Exact edge singularities and dynamical correlations in spin-12 chains
更新时间:2023-05-31 11:48:01 阅读量: 实用文档 文档下载
- exagear推荐度:
- 相关推荐
Exact formulas for the singularities of the dynamical structure factor, S^{zz}(q,omega), of the S=1/2 xxz spin chain at all q and any anisotropy and magnetic field in the critical regime are derived, expressing the exponents in terms of the phase shifts wh
Exactedgesingularitiesanddynamicalcorrelationsinspin-1/2chains
RodrigoG.Pereira,1StevenR.White,2andIanA eck1
1
DepartmentofPhysicsandAstronomy,UniversityofBritishColumbia,Vancouver,BC,CanadaV6T1Z1
2
DepartmentofPhysicsandAstronomy,UniversityofCalifornia,IrvineCA92697,USA
(Dated:February1,2008)
Exactformulasforthesingularitiesofthedynamicalstructurefactor,Szz(q,ω),oftheS=1/2xxzspinchainatallqandanyanisotropyandmagnetic eldinthecriticalregimearederived,expressingtheexponentsintermsofthephaseshiftswhichareknownexactlyfromtheBetheansatzsolution.
zz
Wealsostudythelongtimeasymptoticsoftheself-correlationfunction 0|Sj(t)Sj(0)|0 .Utilizingtheseresultstosupplementveryaccuratetime-dependentDensityMatrixRenormalizationGroup(DMRG)forshorttomoderatetimes,wecalculateSzz(q,ω)toveryhighprecision.
08
02PACSnumbers:75.10.Pq,71.10.Pm
anJ The“xxz”S=1/2spinchain,withHamiltonian91 ]le LH=J
[SxjSx
j+1+Syj
Syj+1+ SzjSzj+1 hSzj],(1)
j=1
-isoneofthemoststudiedmodelsofstronglycorrelated
rtsystems.ItisequivalentbyaJordan-Wignertransforma-s.tiontoamodelofinteractingspinlessfermions,withthe
tacorrespondingFermimomentumkF=π(1/2+ 0|Sz
m[1].Themodelwith =1describesHeisenbergantifer-j|0 )-romagnets.Theregime0< <1isalsoofexperimentaldinterest;forexample,themodelwith =1/2canbere-nalizedinS=1/2spinladdersnearthecritical eld[2].coInopticallattices,itshouldbeevenpossibletotunethe[anisotropy andexploretheentirecriticalregime 2WhilesomeaspectsofthemodelhavebeensolvedforexactlybyBetheansatzithasbeenverydi cultto0vobtaincorrelationfunctionsthatway.Fieldtheory(FT)6methodsgivethelowenergybehavioratwave-vectors9near0and2kFFromtheexperimentalviewpoint0.arelevantquantityisthedynamicalstructurefactor907Szz
(q,ω)=
0: Le
iqj
j=1
+∞
dteiωt 0|Szj(t)Sz
0(0)|0 .(2)
∞
viThisistheFouriertransformofthedensitycorrelation
Xfunctioninthefermionicmodel.For =1andh=0,rtheexacttwo-spinoncontributiontoSzz(q,ω)wasob-atainedfromtheBetheansatz[6],partiallyagreeingwiththeM¨ullerconjecture[7].Morerecentlyanumberofnewmethodshaveemergedwhichnowmakethisprob-lemmuchmoreaccessible.Theseincludetime-dependentDMRG[8,9,calculationofformfactorsfromBetheansatz[11,12]andnew eldtheoryapproacheswhichgobeyondtheLuttingermodel[13,14].TheresultspointtoaverynontriviallineshapeatzerotemperatureforSzz(q,ω)ofthexxzmodelandofone-dimensionalmodelsingeneralIntheweakcouplinglimit 1andforsmallq,thesingularitiesatthethresholdsofthetwo-particlecontinuumhavebeenexplainedbyanalogywiththex-rayedgesingularityinmetalsInthisLetterwecombinethemethodsofRef.