Insights into the multifaceted application of microscopictec

更新时间:2023-04-18 06:46:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

REVIEW

Insights into the multifaceted application of microscopic techniques in plant tissue culture systems

Mack Moyo 1?Adeyemi O.Aremu 1?Johannes Van Staden 1

Received:18February 2015/Accepted:24June 2015/Published online:11July 2015óSpringer-Verlag Berlin Heidelberg 2015

Abstract

Main conclusion Microscopic techniques remain an integral tool which has allowed for the better under-standing and manipulation of in vitro plant culture systems.The recent advancements will inevitably help to unlock the long-standing mysteries of fundamental biological mechanisms of plant cells.

Beyond the classical applications in micropropagation aimed at the conservation of endangered and elite com-mercial genotypes,plant cell,tissue and organ cultures have become a platform for elucidating a myriad of fun-damental physiological and developmental processes.In conjunction with microscopic techniques,in vitro culture technology has been at the centre of important break-throughs in plant growth and development.Applications of microscopy and plant tissue culture have included eluci-dation of growth and development processes,detection of in vitro-induced physiological disorders as well as sub-cellular localization using ?uorescent protein probes.Light and electron microscopy have been widely used in con-?rming the bipolarity of somatic embryos during somatic embryogenesis.The technique highlights basic anatomical,structural and histological evidence for in vitro-induced physiological disorders during plant growth and develop-ment.In this review,we discuss some signi?cant biological insights in plant growth and development,breakthroughs and limitations of various microscopic applications and the

exciting possibilities offered by emergent in vivo live imaging and ?uorescent protein engineering technologies.Keywords Fluorescent proteins áHistology áOrganogenesis áPhysiological disorders áSomatic embryogenesis áSubcellular localization

Introduction

The concept and discovery of microscopy date back approximately four centuries.Basically,microscopy involves the use of microscopes to enlarge samples or objects which originally are beyond the resolution of the human eye (Shur and Price 2012;Thomasson and Mac-naughtan 2013).As an indication of the great importance and value of microscopy,it remains a popular and vital tool with a wide range of applications in basic and applied sci-ences (Tran?eld and Walker 2013;Zumbusch et al.2013;El-Bakry and Sheehan 2014;Whited and Park 2014)as well as in the medical and material engineering ?elds (Torrealba and Carrasco 2004;Shur and Price 2012;De Boer et al.2013;Juszczyk et al.2013).These aforementioned publi-cations also provide excellent reviews highlighting the trends and current updates related to the speci?cs and sig-ni?cance of microscopy in these various ?elds.In addition,details on the theory and practice of speci?c microscopy-based technologies and specimen preparation protocols are well documented (Chal?e and Kain 2005;Kuo 2007;Chandler and Roberson 2009;Murphy and Davidson 2013).In plant sciences,microscopy is used in an attempt to resolve and understand various aspects of growth and developmental processes including structural and func-tional properties.It also provides insights on interactions of cells and subcellular components in plants (Chandler and

&Johannes Van Staden

rcpgd@ukzn.ac.za

1

Research Centre for Plant Growth and Development,School of Life Sciences,University of KwaZulu-Natal,

Pietermaritzburg,Private Bag X01,Scottsville 3209,South Africa

123

Planta (2015)242:773–790

DOI 10.1007/s00425-015-2359-4

Roberson2009;Domozych2012).Plant science as a?eld encompasses perse aspects of plant growth,development and ecology amongst others.With one of the main focus geared at ef?cient propagation and general plant improvement in terms of quality and quantity,plant biotechnology remains one of the fundamental?elds in plant sciences(Vasil2008).To a certain extent,plant biotechnology was established based on the principles of cellular totipotency and genetic transformation.Inevitably the use of basic in vitro plant culture techniques is essential and vital for the success of several plant biotechnology endeavours.Particularly from a conservation perspective, the value and bene?t of in vitro tissue culture systems (micropropagation)are well documented(George1993; Ramachandra Rao and Ravishankar2002;Pence2010). Besides the potential in ensuring food security via mass propagation of different staple crops and fruits(Mondal et al.2004;Dobra′nszki and Teixeira da Silva2010),many plant species with ornamental,horticulture and medicinal values are easily regenerated(Rout et al.2000,2006; Teixeira da Silva2003;Moyo et al.2011),see Fig.1.

Recent technological advances are expanding the capa-bilities of microscopy which are being used to understand and explain commonly observed morphological appearances of in vitro regenerants.Thus,coupled with complementary biochemical,histological and molecular approaches,the increasing perse microscopy-based technologies can expedite the better understanding of in vitro plant culture systems.Furthermore,physiological disorders in regener-ants are often better elucidated with the use of microscopic systems(Chakrabarty et al.2006;Jausoro et al.2010a;Bairu et al.2011).Notwithstanding these aforementioned appli-cations and bene?ts,a comprehensive review detailing the contribution of microscopy to the understanding of in vitro plant culture systems is still lacking.Thus,this review covers a brief overview on the basic microscopic principles and technological advances in the?eld as well as summarizing the present applications and gains from the use of micro-scopy in in vitro plant culture systems.In addition to iden-tifying the current knowledge gap,a critical appraisal of microscopy application in plant cell,tissue and organ culture systems was discussed.Even though the current review is not fully exhaustive of all the available literature,as much as possible,we provide representative and speci?c references to ascertain the overall objectives of the subject matter. Recent advances and general overview

on microscopic techniques

In recent times,novel and giant technological strides in the form of introduction of laser-based,vibrational,electron and X-ray systems coupled with the rapid evolution of digital image capture and analysis technologies have rev-olutionized the capabilities and applications of microscopy (Torrealba and Carrasco2004;Roberts et al.2007; Domozych2012;Picas et al.2012).As postulated by Domozych(2012),these developments have allowed for the visualization of cell dynamics with unprecedented resolution,contrast and experimental versatility.Based on the evidence of its increasing application(Jahn et al.2012; Picas et al.2012;Thomasson and Macnaughtan2013; Zumbusch et al.2013;El-Bakry and Sheehan2014;Whited and Park2014),there is no doubt that microscopy is more valuable than ever before and will remain relevant in all areas of plant science research.In the near future,modern microscopy will ultimately achieve the goal of resolving the three-dimensional(3-D)structural and functional fea-tures of cellular life(four-dimensional imaging or4-DI) (Domozych2012).

Despite the potential and advances associated with microscopic techniques for biological research,some inherent limitations still exist.The two major‘reality checks’are that(1)light microscopy and confocal laser scanning microscopy(CLSM)used to image dynamic events in live cells are inherently limited in resolution and (2)electron microscopy which possesses better resolution cannot be used to view live cells(Domozych2012). Although scanning probe microscopy exists as a different technique,optical(light)and electron microscopy are the most commonly used in in vitro culture systems(Tables1, 2,3).The conventional light microscope techniques are bright-?eld,polarized,and?uorescence light microscopy while electron microscopy includes the scanning electron microscopy and transmission electron microscopy(TEM) (Chandler and Roberson2009;Domozych2012).In addi-tion to other basic differences such as sample preparation, electron microscopy has a much higher resolution of &0.1–5nm than light microscopy with a resolution of 0.2mm(El-Bakry and Sheehan2014).Thus,the task to be performed and speci?c objective generally in?uence the choice of microscopy technique at any given time. Practical application of microscopic techniques

in in vitro plant culture systems

As a well-established system for rapid proliferation of clonal plantlets(Fig.1)for the?oricultural and ornamental industries,micropropagation allows for year-round and continuous culture(Caponetti et al.2005;Pence2010; Ruffoni and Savona2013).For plant species with medic-inal value,their mass propagation is often aimed at ensuring their conservation(Canter et al.2005).Further-more,researchers have in recent times unravelled the potential of plant tissue culture as a tool to elucidate

774Planta(2015)242:773–790 123

metabolic pathways and to enhance the production of therapeutic phytochemicals (Ramachandra Rao and Rav-ishankar 2002;Verpoorte and Memelink 2002;Karup-pusamy 2009).In vitro cell culture systems are also valuable avenues for transformation and transgenic studies.The following subsections highlight the basic and practical application of microscopy in different in vitro systems.Elucidation of growth and development patterns Even though the frequency of application may differ,the four basic methods for micropropagation are axillary shoot proliferation,node culture,de novo formation of adventi-tious shoots through organogenesis and somatic embryo-genesis (Kane 2005).Details of these procedures are outside the scope of this review but have been well documented (Zimmerman 1993;Kane 2005;Rout et al.2006).There is no doubt that much of the available evi-dence and theories of in vitro developmental processes were achieved via histological approaches using different microscopic techniques (Trigiano et al.2005).Although tremendous advances have been recorded in recent times (Motte et al.2014),more stringent studies are required to fully understand the overall intricate events involved in in vitro plant growth and development.With the ability to generate microscopic structures and characteristics of cells through initiation,assemblage and arrangement phases,researchers have gained in-depth knowledge which allows for manipulation of plant growth using in vitro culture techniques.Both light and electron microscopic techniques have become integral components in studying plant species (Table 1).Plant growth and development processes

are

Fig.1Morphological appearance of typical high shoot proliferation of clonal plantlets with perse economical value obtained via organogenesis during micropropagation.a Amelanchier alnifolia (nutritional).b Merwilla plumbea (medicinal and ornamental).c Aloe arborescens (medicinal and ornamental).d Hypoxis hemero-callidea (medicinal and ornamental).Scale bar 10mm

Planta (2015)242:773–790775

123

T a b l e 1T h e r o l e o f m i c r o s c o p i c t e c h n i q u e s i n e l u c i d a t i o n o f g r o w t h ,d e v e l o p m e n t a l p a t t e r n a n d p h y s i o l o g i c a l r e s p o n s e s i n p l a n t c e l l ,t i s s u e a n d o r g a n c u l t u r e s

M i c r o s c o p i c t e c h n i q u e

P l a n t s p e c i e s O b j e c t i v e (s )o f s t u d y O b s e r v a t i o n (s )R e f e r e n c e s

S o m a t i c e m b r y o g e n e s i s

L i g h t m i c r o s c o p y

A r a l i a e l a t a S e e m .R e p e t i t i v e p l a n t r e g e n e r a t i o n s y s t e m v i a p r i m a r y a n d s e c o n d a r y s o m a t i c e m b r y o g e n e s i s

M u l t i -c e l l u l a r o r i g i n o f s e c o n d a r y s o m a t i c e m b r y o s D a i e t a l .(2011)L i g h t m i c r o s c o p y

B r a s s i c a o l e r a c e a v a r .c a p i t a t a ;B r a s s i c a o l e r a c e a v a r .b o t r y t i s R e p e t i t i v e s o m a t i c e m b r y o g e n e s i s a n d s u b s e q u e n t p l a n t r e g e n e r a t i o n i n t w o B r a s s i c a o l e r a c e a v a r i e t i e s S o m a t i c e m b r y o s d e v e l o p e d f r o m t h e s u b e p i d e r m a l c e l l l a y e r s c h a r a c t e r i z e d b y p r o m i n e n t n u c l e i ,d e n s e c y t o p l a s m a n d i n t e n s i v e c e l l d i v i s i o n

P a v l o v i c

′e t a l .(2013)L i g h t m i c r o s c o p y

C a p s i c u m a n n u u m L .E v a l u a t i o n o f e m b r y o a n d c a l l u s o r i g i n

