaoKurimura,2andSergeyTovstonog2
1
ResearchLaboratoryofElectronics,MassachusettsInstituteofTechnology,Cambridge,Massachusetts02139,USA
2
NationalInstituteforMaterialsScience,1-1Namiki,Tsukuba-shi,Ibaraki305-0044,Japan
(Dated:July10,2008)
Wedemonstrateanewtechniqueforcharacterizingtwo-photonquantumstatesbasedonjointtemporalcorrelationmeasurementsusingtime-resolvedsingle-photondetectionbyfemtosecondup-conversion.Wemeasureforthe rsttimethejointtemporaldensityofatwo-photonentangledstate,showingclearlythetimeanti-correlationofthecoincident-frequencyentangledphotonpairgeneratedbyultrafastspontaneousparametricdown-conversionunderextendedphase-matchingconditions.Thenewtechniqueenablesustomanipulatethefrequencyentanglementbyvaryingthedown-conversionpumpbandwidthtoproduceanearlyunentangledtwo-photonstatethatisexpectedtoyieldaheraldedsingle-photonstatewithapurityof0.88.Thetime-domaincorrela-tiontechniquecomplementsexistingfrequency-domainmeasurementmethodsforamorecompletecharacterizationofphotonicentanglementinquantuminformationprocessing.
PACSnumbers:42.50.Dv,42.79.Nv,42.50.Ar,42.65.Lm
arXiv:0807.1573v1 [quant-ph] 10 Jul 2008
Spontaneousparametricdown-conversion(SPDC)isapowerfulmethodforgeneratingtwo-photonstatesforquantuminformationprocessing(QIP).Thejointquan-tumstatecanbeengineeredforspeci cQIPapplicationsbytailoringitspolarization,momentum,andspectralde-greesoffreedom.Ultrafast-pumpedSPDCisofgreatinterestbecauseawellde nedtimeofemissionisdesir-ableinclockedapplicationssuchaslinearopticsquan-tumcomputing(LOQC)[1].InultrafastSPDC,spectralengineeringofthetwo-photonstatecanbeaccomplishedbymanipulatingthecrystalphase-matchingfunctionandthepumpspectralamplitudetoyielduniqueformsoftwo-photonfrequencyentanglement.Forexample,coincident-frequencyentanglementwithstrongpositivecorrelationbetweensignalandidleremissionfrequenciescanbeusedtoimprovetime-of- ightmeasurementsbe-yondthestandardquantumlimit5].Ontheotherhand,onecanutilizeatwo-photonstatewithnegligiblespectralcorrelationstoimplementaheraldedsourceofpure-statesinglephotons,whichcanbeavaluablere-sourceforLOQC[6,7].
Characterizingthespectralcorrelationsofatwo-photonstatecanbedonebymeasuringthejointspectraldensity(JSD)pro lewithtunablenarrowband lteringofthesignalandidler[6,7,8].Hong-Ou-Mandelquan-tuminterference[9]isalsousefulforquantifyingthetwo-photoncoherencebandwidthandtheindistinguishabil-ityofthephotonpair.However,thetwomeasurementsdonotgivethewholepictureofthetwo-photonstate.Bothmeasurementsareinsensitivetothespectralphaseandthereforecannotcapturethetime-domaindynamicsunlessthejointstateisknowntobetransformlimited.Moreover,JSDmeasurementsinwavelengthregionswithlowdetectore ciencyorhighdetectornoisecanbechal-lengingduetolongacquisitiontimesandlowsignal-to-noiseratios.Frequency-domaintechniquesforestimat-ingthespectralphaseexist,buttheyarenotsimpleto
implementinpracticeInultrafastopticsultrashortpulsesareroutinelyana-lyzedspectrallyandtemporally,buttime-domaincharac-terizationtoolsarenoteasytoimplementforsinglepho-tons.Recentlywehaveintroducedatime-resolvedsingle-photonmeasurementtechniquebyuseoffemtosecondupconversion[11].InthisLetterweutilizethissingle-photontime-domaincharacterizationmethodtomeasureforthe rsttimethejointtemporaldensity(JTD)pro- leofatwo-photonquantumstate.Inparticular,wemeasureddirectlythetimecorrelationsofsignal-idlerar-rivaltimesofultrafastpumpedSPDCunderextendedphasematchingconditionsshowingclearlythatthecoincident-frequencyentangledphotonsweretimeanti-correlated.Furthermore,byvaryingtheSPDCpumpspectrum,wewereabletomanipulatethetemporalcor-relationsofthesignalandidler,andobtainanearlyun-entangled(temporally)two-photonstate.Thisnewtech-niquecanbeusedinconjunctionwithfrequency-domainmethodstoprovideamorecompletecharacterizationofsingleandentangledphotons.
