Joint Temporal Density Measurements for Two-Photon State Characterization
更新时间:2023-08-18 20:04:01 阅读量: 资格考试认证 文档下载
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
JointTemporalDensityMeasurementsforTwo-PhotonStateCharacterization
OnurKuzucu,1FrancoN.C.Wong,1SunaoKurimura,2andSergeyTovstonog2
1
ResearchLaboratoryofElectronics,MassachusettsInstituteofTechnology,Cambridge,Massachusetts02139,USA
2
NationalInstituteforMaterialsScience,1-1Namiki,Tsukuba-shi,Ibaraki305-0044,Japan
(Dated:July10,2008)
Wedemonstrateanewtechniqueforcharacterizingtwo-photonquantumstatesbasedonjointtemporalcorrelationmeasurementsusingtime-resolvedsingle-photondetectionbyfemtosecondup-conversion.Wemeasureforthe rsttimethejointtemporaldensityofatwo-photonentangledstate,showingclearlythetimeanti-correlationofthecoincident-frequencyentangledphotonpairgeneratedbyultrafastspontaneousparametricdown-conversionunderextendedphase-matchingconditions.Thenewtechniqueenablesustomanipulatethefrequencyentanglementbyvaryingthedown-conversionpumpbandwidthtoproduceanearlyunentangledtwo-photonstatethatisexpectedtoyieldaheraldedsingle-photonstatewithapurityof0.88.Thetime-domaincorrela-tiontechniquecomplementsexistingfrequency-domainmeasurementmethodsforamorecompletecharacterizationofphotonicentanglementinquantuminformationprocessing.
PACSnumbers:42.50.Dv,42.79.Nv,42.50.Ar,42.65.Lm
arXiv:0807.1573v1 [quant-ph] 10 Jul 2008
Spontaneousparametricdown-conversion(SPDC)isapowerfulmethodforgeneratingtwo-photonstatesforquantuminformationprocessing(QIP).Thejointquan-tumstatecanbeengineeredforspeci cQIPapplicationsbytailoringitspolarization,momentum,andspectralde-greesoffreedom.Ultrafast-pumpedSPDCisofgreatinterestbecauseawellde nedtimeofemissionisdesir-ableinclockedapplicationssuchaslinearopticsquan-tumcomputing(LOQC)[1].InultrafastSPDC,spectralengineeringofthetwo-photonstatecanbeaccomplishedbymanipulatingthecrystalphase-matchingfunctionandthepumpspectralamplitudetoyielduniqueformsoftwo-photonfrequencyentanglement.Forexample,coincident-frequencyentanglementwithstrongpositivecorrelationbetweensignalandidleremissionfrequenciescanbeusedtoimprovetime-of- ightmeasurementsbe-yondthestandardquantumlimit5].Ontheotherhand,onecanutilizeatwo-photonstatewithnegligiblespectralcorrelationstoimplementaheraldedsourceofpure-statesinglephotons,whichcanbeavaluablere-sourceforLOQC[6,7].
Characterizingthespectralcorrelationsofatwo-photonstatecanbedonebymeasuringthejointspectraldensity(JSD)pro lewithtunablenarrowband lteringofthesignalandidler[6,7,8].Hong-Ou-Mandelquan-tuminterference[9]isalsousefulforquantifyingthetwo-photoncoherencebandwidthandtheindistinguishabil-ityofthephotonpair.However,thetwomeasurementsdonotgivethewholepictureofthetwo-photonstate.Bothmeasurementsareinsensitivetothespectralphaseandthereforecannotcapturethetime-domaindynamicsunlessthejointstateisknowntobetransformlimited.Moreover,JSDmeasurementsinwavelengthregionswithlowdetectore ciencyorhighdetectornoisecanbechal-lengingduetolongacquisitiontimesandlowsignal-to-noiseratios.Frequency-domaintechniquesforestimat-ingthespectralphaseexist,buttheyarenotsimpleto
implementinpracticeInultrafastopticsultrashortpulsesareroutinelyana-lyzedspectrallyandtemporally,buttime-domaincharac-terizationtoolsarenoteasytoimplementforsinglepho-tons.Recentlywehaveintroducedatime-resolvedsingle-photonmeasurementtechniquebyuseoffemtosecondupconversion[11].InthisLetterweutilizethissingle-photontime-domaincharacterizationmethodtomeasureforthe rsttimethejointtemporaldensity(JTD)pro- leofatwo-photonquantumstate.Inparticular,wemeasureddirectlythetimecorrelationsofsignal-idlerar-rivaltimesofultrafastpumpedSPDCunderextendedphasematchingconditionsshowingclearlythatthecoincident-frequencyentangledphotonsweretimeanti-correlated.Furthermore,byvaryingtheSPDCpumpspectrum,wewereabletomanipulatethetemporalcor-relationsofthesignalandidler,andobtainanearlyun-entangled(temporally)two-photonstate.Thisnewtech-niquecanbeusedinconjunctionwithfrequency-domainmethodstoprovideamorecompletecharacterizationofsingleandentangledphotons.