G a m e t o p h y t i c o r i g i n o f e m b r y o s a n d s p o r o p h y t i c o r i g i n o f c a l l i

P a r r a -V e g a e t a l .(2013)

L i g h t m i c r o s c o p y

C o c o s n u c i f e r a L .H i s t o l o g i c a l c h a n g e s d u r i n g s o m a t i c e m b r y o d e v e l o p m e n t

S o m a t i c e m b r y o s d e v e l o p e d r o o t a n d c a u l i n a r m e r i s t e m s

S a

′e n z e t a l .(2006)L i g h t m i c r o s c o p y

C r o c u s h e u f f e l i a n u s H e r b e r t S o m a t i c e m b r y o g e n e s i s a n d r e g e n e r a t i o n f r o m s h o o t p r i m o r d i a

C o n ?r m a t i o n o f a l l s t a g e s o f s o m a t i c e m b r y o d e v e l o p m e n t ;e m b r y o s w e r e b i p o l a r

D e m e t e r e t a l .(2010)

L i g h t m i c r o s c o p y

P a s s i ?o r a c i n c i n n a t a M a s t .S o m a t i c e m b r y o g e n e s i s f r o m m a t u r e z y g o t i c e m b r y o s

H i s t o d i f f e r e n t i a t i o n o f s e c o n d a r y e m b r y o s o n t h e s u r f a c e o f t h e p r o t o d e r m a l l a y e r o f p r i m a r y e m b r y o s

d a S i l v a

e t a l .(2009)

L i g h t m i c r o s c o p y

P i c e a g l e h n i i (F .S c h m i d t )

M a s t e r s E f f e c t o f p o l y a m i n e s o n d e v e l o p m e n t o f e m b r y o n a l -s u s p e n s o r m a s s e s a n d f o r m a t i o n o f s o m a t i c e m b r y o s

S t a r c h g r a i n s d i s t r i b u t e d i n m o s t c e l l s o f t h e s o m a t i c e m b r y o s

N a k a g a w a e t a l .(2011)

L i g h t m i c r o s c o p y

P u l s a t i l l a k o r e a n a N a k a i S o m a t i c e m b r y o g e n e s i s a n d s h o o t o r g a n o g e n e s i s s y s t e m

V a r i o u s d e v e l o p m e n t a l s t a g e s o f s o m a t i c e m b r y o s o b s e r v e d

L i n e t a l .(2011)

S E M

L e u c o j u m a e s t i v u m L .I n ?u e n c e o f e t h y l e n e o n s o m a t i c e m b r y o g e n e s i s

E t h y l e n e e n h a n c e d t h e d e v e l o p m e n t o f g l o b u l a r e m b r y o s b y n e a r l y 25%

P t a k e t a l .(2010)

T E M

C e r a t o n i a s i l i q u a L .S o m a t i c e m b r y o g e n e s i s a n d p l a n t r e g e n e r a t i o n

U l t r a s t r u c t u r a l a n a l y s i s s h o w e d t h a t t h e c e l l s o f t h e g l o b u l a r e m b r y o s h a d a d e n s e c y t o p l a s m

C a n h o t o e t a l .(2006)

776

Planta (2015)242:773–790

123

T a b l e 1c o n t i n u e d

M i c r o s c o p i c t e c h n i q u e

P l a n t s p e c i e s O b j e c t i v e (s )o f s t u d y O b s e r v a t i o n (s )R e f e r e n c e s

O r g a n o g e n e s i s

L i g h t m i c r o s c o p y

B i x a o r e l l a n a L .O r g a n o g e n i c p o t e n t i a l o f r o o t e x p l a n t s A d v e n t i t i o u s b u d s o r i g i n a t e d f r o m c e l l p r o l i f e r a t i o n w i t h i n t h e p e r i c y c l e o p p o s i t e t h e p o l e s o f t h e p r i m a r y x y l e m

d a C r u z

e t a l .(2014)

L i g h t m i c r o s c o p y

D a u c u s c a r o t a L .s u b s p .s a t i v u s H o f f m .

P l a n t r e g e n e r a t i o n f r o m l e a f a n d h y p o c o t y l -d e r i v e d p r o t o p l a s t s

P r o t o p l a s t s e n l a r g e d a n d c h a n g e d s h a p e f r o m s p h e r i c a l t o o v a l i n d i c a t i n g a r e c o n s t r u c t i o n o f t h e c e l l w a l l

G r z e b e l u s e t a l .(2012)

L i g h t m i c r o s c o p y O n c i d i u m ?e x u o s u m S i m s

D i r e c t r e g e n e r a t i o n o f p r o t o c o r m -l i k e b o d i e s (P L B s )

P L B s d e v e l o p e d f r o m d i v i s i o n o f e p i d e r m a l a n d s u b e p i d e r m a l c e l l s

M a y e r e t a l .(2010)

L i g h t m i c r o s c o p y P a s s i ?o r a f o e t i d a L .I n v i t r o p l a n t r e g e n e r a t i o n o f P .f o e t i d a v i a o r g a n o g e n e s i s u s i n g m a t u r e z y g o t i c e m b r y o s

G l o b u l a r s t r u c t u r e s o f h i g h l y d i v i d i n g c e l l s s i m i l a r t o m e r i s t e m o i d s o b s e r v e d

R o s a a n d D o r n e l a s (2012)

L i g h t m i c r o s c o p y W a t s o n i a l e p i d a N .E .B r .A n a t o m i c a l e x a m i n a t i o n o f h y p o c o t y l s u b s e c t i o n s

A m o n g s t t h e e x a m i n e d h y p o c o t y l s u b s e c t i o n s ,c e l l s o f s u b s e c t i o n C 1w e r e d e v e l o p m e n t a l l y p l a s t i c a n d a b l e t o r e s p o n d t o e x t e r n a l c u e s

A s c o u g h e t a l .(2009)

S E M

L y c a s t e h y b r i d

I n d i r e c t i n d u c t i o n o f P L B s a n d s h o o t p r o l i f e r a t i o n

P L B s w i t h l e a f p r i m o r d i a a n d a p i c a l m e r i s t e m

H u a n g a n d C h u n g (2011)

S E M

S u t h e r l a n d i a f r u t e s c e n s L .I n d i r e c t s h o o t o r g a n o g e n e s i s a n d p l a n t r e g e n e r a t i o n o f S u t h e r l a n d i a f r u t e s c e n s

N o d u l a r c a l l u s a f t e r 2w e e k s o f c u l t u r e

D e w i r e t a l .(2010)

S E M T e c t o n a g r a n d i s L .D e t e r m i n e w h e t h e r d i f f e r e n t c o n c e n t r a t i o n s o f b e n z y l a d e n i n e (B A )a f f e c t t e a k p l a n t d e v e l o p m e n t

S h o o t s o n e i t h e r c y t o k i n i n -f r e e m e d i u m ,2.22o r 4.44l M B A h a d e l l i p t i c a l s t o m a t a ;w h e r e a s s t o m a t a o f s h o o t s g r o w n o n 6.66l M B A w e r e r i n g -s h a p e d ,r a i s e d a n d o p e n

Q u i a l a e t a l .(2012)

T E M P a s s i ?o r a e d u l i s S i m s

C h a r a c t e r i z e t h e a n a t o m i c a l a n d u l t r a s t r u c t u r a l a s p e c t s o f d i r e c t a n d i n d i r e c t o r g a n o g e n e s i s

M e r i s t e m o i d s t h a t o r i g i n a t e d e i t h e r d i r e c t l y o r i n d i r e c t l y f r o m c a l l i w e r e u l t r a s t r u c t u r a l l y s i m i l a r

R o c h a e t a l .(2012)

Planta (2015)242:773–790

777

123

T a b l e 1c o n t i n u e d

M i c r o s c o p i c t e c h n i q u e

P l a n t s p e c i e s O b j e c t i v e (s )o f s t u d y O b s e r v a t i o n (s )R e f e r e n c e s

O t h e r d e v e l o p m e n t a l p a t t e r n s

L i g h t m i c r o s c o p y

P e t u n i a g r a n d i ?o r a J u s s .‘P r i m e T i m e ’E f f e c t o f ?a v o n o i d 30,50-h y d r o x y l a s e (F 3050H )d e l p h i n i d i n a c c u m u l a t i o n i n p e t a l s

C h a n g e s i n ?o w e r c o l o u r p i g m e n t a t i o n v i s u a l i z e d Q i e t a l .(2013)S E M

T h y m u s c a e s p i t i t i u s B r o t .C o m p a r i s o n o f e s s e n t i a l o i l p r o d u c t i o n i n s h o o t c u l t u r e s a n d ?e l d -g r o w n p l a n t s

S i m i l a r g l a n d u l a r t r i c h o m e s d e n s i t y f o r i n v i t r o s h o o t s a n d ?e l d -g r o w n p l a n t s M e n d e s e t a l .(2013)

S E M

P a n d a n u s a m a r y l l i f o l i u s R o x b .

D e v e l o p m e n t a l p a t t e r n o f l e a f l o w e r e p i d e r m i s p a p i l l a e

O b s e r v a t i o n o f d i f f e r e n t s t a g e s o f p a p i l l a r d e v e l o p m e n t

W a k t e e t a l .(2009)

T E M

B e t a v u l g a r i s L .E s t a b l i s h s p e c i ?c p a t t e r n s o f e x t r a c e l l u l a r p r o t e i n s a n d i d e n t i f y d i s t i n c t p r o t e i n m a r k e r s o f c o r r e s p o n d i n g p h e n o t y p e s N u m b e r o f n u c l e i i n h a b i t u a t e d n o n -o r g a n o g e n i c (H N O )[t u m o u r (T )c e l l l i n e s ;H N O a n d T c e l l s h a d e n l a r g e d ,l o b e d n u c l e i w i t h h i g h n u m b e r o f n u c l e o l i

P a v o k o v i c

′e t a l .(2012)T E M

C o c o s n u c i f e r a L .E s t a b l i s h w h e t h e r l a u r i c a c i d i m p r o v e s g r o w t h a n d d e v e l o p m e n t o f z y g o t i c c o c o n u t e m b r y o s

L a u r i c a c i d l e d t o l a r g e c i r c u l a r o i l b o d i e s ;l a r g e n u m b e r o f p l a s t i d s ,m i t o c h o n d r i a ,v a c u o l e s ,m i c r o b o d i e s a n d e x t e n s i v e e n d o p l a s m i c r e t i c u l u m

L o

′p e z -V i l l a l o b o s e t a l .(2011)T E M

S c o p o l i a p a r v i ?o r a (D u n n )

N a k a i M o r p h o l o g i c a l c h a r a c t e r i z a t i o n o f t r a n s g e n i c h a i r y r o o t s (f o r p r o d u c t i o n o f a l k a l o i d s )

P r e s e n c e o f l a r g e s p h e r i c a l -s h a p e d i d i o b l a s t c e l l s i n t r a n s g e n i c h a i r y r o o t s

K a n g e t a l .(2011)

T E M

T r i t i c u m a e s t i v u m L .E f f e c t o f p o l y a m i n e s o n a n d r o g e n e s i s i n a n t h e r s o r e m b r y o -l i k e s t r u c t u r e s