Toproperlyde neJTD,we rstexpressthetwo-photonstateintime-domainvariables|Ψ =
dτSdτIA(τS,τI)|τS |τI ,wherethesingle-photonFockstateisde nedas|τj ≡a (τj)|0 ,forj=S,I.Thetem-poralcorrelationsofthesignalandidleraredeterminedbythejointtemporalamplitude,A(τS,τI),andwede-2
netheassociatedprobabilitydensity,(|A(τS,τI)|),asthejointtemporaldensity.Analogoustothefrequency-domainmethods,theJTDcanbemeasuredbyusingnarrowbandtemporal lteringandcoincidencedetection.FortypicalultrafastSPDCexperiments,timingreso-lutionof~100fsisneededformeasuringarrivaltimesofsinglephotons.Currentsingle-photondetectorswithtensofpicosecondstimingresolutionarenotsuitableforthispurpose.Forthetwo-photonJTDmeasurement,weappliedourrecentlydevelopedtime-resolvedsingle-
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
FIG.1:(Coloronline)(a)Synchronizedupconversionanddownconversionexperimentdrivenbythesameultrafastpump.(b)Noncollinearphase-matchinggeometryforsingle-photonupconversion.IF:interference lter;DM:dichroicmirror;FPBS: berpolarizingbeamsplitter.
photon
upconversiontechniquewithatemporalresolu-tionof~150fs[11].Anultrafastupconvertingpumppulsewasusedtotime-stampthesignalandidlerar-rivaltimes,andwemappedtheirrelativearrivaltimesbyvaryingtheinputdelaylinesindependentlyandrecordingthecoincidencesbetweenthetwoupconversionchannels.Thecoincidencestatisticsyieldedthetemporalstructureofthetwo-photonstate.
Ourexperimentalsetupforultrafasttype-IIphase-matchedSPDCandsubsequentJTDmeasurementwithtime-resolvedupconversionisshowninFig.1(a).BothSPDCandupconversionwerepumpedsynchronouslywiththesameultrafastsourceat790nmwitha6-nmbandwidthand80MHzrepetitionrate,therebyelimi-natingthepumptimingjitterfortheJTDmeasurement.WeoperatedthePPKTPSPDCcrystalunderextendedphase-matchingconditionstogenerateacoincident-frequencyentangledtwo-photonstate[3,4].ByFourierduality,thispositivefrequencycorrelationcorrespondedtoanti-correlationinthetimedomainwherethesignalandidlerphotonswith~350-fssingle-photoncoherencetimesweresymmetricallylocatedaboutthecenterofa~1.4-pstwo-photoncoherencetimewindow,asmeasuredbyHOMinterference[4].Thesignalandidlerphotonswerecoupledintoapolarization-maintainingsingle-mode berandseparatedata berpolarizingbeamsplitter.Thesignalandidlerdelaylineswereindividuallyad-justedsothattheyarriveattheupconversioncrystalinthesametimeslotasthepumppulse.Finetuningoftherelativetimingcanbeachievedwithtranslationstages.WeusedthesamesetupasinRef.[11]fortime-resolvedsingle-photonupconversion,brie ydescribedhere.AssketchedinFig.1(b),a1-mmlongperiodicallypoledMgO-dopedstoichiometriclithiumtantalate(PP-MgSLT)crystalwitha8.5µmgratingperiodwasusedfornoncollineartype-0phase-matchedsum-frequencygen-eration(1580nm+790nm→526.7nm).Weusedthenoncollineargeometrytoimplementtwoindependentup-
2