Toproperlyde neJTD,we rstexpressthetwo-photonstateintime-domainvariables|Ψ =
dτSdτIA(τS,τI)|τS |τI ,wherethesingle-photonFockstateisde nedas|τj ≡a (τj)|0 ,forj=S,I.Thetem-poralcorrelationsofthesignalandidleraredeterminedbythejointtemporalamplitude,A(τS,τI),andwede-2
netheassociatedprobabilitydensity,(|A(τS,τI)|),asthejointtemporaldensity.Analogoustothefrequency-domainmethods,theJTDcanbemeasuredbyusingnarrowbandtemporal lteringandcoincidencedetection.FortypicalultrafastSPDCexperiments,timingreso-lutionof~100fsisneededformeasuringarrivaltimesofsinglephotons.Currentsingle-photondetectorswithtensofpicosecondstimingresolutionarenotsuitableforthispurpose.Forthetwo-photonJTDmeasurement,weappliedourrecentlydevelopedtime-resolvedsingle-
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
FIG.1:(Coloronline)(a)Synchronizedupconversionanddownconversionexperimentdrivenbythesameultrafastpump.(b)Noncollinearphase-matchinggeometryforsingle-photonupconversion.IF:interference lter;DM:dichroicmirror;FPBS: berpolarizingbeamsplitter.
photon
upconversiontechniquewithatemporalresolu-tionof~150fs[11].Anultrafastupconvertingpumppulsewasusedtotime-stampthesignalandidlerar-rivaltimes,andwemappedtheirrelativearrivaltimesbyvaryingtheinputdelaylinesindependentlyandrecordingthecoincidencesbetweenthetwoupconversionchannels.Thecoincidencestatisticsyieldedthetemporalstructureofthetwo-photonstate.
Ourexperimentalsetupforultrafasttype-IIphase-matchedSPDCandsubsequentJTDmeasurementwithtime-resolvedupconversionisshowninFig.1(a).BothSPDCandupconversionwerepumpedsynchronouslywiththesameultrafastsourceat790nmwitha6-nmbandwidthand80MHzrepetitionrate,therebyelimi-natingthepumptimingjitterfortheJTDmeasurement.WeoperatedthePPKTPSPDCcrystalunderextendedphase-matchingconditionstogenerateacoincident-frequencyentangledtwo-photonstate[3,4].ByFourierduality,thispositivefrequencycorrelationcorrespondedtoanti-correlationinthetimedomainwherethesignalandidlerphotonswith~350-fssingle-photoncoherencetimesweresymmetricallylocatedaboutthecenterofa~1.4-pstwo-photoncoherencetimewindow,asmeasuredbyHOMinterference[4].Thesignalandidlerphotonswerecoupledintoapolarization-maintainingsingle-mode berandseparatedata berpolarizingbeamsplitter.Thesignalandidlerdelaylineswereindividuallyad-justedsothattheyarriveattheupconversioncrystalinthesametimeslotasthepumppulse.Finetuningoftherelativetimingcanbeachievedwithtranslationstages.WeusedthesamesetupasinRef.[11]fortime-resolvedsingle-photonupconversion,brie ydescribedhere.AssketchedinFig.1(b),a1-mmlongperiodicallypoledMgO-dopedstoichiometriclithiumtantalate(PP-MgSLT)crystalwitha8.5µmgratingperiodwasusedfornoncollineartype-0phase-matchedsum-frequencygen-eration(1580nm+790nm→526.7nm).Weusedthenoncollineargeometrytoimplementtwoindependentup-
2