C h l o r o p l a s t s (s p e r m i n e -t r e a t e d )e x h i b i t e d s l o w d e v e l o p m e n t a n d a p p e a r e d t o b e s m a l l e r i n s i z e c o m p a r e d t o p u t r e s c i n e a n d s p e r m i d i n e t r e a t m e n t s

R e d h a a n d S u l e m a n (2011)

T E M

C y m b i d i u m S o l a n a B e a c h 9C .r i n c o n R o l e o f p u t r e s c i n e i n r a p i d s h o o t r e g e n e r a t i o n i n t h e c a l l u s o f o r c h i d s p r e -t r e a t e d w i t h m a n n i t o l a n d c a d m i u m c h l o r i d e

P u t r e s c i n e -a l t e r e d C d C l 2-a n d m a n n i t o l -t r e a t e d c a l l u s h a d n u m e r o u s o i l d r o p l e t s ,r o u g h e n d o p l a s m i c r e t i c u l u m a n d d i c t y o s o m e s

G u h a a n d R a o (2010)

T E M

C u c u m i s s a t i v u s L .U l t r a s t r u c t u r a l c o m p a r i s o n o f C d -t o l e r a n t a n d -s e n s i t i v e c e l l s

T o l e r a n t c e l l s a d j u s t e d t o p r e s e n c e o f C d ,b u t w i t h o u t a n y s p e c i ?c u l t r a s t r u c t u r a l m o d i ?c a t i o n s r e l a t e d t o i n c r e a s e d t o l e r a n c e

G z y l e t a l .(2009)

778

Planta (2015)242:773–790

123

characteristically dynamic whereas histological techniques only present a narrow momentary glimpse of the process (Trigiano et al.2005).Notwithstanding,by piecing toge-ther a series of the static microscopic observations,plant biologists are able to elucidate the underlying anatomical features involved in plant development.Somatic embryogenesis

The induction of somatic embryos under in vitro culture conditions in ontogenetic steps is similar to those observed in zygotic embryogenesis and has long fascinated plant biologists (Zimmerman 1993).Somatic embryogenesis (SE)provides a model system for studying the genetic basis of early differentiation events and cellular totipotency

of somatic cells (Zimmerman 1993;Fehe

′r et al.2003;Kurczyn

′ska et al.2007).Furthermore,SE has become a widely used technique in genetic transformation and mass propagation of elite genotypes (Table 1).Light and elec-tron microscopic studies have reported on the cellular origin of somatic embryos during primary (Blazquez et al.2009;Capelo et al.2010;Lin et al.2011;Parra-Vega et al.2013)and repetitive/secondary embryogenesis (Dai et al.

2011;Pavlovic

′et al.2013;Raju et al.2013).Upon expo-sure to SE induction medium,the initial events signifying cytological changes in the formation of somatic embryos

were evident in 4–6days (Canhoto et al.1996;Kurczyn

′ska et al.2007).Induction of somatic embryos was character-ized by formation of embryonic-like centres from single or multi-cells of proto-and subprotodermal origin (Kur-czyn

′ska et al.2007),accumulation of starch grains and differentiation of mitochondria (Canhoto et al.1996).The unicellular origin of direct somatic embryos has been observed to be the main morphogenic pathway (Rugkhla

and Jones 1998;Kurczyn

′ska et al.2007).Thus,as early as 6days into the culture period,SE induction can be con-?rmed,especially for somatic embryo transformation studies.Furthermore,microscopic applications coupled with molecular techniques provides an invaluable OMICS/morphology interface for exploring plant growth and development.During the early stages of embryogen-esis,LEAFY COTYLEDON (LEC )genes play a key role in somatic embryo development (Stone et al.2001).In Ara-bidopsis thaliana ,strong promoter activity of LEC was detected at the globular somatic embryo stage after a

12-day culture period (Kurczyn

′ska et al.2007).In addition,microscopic techniques have been highly valuable in characterizing the non-bipolarity of protocorm-like bodies (Mayer et al.2010;Huang and Chung 2011),globular embryo-like structures (Woo and Wetzstein 2008;Shari?et al.2010)and nodular meristemoids (Moyo et al.2009;Rosa and Dornelas 2012),which would have been other-wise mistaken for somatic embryos (Fig.2).Thus,

T a b l e 1c o n t i n u e d

M i c r o s c o p i c t e c h n i q u e

P l a n t s p e c i e s O b j e c t i v e (s )o f s t u d y

O b s e r v a t i o n (s )

R e f e r e n c e s

T E M N i c o t i a n a t a b a c u m L .E f f e c t o f l o n g -t e r m c r y o p r e s e r v a t i o n o n e x p r e s s i o n o f p l a n t -m a d e v a c c i n e s

O r g a n e l l e s w i t h d o u b l e m e m b r a n e s h a d i n t a c t m e m b r a n e s i n b o t h t h e c o n t r o l a n d c r y o p r e s e r v e d c e l l s V a n E c k a n d K e e n (2009)

B A B e n z y l a d e n i n e ,P L B s p r o t o c o r m -l i k e b o d i e s ,S E M s c a n n i n g e l e c t r o n m i c r o s c o p y ,T E M t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y

Planta (2015)242:773–790779

123

T a b l e 2T h e r o l e o f m i c r o s c o p i c t e c h n i q u e s i n d e t e c t i o n o f i n v i t r o -i n d u c e d p h y s i o l o g i c a l d i s o r d e r s i n p l a n t c e l l ,t i s s u e a n d o r g a n c u l t u r e s

M i c r o s c o p i c t e c h n i q u e

P l a n t s p e c i e s

O b j e c t i v e (s )o f s t u d y

O b s e r v a t i o n (s )R e f e r e n c e s

C L S M M a l u s s p p c v .‘M 9E m l a ’

E v a l u a t e s t r u c t u r a l d i f f e r e n c e s b e t w e e n h y p e r h y d r i c a n d n o r m a l i n v i t r o l e a f s t r u c t u r e

C o m p a r e d w i t h h e a l t h y l e a v e s ,h y p e r h y d r i c l e a v e s s h o w e d a b n o r m a l ,o f t e n d i s c o n t i n u o u s d e v e l o p m e n t o f t h e e p i d e r m i s a n d c u t i c l e .S t o m a t a w e r e m a l f o r m e d .T h e l e a f l a m i n a a p p e a r e d t h i c k e n e d a n d w a s c h a r a c t e r i z e d b y p o o r d i f f e r e n t i a t i o n b e t w e e n t h e p a l i s a d e a n d s p o n g y m e s o p h y l l t i s s u e

C h a k r a b a r t y e t a l .(2006)

L i g h t m i c r o s c o p y D i a n t h u s c a r y o p h y l l u s L .

M e a s u r e e p i d e r m a l a n d s t o m a t a l c e l l n u m b e r a n d t o v i e w s u r f a c e w a x t o p o l o g y a n d l e a f i m p r i n t s

H y p e r h y d r i c p l a n t s h a d f e w e r e p i d e r m i s c e l l a n d s t o m a t a p e r l e a f a r e a c o m p a r e d t o t h e n o r m a l o n e s

C o r r e l l a n d W e a t h e r s (2001)

L i g h t m i c r o s c o p y

V a n i l l a p l a n i f o l i a J a c k s .e x A n d r e w s

O b s e r v a t i o n o f m o r p h o l o g i c c h a n g e s t h a t o c c u r w h i l e p r o g r e s s i n g t o w a r d s h y p e r h y d r i c i t y

D e g r a d a t i o n o f t h e e n d o d e r m a l c e l l s w a s o b s e r v e d i n h y p e r h y d r i c s h o o t s ,w h e r e a s t h e l e a f s e c t i o n s s h o w e d h i g h e r d e g r a d a t i o n o f v a s c u l a r b u n d l e s ,l o s s o f ?r m n e s s o f t h e p a l i s a d e p a r e n c h y m a w i t h a b n o r m a l e n l a r g e m e n t ,a n d m o r e i n t e r c e l l u l a r s p a c e

S r e e d h a r e t a l .(2009)

L i g h t m i c r o s c o p y J a t r o p h a c u r c a s L .

E f f e c t o f b r o w n i n g o n c a l l u s m o r p h o l o g y N o n -b r o w n i n g c a l l u s h a d e v e n ,t i g h t l y a r r a n g e d c e l l s a n d b r o w n i n g c a l l u s h a d a d i s o r d e r e d c e l l p a t t e r n

H e e t a l .(2009)

L i g h t m i c r o s c o p y

S c l e r o c a r y a b i r r e a (A .R i c h .)H o c h s t .s u b s p .c a f f r a (S o n d .)K o k w a r o I n ?u e n c e o f m i c r o c u l t u r e o n l e a f a n d r o o t s t r u c t u r e

S t r u c t u r a l d i f f e r e n c e s i n t h i c k n e s s o f e p i d e r m i s a n d e n d o d e r m i s o b s e r v e d b e t w e e n p h o t o a u t o t r o p h i c a n d p h o t o m i x o t r o p h i c p l a n t s

M o y o e t a l .(2012)

S E M

A l o e p o l y p h y l l a S c h o ¨n l a n d e x P i l l a n s

E v a l u a t e s t r u c t u r a l d i f f e r e n c e s b e t w e e n h y p e r h y d r i c a n d n o r m a l i n v i t r o l e a f s t r u c t u r e

F r e q u e n c y o f t h e s t o m a t a w a s h i g h e r a n d w e l l d e v e l o p e d i n n o r m a l s h o o t s .H y p e r h y d r i c l e a v e s h a d l a r g e r a n d a b n o r m a l s t o m a t a

I v a n o v a a n d V a n S t a d e n (2010)

S E M C o t o n e a s t e r w i l s o n i i N a k a i

E v a l u a t e s t r u c t u r a l d i f f e r e n c e s b e t w e e n h y p e r h y d r i c a n d n o r m a l i n v i t r o l e a f s t r u c t u r e

H y p e r h y d r i c l e a v e s s h o w e d a b n o r m a l s t o m a t a w h i c h h a d d e f o r m e d g u a r d c e l l s

S i v a n e s a n e t a l .(2011)

S E M S o l a n u m m e l o n g e n a L .

E v a l u a t e s t r u c t u r a l d i f f e r e n c e s b e t w e e n h y p e r h y d r i c a n d n o r m a l i n v i t r o p l a n t s

H y p e r h y d r i c l e a v e s s h o w e d a b n o r m a l s t o m a t a ,s l i g h t l y l a r g e r t h a n t h o s e o f i t s n o r m a l o n e s a n d w i t h g u a r d a n d s u b s i d i a r y c e l l s d r a s t i c a l l y d e f o r m e d

P i c o l i e t a l .(2001)

T E M A l l i u m s a t i v u m L .

E v a l u a t e s t r u c t u r a l d i f f e r e n c e s b e t w e e n h y p e r h y d r i c a n d n o r m a l i n v i t r o c e l l s

H y p e r h y d r i c c e l l s h a d a b n o r m a l a n d p o o r l y d e v e l o p e d o r g a n e l l e s

W u e t a l .(2009)

T E M A n n o n a g l a b r a L .