converterswithasinglecrystal.Thesingle-photonbeamswerealignedparalleltothepumpbeamwith~3mmlat-eraland~1.5mmverticalseparationfromthepumpaxis,andtheywerefocusedintothePPMgSLTcrystal.Thenon-planarfocusingcon gurationallowedustoavoidthesimultaneousdetectionofthenon-phase-matchedpara-metricphotonpairsthatwerebothgeneratedandupcon-vertedbythepumpatthePPMgSLTcrystal.Therefore,evenwitha nitebackgroundforsingles,thecoincidencepro leshowsnegligibleaccidentals[11].Theupconvertedoutputswere lteredbydichroicmirrorsand10-nmpass-bandinterference lters,coupledintosingle-mode bersanddetectedwith ber-coupledSiAPDs.Werecordedthesinglescountsandalsothecoincidencecountsbe-tweenthetwoSiAPDswithina1.8nscoincidencewin-dow.
s
tnuoC dezialmroN-2000-1000010002000
Pump Delay [fs]
s
tnuoC dezialmroN-2000-1000010002000
Pump Delay [fs]
FIG.2:(Coloronline)Normalizedsingles(a)andcoincidence
(b)histogramsbytime-resolvedupconversion.Thepumppulsewasscannedthroughcollocatedsignalandidlerarrivalwindows.SolidlinesareGaussian tstothedata.
Wemeasuredthesinglesandcoincidencesbyscan-ningtheupconversionpumppulsedelayrelativetothesignalandidlerarrivalwindows,andeachdatapointwasaveragedfor60seconds.ThenormalizedhistogramsareplottedinFig.2withoutanybackgroundsubtrac-tion.Fortheoptimalpumppowerratio(~360mWfordownconversion,~580mWforupconversion)themaxi-mumsingles(coincidence)rateatthecenterofthedistri-butionwas~5300/s(~17/s),includingthebackground.Thebackgroundlevelinsinglescountswere~1900/sfortheoptimalpumppower-ratio,correspondingtoaback-groundprobabilityperpulseof~2.4×10 5.Thetem-poralwidthforsinglesdistributionwas~1.3ps,consis-tentwiththetwo-photoncoherencetimeof~1.4ps[4].Duetothetimeanti-correlatedgenerationofsignalandidler,thecoincidencepro leexhibiteda~165fsFWHMwidth,whichissigni cantlynarrowerthanthesingles
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
histograms.Astheupconversionpulsewasscannedthroughthearrivalwindowsofbothphotons,theonlyin-stancewherethetwoupconverterscouldsimultaneouslydetectphotonswasaroundthetimeorigin.Foranup-conversionpumppowerof580mW,the
internalconver-sione ciencywasestimatedtobe25%[11].However,theupconversionprobabilityperpumppulsewasactu-allylowerbecausethepumppulsewasmuchshorterthanthee ectivepulsewidthofthesignalandidler.Inordertomanipulatethejointtemporalamplitudewithouta ectingtheupconversiontimingperformance,wemodi edonlytheSPDCpumpbandwidthbyin-sertinga lterfromasetofinterference lters(3-dBbandwidths:3.6nm,2.1nm,and1.1nm)beforethePP-KTPcrystal.Themeasurednormalizedcoincidencehis-togramsfordi erentSPDCpumpbandwidthsareplot-tedinFig.3.AstheSPDCpumpbandwidthwasre-duced,thesingle-photoncoherencetimeincreasedandconsequentlythecoincidencepeaksbecamewider.Inthesame gure,wealsoshowthetheoreticalpredictionsforthecoincidencehistogramsthatwecalculatebasedonthejointtemporalamplitudewitha nite-durationupconversionpumppulse.Theparametersforthecalcu-lationaretheupconversionanddownconversionpumpbandwidthsandthetwo-photoncoherencebandwidththatwemeasuredwiththeHOMinterference[4].Weassumea atspectralphasepro leinourjointtempo-ralamplitudecalculationleadingtopredictedtemporalcoincidencepro lesthatsuggesttransform-limitedtwo-photonstates.ThegoodagreementinFig.3betweendataandtheoryindicatesthattheSPDCoutputpho-tonpairswereindeedclosetothetransformlimit.Thisobservationisonlypossiblewithtime-domainmeasure-mentsbecausefrequency-domainmethodswouldbein-sensitivetodispersivebroadeningofthephotons.