[13]withtheBetheansatztoinvestigatethesingularityexpo-nentsofSzz(q,ω)forthexxzmodelfor niteinteractionstrength andgeneralmomentumq.Inaddition,wede-terminetheexponentsofthelong-timeasymptoticsofthespinself-correlationfunction,whichisnotdominatedbylowenergyexcitations.WecheckourpredictionsagainsthighaccuracynumericalresultscalculatedbyDMRG.Inthenon-interacting, =0case,onlyexcitedstateswithasingleparticle-holepaircontributetoSzz(q,ω).Allthespectralweightiscon nedbetweenthelowerandupperthresholdsωL,U(q)ofthetwo-particlecontinuum.ThechoicesofmomentacorrespondingtothethresholdsdependonbothkFandq.Forzero eld,kF=π/2,ωL(q)foranyq>0isde nedbytheexcitationwithaholeatk1=π/2 qandaparticlerightattheFermisurface(oraholeattheFermisurfaceandaparticleatk2=π/2+q),whileωUisde nedbythesymmetricexcitationwithaholeatk1=π/2 q/2andaparticleatk2=π/2+q/2.For nite eldandq<|2kFωL,U(q)arede nedbyexcitationswitheitherahole πat|,kFandaparticleatkF+qoraholeatkFparticleatkF.Forh=0andq>|2kF qandaathird“threshold”betweenωLandω Uπwhere|,thereSzzis(evenq,ω)hasastepdiscontinuity(seeFor =0,Szz(q,ω)exhibitsatailassociatedwithmultipleparticle-holeexcitations[14].However,thethresholdsofthetwo-particlecontinuumareexpectedtoremainaspointsatwhichpower-lawsingular-itiesdevelopInordertodescribetheinteractionofthehighenergyparticleand/orholewiththeFermisurfacemodes,weintegrateoutallFouriermodesofthefermion eldψ(x)exceptthosenear±kFandnearthemomentumofthehole,k1,orparticle,k2,writingψ(x)~eikFxψR+e ikFxψL+eik1xd1+eik2xd2.
(3)
Linearizingthedispersionrelationabout±kFweobtainrelativisticfermion eldswhichwebosonizeintheusualwayWealsoexpandthedispersionofthed1,2parti-clesaroundk=k1,2uptoquadraticterms.Thisyields
Exact formulas for the singularities of the dynamical structure factor, S^{zz}(q,omega), of the S=1/2 xxz spin chain at all q and any anisotropy and magnetic field in the critical regime are derived, expressing the exponents in terms of the phase shifts wh
2
thee ectiveHamiltoniandensity
2 x
H=dαεα iuα x
α=1,2
dαimp
=
B
dλ
ραimp(λ)
2
,(8)
∞
22
( x L)+( x R)+V12d 1d1d2d22
1α
+(κα x R+κ x L)dd.(4)
whereBistheFermiboundaryandραimp(λ)isthesolu-tiontotheintegralequation
+B′
dλΦα(λ)α
ρimp(λ) =
2πKαThisHamiltoniandescribes RLαα=1,2
aLuttingerliquidcoupledtooneortwomobileimpurities[15,16].InthederivationofEq.(4)fromEq.(1),wedroptermsoftheform
(d αdα)2
becauseweonlyconsiderprocessesinvolvingasingled1and/orasingled2particle.Here R,Laretherightandleftcomponentsoftherescaledbosonic eld.
Thelongwavelength uctuationpartofSz
jisgivenSz
j~ by
1 2/arccos andK=[2 2arccos( )/π)] 1(wesetJ=1).To rstorderin ,thecouplingconstantsdescribingthescatteringbetweenthedparticlesandthebosonsareκαR,L=2 [1 cos(kF kα)].Thedirectd1-d2interactionV12isalsooforder .TheexactvaluesofκR,Lplayacrucialroleinthesingularitiesandwillbedeterminedbelow.
Wemayeliminatetheinteractionbetweenthedparti-clesandthebosonicmodesbyaunitaryU=exp
transformation
i α
dx2πK(γαR R γα
L L)d αdα ,(5)withparametersγα
R,L=καR,L/(v uα).Intheresulting
HamiltonianH
=U HU, R,Larefreeuptoirrelevantinteractionterms[15].Asinthex-rayedgeproblem,γα
mayberelatedtothephaseshiftsattheFermipointsdueR,Ltothecreationofthehighenergydαparticle.