R o l e o f c y t o k i n i n s i n t h e d i f f e r e n t i a t i o n o f t h e p h o t o s y n t h e t i c a p p a r a t u s i n i n v i t r o -d e r i v e d p l a n t s B e n z y l a d e n i n e (B A )a n d k i n e t i n -d e r i v e d p l a n t l e t s h a d c h l o r o p l a s t s w i t h w e l l -d e v e l o p e d g r a n a m a r g i n s y s t e m a n d g r e a t e r a c c u m u l a t i o n o f s t a r c h g r a i n s ;t h i d i a z u r o n c a u s e d f o r m a t i o n o f a b n o r m a l c h l o r o p l a s t s r i c h i n l a r g e ,g l o b u l a r ,e l e c t r o n d e n s e s t r u c t u r e s

d e O l i v e i r a e t a l .(2008)

780

Planta (2015)242:773–790

123

microscopy techniques have been invaluable in con?rming and ascertaining the bipolar identity of somatic embryos in SE or lack thereof in embryo-like structures during f066eba227d3240c8447efdeanogenesis

Organogenesis refers to de novo organ formation involving the processes of dedifferentiation and redifferentiation of plant cells.It is widely proven that the ratio of auxin to cytokinin in plant tissues has the ability to shift the cell physiological state.In particular,the distribution and unique movement of auxins in a polar direction from cell to cell is thought to have a major in?uence on the organogenic fate of plant tissues (Muday and DeLong 2001;Del Bianco et al.2013;Motte et al.2014).However,the underlying mechanisms involved in this process remain to be fully elucidated (Motte et al.2014).Innovative approaches using reporter genes fused to speci?c promoters,such as pep-tidyl-prolyl cis/trans isomerase (PIN1)and microscopy techniques have attempted to decipher the physiological and molecular mechanisms controlling the process of organogenesis (Vieten et al.2007).When used in con-junction with plant tissue culture model systems,the use of visual markers such as b -glucuronidase (GUS),luciferase (LUC),b -galactosidase (LacZ)and green ?uorescent pro-tein (GFP)could be useful in exploring the molecular mechanisms controlling plant growth and development.In plant transformation studies,GFP allows for non-destruc-tive direct observation of gene expression events and the

successful recovery of transgenic plants (Hras

ˇka et al.2006).Therefore,microscopy coupled with plant tissue culture offers a platform for molecular/morphology assessments in plant growth and development studies.Furthermore,regardless of the plant cell,tissue and organ culture technique,establishing the speci?c origin of structures such as adventitious shoots,roots and somatic embryos remains one of the unsolved mysteries in plant biology (Trigiano et al.2005).Numerous microscopy studies have provided signi?cant insights into the basic structural features of in vitro plant growth (Table 1).For example,using light microscopy,the regeneration rate of hypocotyl subsections (C1–C4)in Watsonia lepida showed that cell pision was highest in C2while in vitro regen-eration was signi?cantly lower than in subsection C1(Ascough et al.2009).The authors reported that subsection C1contained the apical meristem which possibly had meristematic cells that are developmentally plastic and responsive to external f066eba227d3240c8447efdeing optical microscopy da Cruz et al.(2014)showed that cell proliferation within the pericycle led to adventitious bud formation in Bixa Orel-lana root explants.Rocha et al.(2012)characterized the anatomical events and ultrastructural aspects involved in

T a b l e 2c o n t i n u e d

M i c r o s c o p i c t e c h n i q u e

P l a n t s p e c i e s

O b j e c t i v e (s )o f s t u d y

O b s e r v a t i o n (s )

R e f e r e n c e s

T E M

C a p s i c u m a n n u u m L .

E v a l u a t e s t r u c t u r a l d i f f e r e n c e s a n d s t a r c h a c c u m u l a t i o n b e t w e e n h y p e r h y d r i c a n d n o r m a l i n v i t r o c e l l s

P a l i s a d e c h l o r o p l a s t s o f n o r m a l p l a n t s s h o w e d w e l l -d e v e l o p e d t h y l a k o i d s o r g a n i z e d i n t o m a n y g r a n a .S t a r c h a c c u m u l a t i o n i n c h l o r o p l a s t s o f h y p e r h y d r i c p l a n t s w a s s i g n i ?c a n t l y h i g h e r t h a n i n t h o s e o f n o n -h y p e r h y d r i c p l a n t s

F o n t e s e t a l .(1999)

T E M

H a n d r o a n t h u s i m p e t i g i n o s u s (M a r t .E x D C )M a t t o s E v a l u a t e s t r u c t u r a l d i f f e r e n c e s b e t w e e n h y p e r h y d r i c a n d n o r m a l i n v i t r o

D i s o r g a n i z e d c o r t e x ,e p i d e r m a l h o l e s ,e p i d e r m a l d i s c o n t i n u i t y ,c o l l a p s e d c e l l s o b s e r v e d i n h y p e r h y d r i c s h o o t s

J a u s o r o e t a l .(2010b )

T E M

U n i o l a p a n i c u l a t a L .

P h o t o s y n t h e t i c a n d c a r b o h y d r a t e s t a t u s o f a n e a s y -t o -a c c l i m a t i z e (E K 16-3)a n d a d i f ?c u l t -t o -a c c l i m a t i z e (E K 11-1)g e n o t y p e s

C h l o r o p l a s t s i n E K 11-1p l a n t l e t s e x h i b i t e d l a r g e r n u m b e r s o f p l a s t o g l o b u l i t h a n E K 16-3

V a l e r o -A r a c a m a e t a l .(2006)

B A B e n z y l a d e n i n e ,

C L S M c o n f o c a l l a s e r s c a n n i n g m i c r o s c o p y ,S E M s c a n n i n g e l e c t r o n m i c r o s c o p y ,T E M t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y

Planta (2015)242:773–790

781

123

T a b l e 3T h e r o l e o f m i c r o s c o p i c t e c h n i q u e s i n s u b c e l l u l a r l o c a l i z a t i o n ,?u o r e s c e n t p r o t e i n t a g g i n g a n d t r a n s g e n e e x p r e s s i o n i n p l a n t c e l l ,t i s s u e a n d o r g a n c u l t u r e s

M i c r o s c o p i c t e c h n i q u e

P l a n t s p e c i e s

O b j e c t i v e (s )o f s t u d y

P r o b e O b s e r v a t i o n (s )

R e f e r e n c e s

C L S M

A r a b i d o p s i s t h a l i a n a (L .)H e y n h

I d e n t i f y m o l e c u l a r f a c t o r s r e s p o n s i b l e f o r c y t o k i n i n -i n d u c e d h i g h e r c e l l d i v i s i o n r a t e i n A r a b i d o p s i s a m p 1m u t a n t

H i g h e r m i t o t i c i n d e x (2.5-f o l d )i n a m p 1m u t a n t c o m p a r e d t o w i l d t y p e

N o g u e ′e t a l .(2000)

C L S M

C o f f e a c a n e p h o r a P i e r r e e x A .F r o e h n e r E f f e c t o f c a l c i u m i o n o p h o r e A 23187o n s o m a t i c e m b r y o g e n e s i s –

S u b c e l l u l a r l o c a l i z a t i o n o f c a l c i u m i o n s i n c y t o p l a s m

R a m a k r i s h n a e t a l .(2011)C L S M

C o f f e a c a n e p h o r a P i e r r e e x A .F r o e h n e r

E f f e c t o f i n d o l e a m i n e s a n d c a l c i u m o n s o m a t i c e m b r y o g e n e s i s

L o c a l i z a t i o n o f s e r o t o n i n i n v a s c u l a r t i s s u e s o f s t e m s ,r o o t s ,a n d s o m a t i c e m b r y o s

R a m a k r i s h n a e t a l .(2012)C L S M

G o s s y p i u m h i r s u t u m L .

E v a l u a t e t h e e f f e c t o f o v e r -e x p r e s s i o n o f W U S C H E L (W U S )g e n e o n s o m a t i c e m b r y o g e n e s i s a n d /o r o r g a n o g e n e s i s

G F P

L o c a l i z a t i o n o f W U S –G F P i n e m b r y o g e n i c t i s s u e s

B o u c h a b k e ′-

C o u s s a e t a l .(2013)

C L S M H o r d e u m v u l g a r e L .

T r a n s f o r m a t i o n p r o c e d u r e f o r b a r l e y b y A g r o b a c t e r i u m i n f e c t i o n o f i n v i t r o -c u l t u r e d o v u l e s

G F P

T r a n s i e n t G F P e x p r e s s i o n i n c e l l s w i t h i n t h e o v u l e i n c l u d i n g G F P -e x p r e s s i n g c e l l s i n t h e m i c r o p y l a r

H o l m e e t a l .(2006)

C L S M

L i n d e r n i a b r e v i d e n s S k a n

A g r o b a c t e r i u m t u m e f a c i e n s -b a s e d t r a n s f o r m a t i o n p r o t o c o l f o r t h e d e s i c c a t i o n -t o l e r a n t s p e c i e s

e G F P L o c a l i z a t i o n o

f e G F P e x p r e s s i o n o b s e r v e d s p e c i ?c a l l y i n t h e

g u a r d c e l l s o f d e s i c c a t e d l e a v e s

S m i t h -E s p i n o z a e t a l .(2007)

C L S M

N i c o t i a n a t a b a c u m L .e c o t y p e ‘L i t t l e H a v a n a ’

I n v e s t i g a t i n g s u b c e l l u l a r l o c a l i z a t i o n o f A r a b i d o p s i s I C K p r o t e i n s a n d d o m a i n s r e s p o n s i b l e f o r t h i s l o c a l i z a t i o n

G F P A l l G F P –I C K f u s i o n p r o t e i n s e x c l u s i v e l y l o c a l i z e d i n t h e n u c l e u s

B i r d e t a l .(2007)

L i g h t m i c r o s c o p y A r a u c a r i a a n g u s t i f o l i a (B e r t .)O .K u n t z e

E x p r e s s i o n o f a S o m a t i c E m b r y o g e n e s i s R e c e p t o r -L i k e K i n a s e (S E R K )g e n e f a m i l y m e m b e r

I n s i t u h y b r i d i z a t i o n s h o w e d t h a t A a S E R K 1t r a n s c r i p t s a c c u m u l a t e i n g r o u p s o f c e l l s a t t h e p e r i p h e r y o f e m b r y o g e n i c c a l l i

S t e i n e r e t a l .(2012)

L i g h t m i c r o s c o p y

P a s s i ?o r a m o r i f o l i a L .