s
tnuoC dezilamroN-2000-1000010002000
Pump Delay [fs]
FIG.3:(Coloronline)NormalizedcoincidencehistogramsforvariousSPDCpump3-dBbandwidths:(6-,3.6-,2.2-,and1.1-nm).Theoreticalcoincidencepro lesareplottedasdashedlines.
3
Thetime-resolvedupconversionmethodenabledustomeasurethejointtemporaldensitybyvaryingthesig-nalandidlerrelativedelaysindependently.Wesettheupconversionpumpbandwidthto~6nm,andwemadetheJTDmeasurementsusingoneofthefourSPDCpumpbandwidths.Thecoincidencecountswererecordedoveratwo-dimensionaltimegridwith60-saveragingforeachdatapoint.ForallSPDCpumpbandwidthsex-cept1.1nm,thegridsizeforthetimedelayswassetto2ps×2ps(witha133fsstepsize).Weincreasedthegridsizeto4ps×4ps(266fsstepsize)forthe1.1nmpumpbandwidth.ThenormalizedcoincidencedataforallSPDCpumpbandwidthsareshownassurfaceplotsoverthetwo-dimensionaltimegridsinFig.4(a)-(d).WeseedramaticchangesintheJTDpro lewithachangeoftheSPDCpumpbandwidth.Witha6nmSPDCpumpbandwidththeJTDcoincidencepro leclearlyexhibitstimeanti-correlationthatisindicativeoftwo-photoncoincident-frequencyentanglement[4].Withsmallerpumpbandwidths,theJTDdistributionsbecomemoresymmetric,whichcorrespondstoreducedtemporalandspectralcorrelations.
.
1
st
nu
o.
C ec
n.
ed0
]
ics
fn[ 0i
-
oy
C
ale-D
r15
-
-0
e
l5
d
Sig
Ina
l
D
ela
y
1
[
fs
]
.
.
1
1
s t
nst
u
nou
C.
o.
eC c
enc
e0
n0
dei0
]
c0
]
ds
is
nffc0
[i
[ o n00i
-
-y
y
C
a
oallC
e
eD
-D
-
r0
r0
1
5
-
e
2
-
-
e
l0
l1
5
-
d
S0
d
ig
ISn
ig
1
Ia
l
n
D
1
a
el
D
2
la
ey
la
[
fy
s
]
[
fs
]
FIG.4:(Coloronline)Experimentaljointtemporaldensitiesforvariousdownconversionpump3-dBbandwidths:(a)6nm,(b)3.6nm,(c)2.2nm,(d)1.1nm.