Fortunately,wehaveaccesstothehighenergyspec-trumofthexxzmodelbymeansoftheBetheAnsatz.FollowingtheformalismofRef.[16],wecalculatethe -nitesizespectrumfromtheBetheansatzequationswithanimpuritytermcorrespondingtoremoving(adding)aparticlewithdressedmomentumk1=k(λ1)(k2=k(λ2)),whereλ1,2arethecorrespondingrapidities.ThetermofO(1)yieldsεα= (kα),thedressedenergyoftheparticle.Forzero eld,wehavetheexplicitformula (k)= vcosk.TheexcitationspectrumforasingleimpuritytoO(1/L)reads
E=
2πv
4K
+n++ N nαimpn ],
2+K D dα
imp
2
(6)
withaconventionalnotationfor N,Dandn±[4].Thephaseshiftsnαimpanddα
imparegivenby
+B
nα
imp=dλραimp(λ),
(7) B
B
dλ(1 cosq)
π(v u1)
≈
2
Exact formulas for the singularities of the dynamical structure factor, S^{zz}(q,omega), of the S=1/2 xxz spin chain at all q and any anisotropy and magnetic field in the critical regime are derived, expressing the exponents in terms of the phase shifts wh
cancellationoftheqdependenceofκ1case.Momentum-independentexponentsRandv u1inthelatterhavealsobeen
derived
fortheCalogero-Sutherlandmodel[18].Wenowconsiderathresholdde nedbyhigh-energyparticleandholeatk1,2=π/2 q/2.Therelevantcor-relationfunctionisthepropagatorofthetransformedd 2d1.Forsimplicity,herewefocusonthezero eldcase,inwhichε2= ε1=vsin(q/2),u2=u1and m2=m1=[vsin(q/2)] 1.Particle-holesymmetry
thenimpliesthatγ1R,L=γ2
R,Landd 2d1isinvariantundertheunitarytransformationofEq.(5).Inthenoninteractingcase,thereisasquarerootsingularityattheupperthresholdduetothejointdensityofstates:Szz(q,ω)∝
divergenceoftheωU(q) ω.Thisbehav-iorcontradictstheM¨ulleransatz[7],butisconsistentwiththeanalytictwo-spinonresultfor =1[6].Unliketheoriginalexcitonproblem,aboundstateonlyappearsforV12<0( <0)[21],becausetheparticleandholehaveanegativee ectivemass.For =0,theupperedgecuspshouldintersectahigh-frequencytaildominatedbyfour-spinonexcitationsasproposedin[22].Thispicture
mustbemodi edforh=0,sincethenγ1thebosonicexponentials.R,L=Theγ2
R,Landoneneedstoincludeupperedgesingularitythenbecomes -andq-dependent.Thegeneral nite eldcase,includingthemiddlesingularity[7]forq>|2kFWecanapply theπ|,HamiltonianwillbediscussedofEq.elsewhere.
(4)tostudythe
self-correlationfunctionG(t)≡ 0|Szj(t)Sz
j(0)|0 .Eveninthenoninteractingcase,thelongtimeasymptoticsisahighenergyproperty,sinceitisdominatedbyasaddlepointcontributionwithaholeatthebottomandapar-ticleatthetopoftheband[23].Inthiscase,k1=0and
k2=πandd1,2impvanishbysymmetry(γαR=γα
zero eld,butthemethodcanL).Herewerestricttobeeasilygeneralized.Forh=0and ≥0,G(t)takestheform
G(t)~Be iWt
B3
1
tη2
+t2
,
(15)
whereW= (0)=v.Thelasttwotermsarethestandardlow-energycontributions,withσ=2K.TheamplitudesB3andB4areknown[24].The rsttermisthecontributionfromtheholeatthebottomofthebandandtheparticleatkF=π/2,withexponent
η=(1+K)/2+(1 n1imp)2
/2K=K+1/2.
(16)
3
Thetermoscillatingat2Wcomesfromaholeatk=0andaparticleatk=π.For =0,wehaveη2=1.Theexponentη2isconnectedwiththesin-gularity
the attheupperthresholdofSzz(q,ω)byG(t)~dωeiωtdqSzz(q,ω)forq≈πandω≈ωU(π)=2v.DuetodiscontinuityoftheexponentatωU,η2jumpsfromη2=1toη2=2foranynonzero .Thisbehavior
shouldbeobservedfort 1/(m1V12
2
)~1/ 2.Asare-sult,theasymptoticsofG(t)isgovernedbytheexponentη<3/2for0< <1.For <0,wemustaddtoEq.(15)thecontributionfromtheboundstate.