E f f e c t o f a u x i n ,c y t o k i n i n a n d s u c r o s e o n t h e r e g u l a t i o n o f c e l l c y c l e m a c h i n e r y

S p a t i a l e x p r e s s i o n o f P m C Y C D 1(D -t y p e c y c l i n g e n e )o b s e r v e d u s i n g i n s i t u h y b r i d i z a t i o n

R o s a e t a l .(2013)

T E M

A r a b i d o p s i s t h a l i a n a (L .)H e y n h

S p a t i a l a n d t e m p o r a l d i s t r i b u t i o n o f l i p i d t r a n s f e r p r o t e i n 1(L T P 1)e p i t o p e s d u r i n g i n d u c t i o n o f s o m a t i c e m b r y o g e n e s i s

G F P I m m u n o g o l d l o c a l i z a t i o n o f L T P 1e p i t o p e s i n t h e o u t e r p e r i c l i n a l ,a n t i c l i n a l ,c e l l w a l l s a n d c y t o p l a s m o f p r o t o d e r m

P o t o c k a e t a l .(2012)

G F P g r e e n ?u o r e s c e n t p r o t e i n ,I C K i n h i b i t o r /i n t e r a c t o r o f c y c l i n -d e p e n d e n t k i n a s e ,C L S M c o n f o c a l l a s e r s c a n n i n g m i c r o s c o p y ,T E M t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y

782

Planta (2015)242:773–790

123

Passi?ora edulis direct and indirect in vitro organogenesis.The study showed that irrespective of the organogenic process,P .edulis meristemoids had similar ultrastructural characteristics.These and other similar ?ndings provide increased knowledge and critical insights that allow a better understanding of in vitro organogenic processes.Other cellular developmental patterns

Furthermore,light and electron microscopy have con-tributed immensely in evaluating the effects of various physiological factors on cellular developmental processes (Table 1).Nakagawa et al.(2011)demonstrated that the distribution of starch grains during SE was induced by exogenous application of polyamines.In addition,sper-mine-treated Triticum aestivum plants exhibited smaller chloroplasts compared to putrescine and spermidine-treated

ones,suggesting that the response was dependent on the type of polyamine (Redha and Suleman 2011).In partic-ular,TEM provides ultrastructural details of cellular developments when plants are exposed to different physi-ological f066eba227d3240c8447efdeing TEM,Lo

′pez-Villalobos et al.(2011)showed that lauric acid induced the production of large oil bodies and a high number of organelles in Cocos nucifera zygotic embryos.The scope for elucidating the ultrastructural developmental patterns arising from physi-ological stimuli remains limitless.

Detection of in vitro-induced physiological and anatomical disorders

Despite the bene?ts of micropropagation,the process is often besieged by a number of in vitro-induced challenges which may be anatomical,physiological and

biochemical

Fig.2Induction of asynchronous nodular meristemoids on Sclero-carya birrea leaf explants under a 16-h photoperiod.a A stereomi-crograph showing somatic embryo-like globular structures (arrowhead ;bar 1.0mm).b Scanning electron micrograph of nodular meristemoids at different stages of development (solid arrow emerging shoot bud;bar 1.5mm).c Shoot bud with characteristic shoot apical meristem (A)and developing leaf primordia (L)(bar 430l m)d Longitudinal section of a nodular meristemoid showing its connection to the explant tissues (bar 200l m).Modi?ed from Moyo et al.(2009)

Planta (2015)242:773–790783

123

in nature (Kaeppler et al.2000;Hazarika 2006;Bairu et al.2011;Neelakandan and Wang 2012;Ruffoni and Savona 2013).Several studies have demonstrated the effects of the controlled,largely arti?cial environment in plant tissue culture systems on the anatomy of in vitro plants (Figs.3,4).Researchers have continuously reviewed the subject matter (Bairu and Kane 2011)and suggested means of tackling the recurrent problems such as shoot-tip necrosis (Bairu et al.2009),hyperhydricity (Ziv 1991;Rojas-Mar-t?

′nez et al.2010),fasciation (Iliev and Kitin 2011),epige-netic (Kaeppler et al.2000;Smulders and de Klerk 2011)and somaclonal variations (Larkin and Scowcroft 1981;Bairu et al.2011).Most of these physiological disorders are not only limited to the period of in vitro growth but become more apparent upon acclimatization of the regenerants

(Kozai 1991;Hazarika 2006;Posp?

′s ˇilova ′et al.2007).As a result,the success of plant tissue culture especially on a large scale depends on how these challenges can be

alleviated or possibly eradicated (Kozai et al.1997;Hazarika 2006;Bairu and Kane 2011).A better under-standing of these multifaceted problems begins with the availability of appropriate identi?cation tools.In view of the substantial evidence (Table 2),there is no doubt that the application of microscopy remains critical in understanding these challenges.In addition,other approaches such as biochemical and molecular tools provide complementary evidence for overall elucidation of the problems.The importance of microscopy is possibly attributed to the fact that the majority of physiological disorders are often man-ifested in the anatomy of the tissue-cultured regenerants.Both light and electron microscopic techniques have demonstrated vital signi?cance in the attempt to elucidate the anatomical and histological basis for in vitro-induced physiological disorders in several plant species (Table 2).Amongst these in vitro-induced challenges,detection of hyperhydricity has received considerable success with the use of different microscopic techniques (Table 2).Con-sidering that hyperhydricity affects several organelles

in

Fig.3Effect of the controlled plant tissue culture environment on growth and development.The root structure of a ex vitro and b in vitro grown Sclerocarya birrea plants showing differences in the epidermis (white arrow )and endodermis (solid arrow ).Modi?ed from Moyo et al.(2012

)

Fig.4Scanning electron micrographs showing the effect of pho-toperiod on stomata and glandular trichome formation on Pelargo-nium sidoides leaf surfaces under in vitro conditions.a Plants growing under 16-h photoperiod after 5weeks in culture.b Plants growing under 12-h photoperiod after a 5-week culture period.Modi?ed from Moyo et al.(2014)

784Planta (2015)242:773–790

123

the cells of regenerated plants,it becomes necessary to examine the structure for detection of possible aberrations. With the use of light microscope,parameters such as sur-face wax topology and leaf imprints are recorded while the epidermal and stomatal cell count can be easily achieved (Correll and Weathers2001).Variations in these afore-mentioned parameters afford for direct evidence on the possible underlying metabolic processes which are responsible for the incidence of hyperhydricity in regener-ated plants.Evidence from scanning electron microscopy revealed that thickening of the stem and retardation of elongation are the?rst changes observed in hyperhydric carnation plantlets(Werker and Leshem1987).Examining the ultrastructural differences between the hyperhydric and normal leaves of carnation plantlets,Olmos and Hellin (1998)observed large vacuolated mesophyll cells(showing hypertrophy of cells and large intercellular spaces),lack of cuticular wax and the presence of abundant plastoglobuli on chloroplasts in hyperhydric leaves.The authors also noted differences in the morphology of guard cells with X-ray microanalysis revealing high levels of K?on abnormal plants.Furthermore,stomatal density was signi?cantly greater in normal leaves while the crystalline structure of the epicuticular wax was absent in hyperhydric leaves.An irregular assortment of organelles and unorganized spongy mesophyll were also observed in hyperhydric leaves.

With studies involving the use of TEM for hyperhy-dricity,critical examination of the ultrastructure of plant cells and tissues remains the main objective.In such instances,organelles such as the chloroplast and mito-chondria are often the main focus of researchers.In Allium sativum,hyperhydric cells had swollen mitochondria and slender chloroplasts(Wu et al.2009).The authors also observed that the vacuole displaced the organelle to the cell wall edge and the intergranal thylakoids appeared com-pressed.While the structure of mitochondria and peroxi-somes did not change in hyperhydric Capsicum annuum plants,the number of peroxisomes was more than in nor-mal plants(Fontes et al.1999).Furthermore,the chloro-plasts in the hyperhydric plants exhibited thylakoid disorganization,low grana number as well as presence of large starch grains and a low accumulation or absence of plastoglobules.

Subcellular localization and characterization

The benchmark discovery of the wild-type green?uores-cent protein(GFP)from the jelly?sh Aequorea victoria (Shimomura et al.1962),cloning of the GFP gene(Prasher et al.1992),and its modi?cation into a functional?uo-rescent protein(Chal?e et al.1994)have revolutionized the study of plant cell biology.However,variable outcomes have been reported with the expression of the wild-type gfp gene in different plants.The expression of gfp in Ara-bidopsis and other plant species was shown to be curtailed by aberrant mRNA splicing in which an84nucleotide sequence,recognized as a cryptic intron,codes for a defective protein(Haseloff and Siemering2005).A mod-i?ed gfp gene without the cryptic intron sequence exhibited improved in vivo expression in a wide range of plant species(Reichel et al.1996).Further improvements in sensitivity of the marker protein have been achieved through modi?cations of the GFP mutant cDNA leading to single-amino acid exchanges in the chromophore region. Green?uorescent protein and its derivative?uorophores have emerged as important reporter proteins for monitoring gene expression(Tang et al.2005;Rosa et al.2013;Yang et al.2013),subcellular protein localization(Huai et al. 2009;Lai et al.2013;Liu et al.2013),organelle dynamics (Hashimoto et al.2011;Tewari et al.2013;Xu et al.2013) and cell transformation(Holme et al.2006),both in vivo and real time,as well as in?xed samples(Davidson and Campbell2009).Furthermore,a combination of plant cell, tissue and organ culture techniques and?uorescent protein tags has provided a powerful tool for unravelling funda-mental insights into mechanisms involved in plant mor-phogenesis.In vitro plant culture provides an ideal environment that can be precisely controlled and modi?ed to achieve speci?c experimental conditions.Thus,the application of?uorescent probes in plant tissue culture systems has elucidated developmental and molecular mechanisms involved in plant morphogenic processes (Table3).The most commonly used?uorescent probe application is probably protein tagging for monitoring dynamic cellular events and subcellular protein localization using confocal laser microscopy(Sirerol-Piquer et al. 2012).In addition,dynamic expression patterns of?uo-rescent probes have revealed interesting spatial and tem-poral changes in morphogenic events involving plant cell, tissue and organ culture processes such as SE(Ramakr-ishna et al.2012;Bouchabke′-Coussa et al.2013)and embryonic cell suspension cultures(Cole et al.2013).

Beyond the resolution limits of light microscopy,GFP immunogold TEM provides more detailed information on subcellular localization of proteins.The high-resolution property of TEM allows for the detection of immunogold labelled GFP-tagged proteins in the cytoplasm,organelles and plasma membrane(Boevink et al.1998;Nebenfu¨hr et al.1999;Follet-Gueye et al.2003).Using this immunocytochemical technique,Potocka et al.(2012) demonstrated spatial and temporal changes in the distri-bution of lipid transfer protein epitopes during SE.How-ever,the technique has only been sparsely applied in studying morphogenesis in plant cell,tissue and organ cultures(Table3).Notwithstanding bene?ts derived from the high resolving power of immunoelectron microscopy,

Planta(2015)242:773–790785

123

the technique has inherent drawbacks such as preservation of GFP antigenicity and antibody speci?city,arising from denaturization and bleaching of GFP during polymeriza-tion;decreased immunogold staining with tissue depth (Sirerol-Piquer et al.2012)as well as safety concerns associated with the use of uranyl acetate in specimen preparation(Carpentier et al.2012).In attempts to?nd alternatives for uranyl acetate,polyphenolic compounds such as tannic acid(Kajikawa et al.1975)and oolong tea extracts(Sato et al.2008;Carpentier et al.2012)have been evaluated for staining ultrathin sections.Other recent pro-tocols using microwave-assisted processing resulted in good preservation of cell antigenicity and high-quality cell ultrastructure for immunocytochemical studies(Carpentier et al.2012).Polyphenol-containing extracts,for example oolong tea extracts exhibited good counterstaining prop-erties for both ultrathin sections and in block staining, making them possible alternatives for the hazardous heavy metal stains such as uranyl acetate and lead citrate. Notwithstanding,specimen?xation with glutaraldehyde and osmium tetroxide(OsO4),and double electron staining with uranyl acetate and lead salts provide excellent contrast enhancement,hence it has remained standard procedure in most microscopy laboratories(Sato et al.2008).Thus,until the discovery of suitable alternatives,common stains such as uranyl acetate,uranyl formate,methylamine tungstate and methylamine vanadate will continue to be used but with emphasis on observance of safety regulations.