Wecanquantifythetwo-photonfrequencyentangle-mentasafunctionofthepumpbandwidthbasedonthemeasuredJTDdistributionsandbyusingSchmidtde-compositionforcontinuousvariables[12].Inthisformal-ism,thejointtemporalamplitude,A(τs,τi),isexpressedasadiscretesumofthetemporaleigenmodeswitheigen-valuesλn,throughwhichtheentanglemententropybecomputedasS= n
cank=1λklog2λk[12].Figure5showsthecomputedentanglemententropyfromtheex-perimentalJTDdistributionsinFig.4assumingthatthejointstateistransformlimited.Forcomparison,wehave
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
alsocalculatedthetheoreticalentropycurvesasafunc-tionoftheSPDCpumpbandwidth,wherethepumpspectrumis
assumedtobeGaussian.TwocurvesareplottedinFig.5,onerepresentingaGaussianandtheotherasincphase-matchingfunction.ForaGaussianphase-matchingfunction,afullyfactorizabletwo-photonstateispredictedwithapumpbandwidthof~1.2nm,andyieldinganentropyofzero.Forthemorerealis-ticsincfunctionforthephasematching,ahighlybutnotcompletelyfactorizabletwo-photonstateisachiev-able.Sincethesinc-typespectralresponsecorrespondstoaboxcarshapeinthetimedomain,itnecessitatestheinclusionofhigherorderSchmidtmodesandhenceincreasestheentanglemententropy.
Figure5showsagoodqualitativeagreementbetweenthetheoreticalentropycurvesandtheentropyvaluesobtainedfromtheJTDdistributions.Theentangle-mententropycorrespondingtotheexperimentalJTDpro lesarelowerthanthetheoreticalcurveforthesincphase-matchingfunction.Thisisreasonableifwetakeintoaccountthattheactualtime-domainpro leofthephase-matchingfunctionissmootherthanaboxcarshapebecauseofgratinginhomogeneity,ascon rmedbythesingleshistogrammeasurementsofFig.2.Therefore,theexperimentalJTDdistributionscanbeexpressedwithasmallernumberofSchmidtmodes,resultinginalowerentanglemententropythanthatofthetheo-reticalofasincfunction.Fora1.1-nmSPDCpumpbandwidth,whichyieldsanoutputthatisnearlyfac-torizable,wehavecomputedthepurityoftheheraldedsingle-photonstate=Tr( ρS)= ∞as~0.88,wherepurityisde nedasp2
2
n=0λn[6,12].Thispurityvaluecom-pareswellwiththatofthepure-statesinglephotonsgen-eratedunderSPDCusingadi erentspectralengineeringmethod[7].Webelievethatthepuritycanbefurtherimprovedby nercontroloverthepumpbandwidthandadditionalspectral ltering.Incomparison,theoutputforthecaseofa6-nmSPDCpumpbandwidthyieldsapurityof~0.38,whichisaconsequenceofthehighdegreeofcoincident-frequencyentanglement.
Inconclusion,wehavedevelopedatime-domainmeasurementtechniqueforsinglephotonswithsub-picosecondresolutionthatweusedtomeasurethetwo-photonjointtemporaldensityforthe rsttime.Weappliedthetechniquetoverifyanti-correlationinthearrivaltimesofthesignalandidlerphotonsthatwerecoincident-frequencyentangled.Finally,thenewtoolal-lowedustomonitorthee ectofvaryingtheSPDCpumpbandwidths,leadingtothegenerationofanearlyfactor-izabletwo-photonstate,whichshouldbeofinteresttomanyquantuminformationprocessingapplications.WebelievethattheJTDmeasurementtechniqueisapow-erfultoolforengineeringtemporalandspectralcorrela-tionsofultrafastSPDCphotons.Suchacharacteriza-tiontechniquewouldcomplementthefrequency-domain
4
counterpartstoquantifyandmanipulatemulti-photon
y
portnE tnem
elgnatnE012345678
Pump bandwidth [nm]
FIG.5:(Coloronline)Entanglemententropyvaluescalcu-latedfromexperimentalJTDdistributionsforvariousSPDCpumpbandwidthsofFig.4.Thetheoreticalentropyvaria-tionsforGaussian(black)andsinc-type(red)phase-matchingfunctionsaregiveninsolidcurves.
entanglementforquantuminformationprocessingappli-cations.
ThisworkwassupportedinpartbytheHewlett-PackardLaboratoriesandbytheNationalInstituteofInformationandCommunicationsTechnology,Japan.
[1]E.Knill, amme,andG.J.Milburn,Nature(Lon-don)409,46(2001).