WecanalsostudySzz(q,ω)withtime-dependentDMRG(tDMRG)[8,9].ThetDMRGmethodsdi-rectlyproduceSzz(x,t)anditsspatialFouriertransformSzz(q,t)forshorttomoderatetimes.Thisinformationnicelycomplementstheasymptoticinformationavailableanalytically.TheDMRGcalculationbeginswiththestandard nitesystemcalculationofthegroundstateφ(t=0)ona nitelatticeoftypicallengthL=200-400,whereafewhundredstatesarekeptforatruncationer-rorlessthan10 10.Oneofthesitesatthecenterofthe
latticeisselectedastheorigin,andtheoperatorSz
0isappliedtothegroundstatetoobtainastateψ(t=0).Subsequently,thetimeevolutionoperatorforatimestepτ,exp(i(H E0)τ)whereE0isthegroundstateenergy,isappliedviaafourthorderTrotterdecomposition[10]toevolvebothφ(t)andψ(t).AteachDMRGstepcenteredonsitejweobtainadatapointfortheGreen’sfunction
G(t,j)byevaluating φ(t)|Sz
tionprogresses,thetruncationj|ψ(errort) .Asaccumulates.thetimeevolu-Theintegratedtruncationerrorprovidesausefulestimateoftheerror,andsolongertimesrequiresmallertrunca-tionerrorsateachstep,attainedbyincreasingthenum-berofstateskeptm.Thetruncationerrorgrowswithtimefor xedm,andislargestnearthecenterwherethespinoperatorwasapplied.Wespecifythedesiredtruncationerrorateachstepandchoosemtoachieveit,withinaspeci edrange.Typicallyforlatertimeswehavem≈1000.Finitesizee ectsaresmallfortimeslessthan(L/2)/v.WeareabletoobtainveryaccurateresultsforG(t,j),witherrorsbetween10 4and10 5,fortimesuptoJt~30-60.
ForJt>10 20,we ndthebehaviorofSzz(q,t)andG(t)iswellapproximatedbyasymptoticexpressions,de-terminedbythesingularfeaturesofSzz(q,ω)andG(ω).Byutilizingtheleadingandsubleadingtermsforeachsingularity,wehavebeenableto twithatypicalerrorinSzz(q,t)orG(t)forJt~20-30between10 4and10 5.Wecan twiththedecayexponentsdeterminedanalyt-icallyorasfreeparameterstochecktheanalyticexpres-sions.TableIshowsthecomparisonbetweentheexpo-nentsforG(t)extractedindependentlyfromtheDMRGdataandtheFTpredictions.Inallcasestheagreementisverygood.BysmoothlytransitioningfromthetDMRGdatatothe tastincreases,weobtainaccurateresultsforalltimes.AstraightforwardtimeFouriertransform
Exact formulas for the singularities of the dynamical structure factor, S^{zz}(q,omega), of the S=1/2 xxz spin chain at all q and any anisotropy and magnetic field in the critical regime are derived, expressing the exponents in terms of the phase shifts wh
TABLEI:Exponentsforthespinself-correlationfunctionG(t)forh=0.TheparametersW,η,η2andσwereob-tainednumericallyby ttingthe
DMRGdataaccordingtoEq.(15).ThesearecomparedwiththecorrespondingFTpredictions(withvandKtakenfromtheBetheansatz).
η1
σ2K
01.51.5110.1251.4511.4261.76120.251.3661.3612.03420.3751.3131.3032.00020.51.2871.252.12020.75
1.102
1.149
2.226
2
withaverylongtimewindowyieldsveryaccuratehighresolutionspectra.ExamplesoflineshapesobtainedthiswayareshowninFig.1.WealsodidDMRGfortheholeGreen’sfunctionforthefermionicmodelcorrespondingtoEq.(1),obtaininggoodagreementwiththepredictedsingularitiesfromthex-rayedgepicture.
Wehavenotseenanyexponentialdampingoftheη2terminG(t)for >0.Thissuggeststhatthesingularityattheupperedgeisnotsmoothedoutintheintegrablexxzmodel,evenwhenthestabilityoftheexcitationisnotguaranteedbykinematicconstraints[25].Integrabil-ityalsoprotectsthesingularityatωUfor nite eld,asimpliedbytheCFTformofthespectruminEq.(6).Inconclusion,wepresentedamethodtocalculatethesingularitiesofSzz(q,ω)forthexxzmodel.Theex-ponentsforgeneralanisotropy,magnetic eldandmo-mentumcanbeobtainedbysolvingtheBetheansatzThewidthofthepeakisverysmallforsmall| |.