The search for?uorophores with low phototoxicity and decreased auto?uorescence has advanced the boundaries of ?uorescent protein engineering.Together with the devel-opment of high-resolution imaging techniques,a range of ?uorescent protein probes with perse spectral qualities spanning the orange,red and far-red regions of the elec-tromagnetic spectrum have been developed(Davidson and Campbell2009).Some studies(Smith-Espinoza et al. 2007;Wu et al.2011;Sun et al.2013)used enhanced GFP (eGFP),a variant of the GFP mutant in which exchange of amino acid phenylalanine64to leucine(F64L)and serine 65to threonine(S65T)drastically increased brightness intensity and photostability(Reichel et al.1996;Zacharias and Tsien2005).Modi?cations of GFP have resulted in some variants with better?uorescence characteristics,for example the maturation of eGFP is four times faster than that of the wild type(Ckurshumova et al.2011). Conclusions and future perspectives

The discovery and advancement of microscopic technolo-gies have provided plant biologists with a wide array of invaluable techniques to explore cellular structures and dynamics,thereby expanding our knowledge of plant growth and development.When used in conjunction with plant cell, tissue and organ culture methods,microscopic applications have provided critical insights into the dynamics of plant growth and development.In particular,the live imaging capabilities afforded by confocal microscopy and?uores-cent protein probes(GFP and its derivatives)have further advanced the boundaries in plant morphogenesis research and expanded the possibilities of what can be achieved in the future with improved resolving power of light microscopy. Development of photostable?uorophores,especially in the red and far-red spectral regions will provide more biological insights through dynamic in vivo live imaging of cellular components.Thus,notwithstanding the limited resolving power of light microscopy,the‘illuminated plant cell’(Mathur2007)continues to contribute invaluable informa-tion on subcellular protein localization,gene expression and transport of molecules,thereby enhancing our understanding of the fundamental mechanisms involved in plant develop-mental process.Furthermore,immunoelectron microscopy and immunogold labelling have circumvented the draw-backs imposed by the limited resolving power of light microscopy.New advancements and novel innovations in specimen preparation techniques’using high-phenol content plant extracts such as OTE(in place of uranyl acetate)and microwave-assisted processing are likely to expand the uti-lization of this method.Despite having high resolving power,immunogold labelling using TEM is still limited in its deep-tissue imaging capabilities.In the future,advance-ments in microscopic technologies have the potential to unlock the fundamental biological mysteries of the plant cell,and thus provide profound insights into plant develop-mental biology.

Author contribution statement MM and AOA wrote the paper.JVS supervised the work,provided critical sugges-tions and edited the paper.

Acknowledgments The authors gratefully acknowledge?nancial support from Claude Leon Foundation,the University of KwaZulu-Natal and National Research Foundation,South Africa.We thank Dr W.A.Stirk for her valuable suggestions.

References

Ascough GD,Nova′k O,Peˇncˇ?′k A,Rolcˇ?′k J,Strnad M,Erwin JE,Van Staden J(2009)Hormonal and cell pision analyses in Watsonia lepida seedlings.J Plant Physiol166:1497–1507

Bairu MW,Kane ME(2011)Physiological and developmental problems encountered by in vitro cultured plants.Plant Growth Regul63:101–103

Bairu MW,Stirk WA,Van Staden J(2009)Factors contributing to in vitro shoot-tip necrosis and their physiological interactions.

Plant Cell Tissue Organ Cult98:239–248

Bairu MW,Aremu AO,Van Staden J(2011)Somaclonal variation in plants:causes and detection methods.Plant Growth Regul 63:147–173

786Planta(2015)242:773–790 123

Bird DA,Buruiana MM,Zhou Y,Fowke LC,Wang H(2007) Arabidopsis cyclin-dependent kinase inhibitors are nuclear-localized and show different localization patterns within the nucleoplasm.Plant Cell Rep26:861–872

Blazquez S,Olmos E,Herna′ndez JA,Ferna′ndez-Garc?′a N,Ferna′ndez JA,Piqueras A(2009)Somatic embryogenesis in saffron (Crocus sativus L.).Histological differentiation and implication of some components of the antioxidant enzymatic system.Plant Cell Tissue Organ Cult97:49–57

Boevink P,Oparka K,Cruz SS,Martin B,Betteridge A,Hawes C (1998)Stacks on tracks:the plant Golgi apparatus traf?cs on an actin/ER network.Plant J15:441–447

Bouchabke′-Coussa O,Obellianne M,Linderme D,Montes E,Maia-Grondard A,Vilaine F,Pannetier C(2013)Wuschel overex-pression promotes somatic embryogenesis and induces organo-genesis in cotton(Gossypium hirsutum L.)tissues cultured in vitro.Plant Cell Rep32:675–686

Canhoto JM,Mesquita JF,Cruz GS(1996)Ultrastructural changes in cotyledons of pineapple guava(Myrtaceae)during somatic embryogenesis.Ann Bot78:513–521

Canhoto JM,Rama SC,Cruz GS(2006)Somatic embryogenesis and plant regeneration in carob(Ceratonia siliqua L.).In Vitro Cell Dev Biol-Plant42:514–519

Canter PH,Thomas H,Ernst E(2005)Bringing medicinal plants into cultivation:opportunities and challenges for biotechnology.

Trends Biotechnol23:180–185

Capelo AM,Silva S,Brito G,Santos C(2010)Somatic embryoge-nesis induction in leaves and petioles of a mature wild olive.

Plant Cell Tissue Organ Cult103:237–242

Caponetti JD,Gray DJ,Trigiano RN(2005)History of plant tissue and cell culture.In:Trigiano RN,Gray DJ(eds)Plant Development and Biotechnology.CRC Press,Florida,USA, pp9–15

Carpentier AS,Abreu S,Trichet M,Satiat-Jeunemaitre B(2012) Microwaves and tea:new tools to process plant tissue for transmission electron microscopy.J Microsc247:94–105 Chakrabarty D,Park SY,Ali MB,Shin KS,Paek KY(2006) Hyperhydricity in apple:ultrastructural and physiological aspects.Tree Physiol26:377–388

Chal?e M,Kain SR(2005)Methods of biochemical analysis,green ?uorescent protein:properties,applications and protocols,vol

47.Wiley-Interscience,New Jersey

Chal?e M,Tu Y,Euskirchen G,Ward WW,Prasher DC(1994)Green ?uorescent protein as a marker for gene expression.Science 263:802–805

Chandler DE,Roberson RW(2009)Bioimaging:current concepts in light and electron microscopy.Jones and Bartlett Publishers, USA

Ckurshumova W,Caragea AE,Goldstein RS,Berleth T(2011)Glow in the dark:?uorescent proteins as cell and tissue-speci?c markers in plants.Mol Plant4:794–804

Cole M,Jacobs B,Soubigou-Taconnat L,Balzergue S,Renou JP, Chandler JW,Werr W(2013)Live imaging of DORNRO¨SCHEN and DORNRO¨SCHEN-LIKE promoter activity reveals dynamic changes in cell identity at the microcallus surface of Arabidopsis embryonic suspensions.Plant Cell Rep32:45–59

Correll MJ,Weathers PJ(2001)Effects of light,CO2and humidity on carnation growth,hyperhydration and cuticular wax develop-ment in a mist reactor.In Vitro Cell Dev Biol-Plant37:405–413 da Cruz ACF,Rocha DI,Iarema L,Ventrella MC,Costa MGC,Neto VBP,Otoni WC(2014)In vitro organogenesis from root culture segments of Bixa orellana L.(Bixaceae).In Vitro Cell Dev Biol-Plant50:76–83

da Silva ML,Pinto DLP,Guerra MP,Floh ES,Bruckner CH,Otoni WC(2009)A novel regeneration system for a wild passion fruit species(Passi?ora cincinnata Mast.)based on somatic

embryogenesis from mature zygotic embryos.Plant Cell,Tissue Organ Cult99:47–54

Dai J-L,Tan X,Zhan Y-G,Zhang Y-Q,Xiao S,Gao Y,Xu D-W, Wang T,Wang X-C,You X-L(2011)Rapid and repetitive plant regeneration of Aralia elata Seem.via somatic embryogenesis.

Plant Cell,Tissue Organ Cult104:125–130

Davidson MW,Campbell RE(2009)Engineered?uorescent proteins: innovations and applications.Nat Methods6:713–717

De Boer HH,Van der Merwe AE,Maat GJR(2013)The diagnostic value of microscopy in dry bone palaeopathology:a review.Intl J Paleopathol3:113–121

de Oliveira LM,Paiva R,de Santana JRF,Alves E,Nogueira RC, Pereira FD(2008)Effect of cytokinins on in vitro development of autotrophism and acclimatization of Annona glabra L.

In Vitro Cell Dev Biol-Plant44:128–135

Del Bianco M,Giustini L,Sabatini S(2013)Spatiotemporal changes in the role of cytokinin during root development.New Phytol 199:324–338

Demeter Z,Sura′nyi G,Molna′r VA,Sramko′G,Beyer D,Ko′nya Z, Vasas G,Hamvas M,Ma′the′C(2010)Somatic embryogenesis and regeneration from shoot primordia of Crocus heuffelianus.

Plant Cell Tissue Organ Cult100:349–353

Dewir Y,Singh N,Shaik S,Nicholas A(2010)Indirect regeneration of the Cancer bush(Sutherlandia frutescens L.)and detection of l-canavanine in in vitro plantlets using NMR.In Vitro Cell Dev Biol-Plant46:41–46

Dobra′nszki J,Teixeira da Silva JA(2010)Micropropagation of apple—A review.Biotechnol Adv28:462–488

Domozych DS(2012)The quest for four-dimensional imaging in plant cell biology:it’s just a matter of time.Ann Bot 110:461–474

El-Bakry M,Sheehan J(2014)Analysing cheese microstructure:a review of recent developments.J Food Eng125:84–96

Fehe′r A,Pasternak TP,Dudits D(2003)Transition of somatic plant cells to an embryogenic state.Plant Cell Tissue Organ Cult 74:201–228

Follet-Gueye M-L,Pagny S,Faye L,Gomord V,Driouich A(2003) An improved chemical?xation method suitable for immunogold localization of green?uorescent protein in the Golgi apparatus of tobacco bright yellow(BY-2)cells.J Histochem Cytochem 51:931–940

Fontes MA,Otoni WC,Carolino SMB,Brommonschenkel SH, Fontes EPB,Fa′ri M,Louro RP(1999)Hyperhydricity in pepper plants regenerated in vitro:involvement of BiP(Binding Protein) and ultrastructural aspects.Plant Cell Rep19:81–87

George EF(1993)Plant propagation by tissue culture,part1:the technology.Exegetics Ltd,London,UK

Grzebelus E,Szklarczyk M,Baranski R(2012)An improved protocol for plant regeneration from leaf-and hypocotyl-derived proto-plasts of carrot.Plant Cell,Tissue Organ Cult109:101–109 Guha S,Rao IU(2010)Culture surface and exogenous putrescine-altered shoot growth pattern in mannitol-and cadmium chloride-pretreated callus of Cymbidium Via del Playa‘‘Yvonne’’.