[2]W.P.GriceandI.A.Walmsley,Phys.Rev.A56,1627
(1997);W.P.Grice,A.B.U’Ren,andI.A.Walmsleyibid.64,063815(2001).
[3]V.Giovannetti,L.Maccone,J.H.Shapiro,andF.N.C.
Wong,Phys.Rev.Lett.88,183602(2002);Phys.Rev.A66,043813(2002).
[4]O.Kuzucuetal.,Phys.Rev.Lett.94,083601(2005).[5]V.Giovannetti,S.Lloyd,andL.Maccone,Nature(Lon-don)413,417(2001);Science306,1330(2004).[6]A.B.U’Renetal.,LaserPhys.15,146(2005).
[7]P.J.Mosleyetal.,Phys.Rev.Lett.100,133601(2008).[8]M.Hendrych,M.Micuda,andJ.P.Torres,Opt.Lett.
32,2339(2007);A.Valenciaetal.,Phys.Rev.Lett.99,243601(2007).
[9]C.K.Hong,Z.Y.Ou,andL.Mandel,Phys.Rev.Lett.
59,2044(1987).
[10]W.Wasilewski,P.Kolenderski,andR.Frankowski,Phys.
Rev.Lett.99,123601(2007).
[11]O.Kuzucu,F.N.C.Wong,S.Kurimura,andS.
Tovstonog,submittedtoOpt.Lett.
[12]w,I.A.Walmsley,andJ.H.Eberly,Phys.Rev.
Lett.84,5304(2000);S.Parker,S.Bose,M.B.Plenio,Phys.Rev.A61,032305(2000);mataandJ.Le´on,J.Opt.B7,224(2005).
正在阅读:
Joint Temporal Density Measurements for Two-Photon State Characterization08-18
戏剧鉴赏论文04-16
汽车发电机铝板项目可行性研究报告评审方案设计(2013年发改委标03-04
58-我国养老护理员队伍建设现状与对策09-01
结构力学复习题及答案04-30
中国冷拉型材行业市场前景分析预测年度报告(目录) - 图文12-14
安全生产责任制汇总01-11
当前国际安全形势及中国应对策略分析05-26
毕业论文的目的和要求05-12
- 1Synthesis and characterization of Zinc (II)-loaded ZeoliteGraphene
- 2Strategic Japanese-Chinese Joint Research Program
- 3SYNTHESIS AND CHARACTERIZATION OF BLOCK POLYMER OF ALTERNATING COPOLYMERS
- 4Noise Analysis and Characterization of a Sigma-Delta
- 5The One With Two Parts
- 6Book 2 Unit Two
- 7I-was-two-then教案
- 8Two new kittens 教案
- 9Impact response of high density flexible polyurethane foam
- 10Test bank for Chapter two
- 梳理《史记》素材,为作文添彩
- 2012呼和浩特驾照模拟考试B2车型试题
- 关于全面推进施工现场标准化管理实施的通知(红头文件)
- 江西省房屋建筑和市政基础设施工程施工招标文件范本
- 律师与公证制度第2阶段练习题
- 2019-2020年最新人教版PEP初三英语九年级上册精编单元练习unit6训练测试卷内含听力文件及听力原文
- 小升初数学模拟试卷(十四) 北京版 Word版,含答案
- 认识创新思维特点 探讨创新教育方法-精选教育文档
- 00266 自考 社会心理学一(复习题大全)
- 多媒体在语文教学中的运用效果
- 派出所派出所教导员述职报告
- 低压电工作业考试B
- 18秋福建师范大学《管理心理学》在线作业一4
- 中国铝业公司职工违规违纪处分暂行规定
- 13建筑力学复习题(答案)
- 2008年新密市师德征文获奖名单 - 图文
- 保安员培训考试题库(附答案)
- 银川市贺兰一中一模试卷
- 2011—2017年新课标全国卷2文科数学试题分类汇编 - 1.集合
- 湖北省襄阳市第五中学届高三生物五月模拟考试试题一
- Characterization
- Measurements
- Temporal
- Density
- Photon
- Joint
- State
- Two