converterswithasinglecrystal.Thesingle-photonbeamswerealignedparalleltothepumpbeamwith~3mmlat-eraland~1.5mmverticalseparationfromthepumpaxis,andtheywerefocusedintothePPMgSLTcrystal.Thenon-planarfocusingcon gurationallowedustoavoidthesimultaneousdetectionofthenon-phase-matchedpara-metricphotonpairsthatwerebothgeneratedandupcon-vertedbythepumpatthePPMgSLTcrystal.Therefore,evenwitha nitebackgroundforsingles,thecoincidencepro leshowsnegligibleaccidentals[11].Theupconvertedoutputswere lteredbydichroicmirrorsand10-nmpass-bandinterference lters,coupledintosingle-mode bersanddetectedwith ber-coupledSiAPDs.Werecordedthesinglescountsandalsothecoincidencecountsbe-tweenthetwoSiAPDswithina1.8nscoincidencewin-dow.
s
tnuoC dezialmroN-2000-1000010002000
Pump Delay [fs]
s
tnuoC dezialmroN-2000-1000010002000
Pump Delay [fs]
FIG.2:(Coloronline)Normalizedsingles(a)andcoincidence
(b)histogramsbytime-resolvedupconversion.Thepumppulsewasscannedthroughcollocatedsignalandidlerarrivalwindows.SolidlinesareGaussian tstothedata.
Wemeasuredthesinglesandcoincidencesbyscan-ningtheupconversionpumppulsedelayrelativetothesignalandidlerarrivalwindows,andeachdatapointwasaveragedfor60seconds.ThenormalizedhistogramsareplottedinFig.2withoutanybackgroundsubtrac-tion.Fortheoptimalpumppowerratio(~360mWfordownconversion,~580mWforupconversion)themaxi-mumsingles(coincidence)rateatthecenterofthedistri-butionwas~5300/s(~17/s),includingthebackground.Thebackgroundlevelinsinglescountswere~1900/sfortheoptimalpumppower-ratio,correspondingtoaback-groundprobabilityperpulseof~2.4×10 5.Thetem-poralwidthforsinglesdistributionwas~1.3ps,consis-tentwiththetwo-photoncoherencetimeof~1.4ps[4].Duetothetimeanti-correlatedgenerationofsignalandidler,thecoincidencepro leexhibiteda~165fsFWHMwidth,whichissigni cantlynarrowerthanthesingles
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
histograms.Astheupconversionpulsewasscannedthroughthearrivalwindowsofbothphotons,theonlyin-stancewherethetwoupconverterscouldsimultaneouslydetectphotonswasaroundthetimeorigin.Foranup-conversionpumppowerof580mW,the
internalconver-sione ciencywasestimatedtobe25%[11].However,theupconversionprobabilityperpumppulsewasactu-allylowerbecausethepumppulsewasmuchshorterthanthee ectivepulsewidthofthesignalandidler.Inordertomanipulatethejointtemporalamplitudewithouta ectingtheupconversiontimingperformance,wemodi edonlytheSPDCpumpbandwidthbyin-sertinga lterfromasetofinterference lters(3-dBbandwidths:3.6nm,2.1nm,and1.1nm)beforethePP-KTPcrystal.Themeasurednormalizedcoincidencehis-togramsfordi erentSPDCpumpbandwidthsareplot-tedinFig.3.AstheSPDCpumpbandwidthwasre-duced,thesingle-photoncoherencetimeincreasedandconsequentlythecoincidencepeaksbecamewider.Inthesame gure,wealsoshowthetheoreticalpredictionsforthecoincidencehistogramsthatwecalculatebasedonthejointtemporalamplitudewitha nite-durationupconversionpumppulse.Theparametersforthecalcu-lationaretheupconversionanddownconversionpumpbandwidthsandthetwo-photoncoherencebandwidththatwemeasuredwiththeHOMinterference[4].Weassumea atspectralphasepro leinourjointtempo-ralamplitudecalculationleadingtopredictedtemporalcoincidencepro lesthatsuggesttransform-limitedtwo-photonstates.ThegoodagreementinFig.3betweendataandtheoryindicatesthattheSPDCoutputpho-tonpairswereindeedclosetothetransformlimit.Thisobservationisonlypossiblewithtime-domainmeasure-mentsbecausefrequency-domainmethodswouldbein-sensitivetodispersivebroadeningofthephotons.