In Vitro Cell Dev Biol-Plant46:491–498

Gzyl J,Przymusin′ski R,Gwo′z′dz′EA(2009)Ultrastructure analysis of cadmium-tolerant and-sensitive cell lines of cucumber(Cucumis sativus L.).Plant Cell,Tissue Organ Cult99:227–232 Haseloff J,Siemering KR(2005)The uses of green?uorescent protein in plants.In:Green Fluorescent Protein.Wiley, pp259–284.doi:10.1002/0471739499.ch12

Hashimoto T,Takahashi K,Sato M,Bandara PKGSS,Nabeta K (2011)Cloning and characterization of an allene oxide cyclase, PpAOC3,in Physcomitrella patens.Plant Growth Regul 65:239–245

Hazarika BN(2006)Morpho-physiological disorders in in vitro culture of plants.Sci Hortic108:105–120

Planta(2015)242:773–790787

123

He Y,Guo X,Lu R,Niu B,Pasapula V,Hou P,Cai F,Xu Y,Chen F (2009)Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls.Plant Cell Tissue Organ Cult98:11–17

Holme IB,Brinch-Pedersen H,Lange M,Holm PB(2006)Transfor-mation of barley(Hordeum vulgare L.)by Agrobacterium tumefaciens infection of in vitro cultured ovules.Plant Cell Rep 25:1325–1335

Hrasˇka M,Rakousky′S,Cˇurn V(2006)Green?uorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants.Plant Cell,Tissue Organ Cult 86:303–318

Huai J,Zheng J,Wang G(2009)Overexpression of a new Cys2/His2 zinc?nger protein ZmZF1from maize confers salt and drought tolerance in transgenic Arabidopsis.Plant Cell Tissue Organ Cult99:117–124

Huang C-H,Chung J-P(2011)Ef?cient indirect induction of protocorm-like bodies and shoot proliferation using?eld-grown axillary buds of a Lycaste hybrid.Plant Cell Tissue Organ Cult 106:31–38

Iliev I,Kitin P(2011)Origin,morphology,and anatomy of fasciation in plants cultured in vivo and in vitro.Plant Growth Regul 63:115–129

Ivanova M,Van Staden J(2010)Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Scho¨nland ex Pillans.Plant Growth Regul60:143–150

Jahn KA,Barton DA,Kobayashi K,Ratinac KR,Overall RL,Braet F (2012)Correlative microscopy:providing new understanding in the biomedical and plant sciences.Micron43:565–582 Jausoro V,Llorente BE,Apo′stolo NM(2010a)Structural differences between hyperhydric and normal in vitro shoots of Handroan-thus impetiginosus(Mart.ex DC)Mattos(Bignoniaceae).Plant Cell Tissue Organ Cult101:183–191

Jausoro V,Llorente BE,Apo′stolo NM(2010b)Structural differences between hyperhydric and normal in vitro shoots of Handroan-thus impetiginosus(Mart.ex DC)Mattos(Bignoniaceae).Plant Cell,Tissue Organ Cult101:183–191

Juszczyk J,Krzywiecki M,Kruszka R,Bodzenta J(2013)Application of scanning thermal microscopy for investigation of thermal boundaries in multilayered photonic structures.Ultramicroscopy 135:95–98

Kaeppler SM,Kaeppler HF,Rhee Y(2000)Epigenetic aspects of somaclonal variation in plants.Plant Mol Biol43:179–188 Kajikawa K,Yamaguchi T,Katsuda S,Miwa A(1975)An improved electron stain for elastic?bers using tannic acid.J Electron Microsc24:287–289

Kane ME(2005)Shoot culture procedures.In:Trigiano RN,Gray DJ (eds)Plant Development and Biotechnology.CRC Press, Washington f066eba227d3240c8447efdeA

Kang YM,Park DJ,Min JY,Song HJ,Jeong MJ,Kim YD,Kang SM, Karigar CS,Choi MS(2011)Enhanced production of tropane alkaloids in transgenic Scopolia parvi?ora hairy root cultures over-expressing putrescine N-methyl transferase(PMT)and hyoscyamine-6b-hydroxylase(H6H).In Vitro Cell Dev Biol-Plant47:516–524

Karuppusamy S(2009)A review on trends in production of secondary metabolites from higher plants by in vitro tissue,organ and cell cultures.J Med Plant Res3:1222–1239

Kozai T(1991)Photoautotrophic micropropagation.In Vitro Cell Dev Biol-Plant27:47–51

Kozai T,Kubota C,Ryoung Jeong B(1997)Environmental control for the large-scale production of plants through in vitro techniques.Plant Cell Tissue Organ Cult51:49–56

Kuo J(2007)Electron microscopy:Methods and protocols,vol369.

Humana Press Inc.,New Jersey,USA Kurczyn′ska EU,Gaj MD,Ujczak A,Mazur E(2007)Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.)Heynh.Planta226:619–628

Lai K,Yusoff K,Mahmood M(2013)Functional ectodomain of the hemagglutinin-neuraminidase protein is expressed in transgenic tobacco cells as a candidate vaccine against Newcastle disease virus.Plant Cell Tissue Organ Cult112:117–121

Larkin P,Scowcroft W(1981)Somaclonal variation—A novel source of variability from cell cultures for plant improvement.Theor Appl Genet60:197–214

Lin G-Z,Zhao X-M,Hong S-K,Lian Y-J(2011)Somatic embryo-genesis and shoot organogenesis in the medicinal plant Pulsatilla koreana Nakai.Plant Cell Tissue Organ Cult106:93–103

Liu X,Sun L,Li C,Yang A,Zhang J(2013)Enhanced expression of the human CD14protein in tobacco using a22-kDa alpha-zein signal peptide.Plant Cell Tissue Organ Cult112:9–18

Lo′pez-Villalobos A,Dodds PF,Hornung R(2011)Lauric acid improves the growth of zygotic coconut(Cocos nucifera L.) embryos in vitro.Plant Cell Tissue Organ Cult106:317–327 Mathur J(2007)The illuminated plant cell.Trends in Plant Sci 12:506–513

Mayer JLS,Stancato GC,Appezzato-Da-Glo′ria B(2010)Direct regeneration of protocorm-like bodies(PLBs)from leaf apices of Oncidium?exuosum Sims(Orchidaceae).Plant Cell Tissue Organ Cult103:411–416

Mendes MD,Cristina Figueiredo A,Margarida Oliveira M,Trindade H(2013)Essential oil production in shoot cultures versus?eld-grown plants of Thymus caespititius.Plant Cell Tissue Organ Cult113:341–351

Mondal TK,Bhattacharya A,Laxmikumaran M,Singh Ahuja P (2004)Recent advances of tea(Camellia sinensis)biotechnol-ogy.Plant Cell Tissue Organ Cult76:195–254

Motte H,Vereecke D,Geelen D,Werbrouck S(2014)The molecular path to in vitro shoot regeneration.Biotechnol Adv 32:107–121

Moyo M,Finnie JF,Van Staden J(2009)In vitro morphogenesis of organogenic nodules derived from Sclerocarya birrea subsp.caffra leaf explants.Plant Cell Tissue Organ Cult 98:273–280

Moyo M,Bairu MW,Amoo SO,Van Staden J(2011)Plant biotechnology in South Africa:micropropagation research endeavours,prospects and challenges.S Afr J Bot77:996–1011 Moyo M,Finnie JF,Van Staden J(2012)Topolins in Pelargonium sidoides micropropagation:do the new brooms really sweep cleaner?Plant Cell Tissue Organ Cult110:319–327

Moyo M,Koetle MJ,Van Staden J(2014)Photoperiod and plant growth regulator combinations in?uence growth and physiolog-ical responses in Pelargonium sidoides DC.In Vitro Cell Dev Biol-Plant50:487–492

Muday GK,DeLong A(2001)Polar auxin transport:controlling where and how much.Trends in Plant Sci6:535–542

Murphy DB,Davidson MW(2013)Fundamentals of light microscopy and electronic imaging,2nd edn.Wiley-Blackwell,New Jersey, USA

Nakagawa R,Kurushima M,Matsui M,Nakamura R,Kubo T,Funada R(2011)Polyamines promote the development of embryonal-suspensor masses and the formation of somatic embryos in Picea glehnii.In Vitro Cell Dev Biol-Plant47:480–487

Nebenfu¨hr A,Gallagher LA,Dunahay TG,Frohlick JA,Mazurkie-wicz AM,Meehl JB,Staehelin LA(1999)Stop-and-Go move-ments of plant Golgi stacks are mediated by the acto-myosin system.Plant Physiol121:1127–1141

Neelakandan A,Wang K(2012)Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications.Plant Cell Rep31:597–620

788Planta(2015)242:773–790 123

Nogue′F,Grandjean O,Craig S,Dennis S,Chaudhury M(2000) Higher levels of cell proliferation rate and cyclin CycD3 expression in the Arabidopsis amp1mutant.Plant Growth Regul 32:275–283

Olmos E,Hell?′n E(1998)Ultrastructural differences of hyperhydric and normal leaves from regenerated carnation plants.Sci Hortic 75:91–101

Parra-Vega V,Renau-Morata B,Sifres A,Segu?′-Simarro JM(2013) Stress treatments and in vitro culture conditions in?uence microspore embryogenesis and growth of callus from anther walls of sweet pepper(Capsicum annuum L.).Plant Cell Tissue Organ Cult112:353–360

Pavlovic′S,Vinterhalter B,Zdravkovic′-Korac′S,Vinterhalter D, Zdravkovic′J,Cvikic′D,Mitic′N(2013)Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage(Brassica oleracea var.capitata)and cauli?ower(Brassica oleracea var.botrytis).Plant Cell Tissue Organ Cult113:397–406

Pavokovic′D,Poljuha D,Horvatic′A,Ljubesˇic′N,Hage`ge D,Krsnik-Rasol M(2012)Morphological and proteomic analyses of sugar beet cultures and identifying putative markers for cell differen-tiation.Plant Cell Tissue Organ Cult108:111–119

Pence VC(2010)The possibilities and challenges of in vitro methods for plant conservation.Kew Bull65:539–547

Picas L,Milhiet P-E,Herna′ndez-Borrell J(2012)Atomic force microscopy:a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale.Chem Phys Lipids165:845–860

Picoli EAT,Otoni WC,MrL Figueira,Carolino SMB,Almeida RS, Silva EAM,Carvalho CR,Fontes EPB(2001)Hyperhydricity in in vitro eggplant regenerated plants:structural characteristics and involvement of BiP(Binding Protein).Plant Sci160:857–868 Posp?′sˇilova′J,Synkova′H,Haisel D,Semora′dova′S(2007)Acclima-tion of plantlets to ex vitro conditions:effects of air humidity, irradiance,CO2concentration and abscisic acid(a review).Acta Hortic748:29–38

Potocka I,Baldwin TC,Kurczynska EU(2012)Distribution of lipid transfer protein1(LTP1)epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana.