s
tnuoC dezilamroN-2000-1000010002000
Pump Delay [fs]
FIG.3:(Coloronline)NormalizedcoincidencehistogramsforvariousSPDCpump3-dBbandwidths:(6-,3.6-,2.2-,and1.1-nm).Theoreticalcoincidencepro lesareplottedasdashedlines.
3
Thetime-resolvedupconversionmethodenabledustomeasurethejointtemporaldensitybyvaryingthesig-nalandidlerrelativedelaysindependently.Wesettheupconversionpumpbandwidthto~6nm,andwemadetheJTDmeasurementsusingoneofthefourSPDCpumpbandwidths.Thecoincidencecountswererecordedoveratwo-dimensionaltimegridwith60-saveragingforeachdatapoint.ForallSPDCpumpbandwidthsex-cept1.1nm,thegridsizeforthetimedelayswassetto2ps×2ps(witha133fsstepsize).Weincreasedthegridsizeto4ps×4ps(266fsstepsize)forthe1.1nmpumpbandwidth.ThenormalizedcoincidencedataforallSPDCpumpbandwidthsareshownassurfaceplotsoverthetwo-dimensionaltimegridsinFig.4(a)-(d).WeseedramaticchangesintheJTDpro lewithachangeoftheSPDCpumpbandwidth.Witha6nmSPDCpumpbandwidththeJTDcoincidencepro leclearlyexhibitstimeanti-correlationthatisindicativeoftwo-photoncoincident-frequencyentanglement[4].Withsmallerpumpbandwidths,theJTDdistributionsbecomemoresymmetric,whichcorrespondstoreducedtemporalandspectralcorrelations.
.
1
st
nu
o.
C ec
n.
ed0
]
ics
fn[ 0i
-
oy
C
ale-D
r15
-
-0
e
l5
d
Sig
Ina
l
D
ela
y
1
[
fs
]
.
.
1
1
s t
nst
u
nou
C.
o.
eC c
enc
e0
n0
dei0
]
c0
]
ds
is
nffc0
[i
[ o n00i
-
-y
y
C
a
oallC
e
eD
-D
-
r0
r0
1
5
-
e
2
-
-
e
l0
l1
5
-
d
S0
d
ig
ISn
ig
1
Ia
l
n
D
1
a
el
D
2
la
ey
la
[
fy
s
]
[
fs
]
FIG.4:(Coloronline)Experimentaljointtemporaldensitiesforvariousdownconversionpump3-dBbandwidths:(a)6nm,(b)3.6nm,(c)2.2nm,(d)1.1nm.
Wecanquantifythetwo-photonfrequencyentangle-mentasafunctionofthepumpbandwidthbasedonthemeasuredJTDdistributionsandbyusingSchmidtde-compositionforcontinuousvariables[12].Inthisformal-ism,thejointtemporalamplitude,A(τs,τi),isexpressedasadiscretesumofthetemporaleigenmodeswitheigen-valuesλn,throughwhichtheentanglemententropybecomputedasS= n
cank=1λklog2λk[12].Figure5showsthecomputedentanglemententropyfromtheex-perimentalJTDdistributionsinFig.4assumingthatthejointstateistransformlimited.Forcomparison,wehave
We demonstrate a new technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time resolved single photon detection by femtosecond upconversion. We measure for the first time the joint temporal density o
alsocalculatedthetheoreticalentropycurvesasafunc-tionoftheSPDCpumpbandwidth,wherethepumpspectrumis
assumedtobeGaussian.TwocurvesareplottedinFig.5,onerepresentingaGaussianandtheotherasincphase-matchingfunction.ForaGaussianphase-matchingfunction,afullyfactorizabletwo-photonstateispredictedwithapumpbandwidthof~1.2nm,andyieldinganentropyofzero.Forthemorerealis-ticsincfunctionforthephasematching,ahighlybutnotcompletelyfactorizabletwo-photonstateisachiev-able.Sincethesinc-typespectralresponsecorrespondstoaboxcarshapeinthetimedomain,itnecessitatestheinclusionofhigherorderSchmidtmodesandhenceincreasestheentanglemententropy.
Figure5showsagoodqualitativeagreementbetweenthetheoreticalentropycurvesandtheentropyvaluesobtainedfromtheJTDdistributions.Theentangle-mententropycorrespondingtotheexperimentalJTDpro lesarelowerthanthetheoreticalcurveforthesincphase-matchingfunction.Thisisreasonableifwetakeintoaccountthattheactualtime-domainpro leofthephase-matchingfunctionissmootherthanaboxcarshapebecauseofgratinginhomogeneity,ascon rmedbythesingleshistogrammeasurementsofFig.2.Therefore,theexperimentalJTDdistributionscanbeexpressedwithasmallernumberofSchmidtmodes,resultinginalowerentanglemententropythanthatofthetheo-reticalofasincfunction.Fora1.1-nmSPDCpumpbandwidth,whichyieldsanoutputthatisnearlyfac-torizable,wehavecomputedthepurityoftheheraldedsingle-photonstate=Tr( ρS)= ∞as~0.88,wherepurityisde nedasp2
2
n=0λn[6,12].Thispurityvaluecom-pareswellwiththatofthepure-statesinglephotonsgen-eratedunderSPDCusingadi erentspectralengineeringmethod[7].Webelievethatthepuritycanbefurtherimprovedby nercontroloverthepumpbandwidthandadditionalspectral ltering.Incomparison,theoutputforthecaseofa6-nmSPDCpumpbandwidthyieldsapurityof~0.38,whichisaconsequenceofthehighdegreeofcoincident-frequencyentanglement.
Inconclusion,wehavedevelopedatime-domainmeasurementtechniqueforsinglephotonswithsub-picosecondresolutionthatweusedtomeasurethetwo-photonjointtemporaldensityforthe rsttime.Weappliedthetechniquetoverifyanti-correlationinthearrivaltimesofthesignalandidlerphotonsthatwerecoincident-frequencyentangled.Finally,thenewtoolal-lowedustomonitorthee ectofvaryingtheSPDCpumpbandwidths,leadingtothegenerationofanearlyfactor-izabletwo-photonstate,whichshouldbeofinteresttomanyquantuminformationprocessingapplications.WebelievethattheJTDmeasurementtechniqueisapow-erfultoolforengineeringtemporalandspectralcorrela-tionsofultrafastSPDCphotons.Suchacharacteriza-tiontechniquewouldcomplementthefrequency-domain
4
counterpartstoquantifyandmanipulatemulti-photon
y
portnE tnem
elgnatnE012345678
Pump bandwidth [nm]
FIG.5:(Coloronline)Entanglemententropyvaluescalcu-latedfromexperimentalJTDdistributionsforvariousSPDCpumpbandwidthsofFig.4.Thetheoreticalentropyvaria-tionsforGaussian(black)andsinc-type(red)phase-matchingfunctionsaregiveninsolidcurves.
entanglementforquantuminformationprocessingappli-cations.
ThisworkwassupportedinpartbytheHewlett-PackardLaboratoriesandbytheNationalInstituteofInformationandCommunicationsTechnology,Japan.
[1]E.Knill, amme,andG.J.Milburn,Nature(Lon-don)409,46(2001).
[2]W.P.GriceandI.A.Walmsley,Phys.Rev.A56,1627
(1997);W.P.Grice,A.B.U’Ren,andI.A.Walmsleyibid.64,063815(2001).