Plant Cell Rep31:2031–2045

Prasher DC,Eckenrode VK,Ward WW,Prendergast FG,Cormier MJ (1992)Primary structure of the Aequorea victoria green-?uorescent protein.Gene111:229–233

Ptak A,Tahchy AE,Wy_z golik G,Henry M,Laurain-Mattar D(2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L.cultures.Plant Cell Tissue Organ Cult102:61–67

Qi Y,Lou Q,Quan Y,Liu Y,Wang Y(2013)Flower-speci?c expression of the Phalaenopsis?avonoid30,50-hydroxylase modi?es?ower color pigmentation in Petunia and Lilium.Plant Cell Tissue Organ Cult115:263–273

Quiala E,Can?al M-J,Meijo′n M,Rodr?′guez R,Cha′vez M,Valledor L, de Feria M,Barbo′n R(2012)Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments.Plant Cell Tissue Organ Cult109:223–234 Raju SC,Kathiravan K,Aslam A,Shajahan A(2013)An ef?cient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.).Plant Cell,Tissue Organ Cult 112:387–393

Ramachandra Rao S,Ravishankar GA(2002)Plant cell cultures: chemical factories of secondary metabolites.Biotechnol Adv 20:101–153

Ramakrishna A,Giridhar P,Ravishankar GA(2011)Calcium and calcium ionophore A23187induce high-frequency somatic embryogenesis in cultured tissues of Coffea canephora P ex Fr.In Vitro Cell Dev Biol-Plant47:667–673Ramakrishna A,Giridhar P,Jobin M,Paulose CS,Ravishankar GA (2012)Indoleamines and calcium enhance somatic embryogen-esis in Coffea canephora P ex Fr.Plant Cell,Tissue Organ Cult 108:267–278

Redha A,Suleman P(2011)Effects of exogenous application of polyamines on wheat anther cultures.Plant Cell Tissue Organ Cult105:345–353

Reichel C,Mathur J,Eckes P,Langenkemper K,Koncz C,Schell J, Reiss B,Maas C(1996)Enhanced green?uorescence by the expression of an Aequorea victoria green?uorescent protein mutant in mono-and dicotyledonous plant cells.Proc Natl Acad Sci USA93:5888–5893

Roberts WS,Lonsdale DJ,Grif?ths J,Higson SPJ(2007)Advances in the application of scanning electrochemical microscopy to bioanalytical systems.Biosens Bioelectron23:301–318 Rocha DI,Vieira LM,Tanaka FAO,da Silva LC,Otoni WC(2012) Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit(Passi?ora edulis Sims).Plant Cell Tissue Organ Cult111:69–78

Rojas-Mart?′nez L,Visser RGF,de Klerk G-J(2010)The hyperhy-dricity syndrome:waterlogging of plant tissues as a major cause.

Propag Ornam Plant10:169–175

Rosa YBCJ,Dornelas MC(2012)In vitro plant regeneration and de novo differentiation of secretory trichomes in Passi?ora foetida L.(Passi?oraceae).Plant Cell Tissue Organ Cult 108:91–99

Rosa YBC,Aizza LCB,Armanhi JSL,Dornelas MC(2013)A Passi?ora homolog of a D-type cyclin gene is differentially expressed in response to sucrose,auxin,and cytokinin.Plant Cell Tissue Organ Cult115:233–242

Rout GR,Samantaray S,Das P(2000)In vitro manipulation and propagation of medicinal plants.Biotechnol Adv18:91–120 Rout GR,Mohapatra A,Jain SM(2006)Tissue culture of ornamental pot plant:a critical review on present scenario and future prospects.Biotechnol Adv24:531–560

Ruffoni B,Savona M(2013)Physiological and biochemical analysis of growth abnormalities associated with plant tissue culture.

Hortic Environ Biotechnol54:191–205

Rugkhla A,Jones MGK(1998)Somatic embryogenesis and plantlet formation in Santalum album and S.spicatum.J Exp Bot 49:563–571

Sa′enz L,Azpeitia A,Chuc-Armendariz B,Chan JL,Verdeil JL, Hocher V,Oropeza C(2006)Morphological and histological changes during somatic embryo formation from coconut plumule explants.In Vitro Cell Dev Biol-Plant42:19–25

Sato S,Adachi A,Sasaki Y,Ghazizadeh M(2008)Oolong tea extract as a substitute for uranyl acetate in staining of ultrathin sections.

J Microsc229:17–20

Shari?G,Ebrahimzadeh H,Ghareyazie B,Karimi M(2010)Globular embryo-like structures and highly ef?cient thidiazuron-induced multiple shoot formation in saffron(Crocus sativus L.).In Vitro Cell Dev Biol-Plant46:274–280

Shimomura O,Johnson FH,Saiga Y(1962)Extraction,puri?cation and properties of aequorin,a bioluminescent protein from the luminous hydromedusan,Aequorea.J Cell Comp Physiol 59:223–239

Shur J,Price R(2012)Advanced microscopy techniques to assess solid-state properties of inhalation medicines.Adv Drug Deliver Rev64:369–382

Sirerol-Piquer MS,Cebria′n-Silla A,Alfaro-Cervello′C,Gomez-Pinedo U,Soriano-Navarro M,Verdugo J-MG(2012)GFP immunogold staining,from light to electron microscopy,in mammalian cells.Micron43:589–599

Sivanesan I,Song JY,Hwang SJ,Jeong BR(2011)Micropropagation of Cotoneaster wilsonii Nakai—a rare endemic ornamental plant.Plant Cell Tissue Organ Cult105:55–63

Planta(2015)242:773–790789

123

Smith-Espinoza C,Bartels D,Phillips J(2007)Analysis of a LEA gene promoter via Agrobacterium-mediated transformation of the desiccation tolerant plant Lindernia brevidens.Plant Cell Rep26:1681–1688

Smulders M,de Klerk G(2011)Epigenetics in plant tissue culture.

Plant Growth Regul63:137–146

Sreedhar RV,Venkatachalam L,Neelwarne B(2009)Hyperhydricity-related morphologic and biochemical changes in vanilla(Vanilla planifolia).J Plant Growth Regul28:46–57

Steiner N,Santa-Catarina C,Guerra MP,Cutri L,Dornelas MC,Floh ES(2012)A gymnosperm homolog of SOMATIC EMBRY-OGENESIS RECEPTOR-LIKE KINASE-1(SERK1)is expressed during somatic embryogenesis.Plant Cell Tissue Organ Cult109:41–50

Stone SL,Kwong LW,Yee KM,Pelletier J,Lepiniec L,Fischer RL, Goldberg RB,Harada JJ(2001)LEAFY COTYLEDON2encodes

a B3domain transcription factor that induces embryo develop-

ment.Proc Natl Acad Sci98:11806–11811

Sun X,Ji W,Ding X,Bai X,Cai H,Yang S,Qian X,Sun M,Zhu Y (2013)GsVAMP72,a novel Glycine soja R-SNARE protein,is involved in regulating plant salt tolerance and ABA sensitivity.

Plant Cell Tissue Organ Cult113:199–215

Tang W,Newton RJ,Charles TM(2005)High ef?ciency inducible gene expression system based on activation of a chimeric transcription factor in transgenic pine.Plant Cell Rep 24:619–628

Teixeira da Silva JA(2003)Chrysanthemum:advances in tissue culture,cryopreservation,postharvest technology,genetics and transgenic biotechnology.Biotechnol Adv21:715–766

Tewari RK,Prommer J,Watanabe M(2013)Endogenous nitric oxide generation in protoplast chloroplasts.Plant Cell Rep32:31–44 Thomasson MS,Macnaughtan MA(2013)Microscopy basics and the study of actin–actin-binding protein interactions.Anal Biochem 443:156–165

Torrealba F,Carrasco MA(2004)A review on electron microscopy and neurotransmitter systems.Brain Res Rev47:5–17

Tran?eld EM,Walker DC(2013)The ultrastructure of animal atherosclerosis:what has been done,and the electron microscopy advancements that could help scientists answer new biological questions.Micron46:1–11

Trigiano RN,Malueg KR,Pickens KA,Cheng Z-M,Graham ET (2005)Histological techniques.In:Trigiano RN,Gray DJ(eds) Plant Development and Biotechnology.CRC Press,Boca Raton, Florida,USA,pp39–54

Valero-Aracama C,Kane M,Wilson S,Vu J,Anderson J,Philman N (2006)Photosynthetic and carbohydrate status of easy-and dif?cult-to-acclimatize sea oats(Uniola paniculata L.)geno-types during in vitro culture and ex vitro acclimatization.

In Vitro Cell Dev Biol-Plant42:572–583

Van Eck J,Keen P(2009)Continued expression of plant-made vaccines following long-term cryopreservation of antigen-

expressing tobacco cell cultures.In Vitro Cell Dev Biol-Plant 45:750–757

Vasil I(2008)A history of plant biotechnology:from the cell theory of Schleiden and Schwann to biotech crops.Plant Cell Rep 27:1423–1440

Verpoorte R,Memelink J(2002)Engineering secondary metabolite production in plants.Curr Opin Biotech13:181–187

Vieten A,Sauer M,Brewer PB,Friml J(2007)Molecular and cellular aspects of auxin-transport-mediated development.Trends Plant Sci12:160–168

Wakte KV,Nadaf AB,Thengane RJ,Jawali N(2009)In vitro regenerating plantlets in Pandanus amaryllifolius Roxb.as a model system to study the development of lower epidermal papillae.In Vitro Cell Dev Biol-Plant45:701–707

Werker E,Leshem B(1987)Structural changes during vitri?cation of carnation plantlets.Ann Bot59:377–385

Whited AM,Park PSH(2014)Atomic force microscopy:a multi-faceted tool to study membrane proteins and their interactions with ligands.Biochim Bioph Acta-Biomembranes1838:56–68 Woo SM,Wetzstein HY(2008)Morphological and histological evaluations of in vitro regeneration in Elliottia racemosa leaf explants induced on media with thidiazuron.J Am Soc Hortic Sci133:167–172

Wu Z,Chen LJ,Long YJ(2009)Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic(Allium sativum L.)shoots.In Vitro Cell Dev Biol-Plant45:483–490

Wu J-J,Liu Y-W,Sun M-X(2011)Improved and high throughput quantitative measurements of weak GFP expression in transgenic plant materials.Plant Cell Rep30:1253–1260

Xu X,Guo R,Cheng C,Zhang H,Zhang Y,Wang X(2013) Overexpression of ALDH2B8,an aldehyde dehydrogenase gene from grapevine,sustains Arabidopsis growth upon salt stress and protects plants against oxidative stress.Plant Cell,Tissue Organ Cult114:187–196

Yang Y,Yang L,Li Z(2013)Molecular cloning and identi?cation of

a putative tomato cationic amino acid transporter-2gene that is

highly expressed in stamens.Plant Cell,Tissue Organ Cult 112:55–63

Zacharias DA,Tsien RY(2005)Molecular biology and mutation of green?uorescent protein.In:Green Fluorescent Protein.Wiley, pp83–120.doi:10.1002/0471739499.ch5

Zimmerman JL(1993)Somatic embryogenesis:a model for early development in higher plants.Plant Cell5:1411–1423

Ziv M(1991)Vitri?cation:morphological and physiological disor-ders of in vitro plants.In:Debergh PC,Zimmerman RH(eds) Micropropagation:Technology and Applications.Kluwer Aca-demic Publishers,Dordrecht,pp45–69

Zumbusch A,Langbein W,Borri P(2013)Nonlinear vibrational microscopy applied to lipid biology.Prog Lipid Res52:615–632

790Planta(2015)242:773–790 123

本文来源:https://www.bwwdw.com/article/7oqq.html

Top