[3]V.Giovannetti,L.Maccone,J.H.Shapiro,andF.N.C.
Wong,Phys.Rev.Lett.88,183602(2002);Phys.Rev.A66,043813(2002).
[4]O.Kuzucuetal.,Phys.Rev.Lett.94,083601(2005).[5]V.Giovannetti,S.Lloyd,andL.Maccone,Nature(Lon-don)413,417(2001);Science306,1330(2004).[6]A.B.U’Renetal.,LaserPhys.15,146(2005).
[7]P.J.Mosleyetal.,Phys.Rev.Lett.100,133601(2008).[8]M.Hendrych,M.Micuda,andJ.P.Torres,Opt.Lett.
32,2339(2007);A.Valenciaetal.,Phys.Rev.Lett.99,243601(2007).
[9]C.K.Hong,Z.Y.Ou,andL.Mandel,Phys.Rev.Lett.
59,2044(1987).
[10]W.Wasilewski,P.Kolenderski,andR.Frankowski,Phys.
Rev.Lett.99,123601(2007).
[11]O.Kuzucu,F.N.C.Wong,S.Kurimura,andS.
Tovstonog,submittedtoOpt.Lett.
[12]w,I.A.Walmsley,andJ.H.Eberly,Phys.Rev.
Lett.84,5304(2000);S.Parker,S.Bose,M.B.Plenio,Phys.Rev.A61,032305(2000);mataandJ.Le´on,J.Opt.B7,224(2005).
正在阅读:
Joint Temporal Density Measurements for Two-Photon State Characterization08-18
中建四局第五建筑工程有限公司四川分公司施工现场临时设施管理规定10-22
企业管理五项基本原则08-06
2017-2023年中国转向节行业分析与发展前景研究报告(目录)08-25
实验指导书01-18
贵州省情(地域文化)平时作业答案10-09
做一个智慧的懒教师06-14
广东省湛江市2020届高三9月调研考试 地理 含答案 - 图文03-03
精选cpa注会考试《公司战略与风险管理》重点知识点归纳,公式总结完整版资料04-30
爱情散文摘抄03-21
- 1Synthesis and characterization of Zinc (II)-loaded ZeoliteGraphene
- 2Strategic Japanese-Chinese Joint Research Program
- 3SYNTHESIS AND CHARACTERIZATION OF BLOCK POLYMER OF ALTERNATING COPOLYMERS
- 4Noise Analysis and Characterization of a Sigma-Delta
- 5The One With Two Parts
- 6Book 2 Unit Two
- 7I-was-two-then教案
- 8Two new kittens 教案
- 9Impact response of high density flexible polyurethane foam
- 10Test bank for Chapter two
- 梳理《史记》素材,为作文添彩
- 2012呼和浩特驾照模拟考试B2车型试题
- 关于全面推进施工现场标准化管理实施的通知(红头文件)
- 江西省房屋建筑和市政基础设施工程施工招标文件范本
- 律师与公证制度第2阶段练习题
- 2019-2020年最新人教版PEP初三英语九年级上册精编单元练习unit6训练测试卷内含听力文件及听力原文
- 小升初数学模拟试卷(十四) 北京版 Word版,含答案
- 认识创新思维特点 探讨创新教育方法-精选教育文档
- 00266 自考 社会心理学一(复习题大全)
- 多媒体在语文教学中的运用效果
- 派出所派出所教导员述职报告
- 低压电工作业考试B
- 18秋福建师范大学《管理心理学》在线作业一4
- 中国铝业公司职工违规违纪处分暂行规定
- 13建筑力学复习题(答案)
- 2008年新密市师德征文获奖名单 - 图文
- 保安员培训考试题库(附答案)
- 银川市贺兰一中一模试卷
- 2011—2017年新课标全国卷2文科数学试题分类汇编 - 1.集合
- 湖北省襄阳市第五中学届高三生物五月模拟考试试题一
- Characterization
- Measurements
- Temporal
- Density
- Photon
- Joint
- State
- Two