4
theparticle-holesymmetriczero eldcase,weshowedthattheloweredgeexponentisq-independentandthe(“exciton-like”)upperedgehasauniversalsquarerootsingularity.ThecombinationofanalyticmethodswiththetDMRGovercomesthe nitetlimitationontheres-olutionofthetDMRGandcanbeusedtostudydynamicsofotherone-dimensionalsystems(integrableornot).WethankL.Balents,J.-S.Caux,V.Cheianov,L.I.Glazman,N.Kawakami,M.PustilnikandJ.Sirkerfordiscussions.WeacknowledgethesupportoftheCNPqgrant200612/2004-2(RGP),NSERC(RGP,IA),NSFundergrantDMR-0605444(SRW)andCIfAR(IA).
[1]T.Giamarchi,QuantumPhysicsinOneDimension(Ox-fordUniversityPress,NewYork,2004).
[2]K.Totsuka,Phys.Rev.B57,3454(1998);B.C.Watson
etal.,Phys.Rev.Lett.86,5168(2001).
[3]L.-M.Duan,E.Demler,andM.D.Lukin,Phys.Rev.
Lett.91,090402(2003).
[4]V.E.Korepin,N.M.Bogoliubov,andA.G.Izergin(1993)
QuantumInverseScatteringMethodandCorrelationFunctions(Cambridge,1993).
[5]M.B.Stoneetal.,Phys.Rev.Lett.91,037205(2003).[6]M.Karbach,G.M¨uller,A.H.Bougourzi,A.Fledderjo-hann,andK.H.M¨utterPhys.Rev.B55,12510(1997).[7]G.M¨ulleretal.,Phys.Rev.B24,1429(1981);G.M¨uller
etal.,J.Phys.C:SolidStatePhys.14,3399(1981).[8]S.R.White,Phys.Rev.Lett.69,2863(1992);
S.R.White,Phys.Rev.B48,10345(1993).SeealsoU.Schollw¨ock,Rev.Mod.Phys.77,259(2005).
[9]S.R.WhiteandA.E.Feiguin,Phys.Rev.Lett.93,076401
(2004);A.J.Daleyetal.,J.Stat.Mech.P04005(2004).S.R.White,Phys.Rev.B72,
MailletandV.Terras,Nucl.Phys.B
Maillet,Phys.Rev.Lett.95,077201
Khodas,A.Kamenev,andL.I.Glaz-Lett.96,196405(2006).
,Phys.Rev.Lett.96,257202(2006).Rev.B61,4429(2000).
Fujii,andN.Kawakami,Phys.Rev.B
wasacceptedwelearnedoftheresults
Pustilnik(privatecommunicationandWehavecheckedthattheirexponentasoursforallq, andh=0.Rev.Lett.97,036404(2006).
ParticlePhysics(Kluwer/Plenum,
Cond.Matter16,S3567(2004).al.,Phys.Rev.B51,368(1995).R.Hagemans,J.Stat.Mech.P12013
B73,224424(2006).
V.Terras,Nucl.Phys.B654,323
[25]M.Khodasetal.,cond-mat/0702505.
正在阅读:
Exact edge singularities and dynamical correlations in spin-12 chains05-31
视听语言选择题部分一05-22
江苏省市政造价员政案例模拟试卷(附详细答案及解析) 精品推荐06-21
2020年组织部长会议精神学习体会11-01
人工鱼群与粒子群混合图像自适应增强算法04-23
依法治国与以德治国02-18
西班牙语03-23
电磁流量计的安装要求05-22
个人职业生涯规划目标书【优秀8篇】03-26
- 1A microscopic approach to spin dynamics about the meaning of
- 2A Self-Consistent Dynamical Model for the {sl COBE} Observed
- 3EDGE编码效率研究项目总结报告
- 4Continuum Charged $D^{}$ Spin Alignment at $sqrt{s}$ = 10.5
- 5转:EAC(Exact Audio Copy)抓轨完美教程 - 图文
- 6Enhancement of the anomalous Hall effect and spin glass beha
- 7SPIN技术:顾问式销售的利器
- 8Extended Gauge Theories in Euclidean Space with Higher Spin Fields
- 9晓印:顾问式销售(SPIN)解码2
- 10华为鹤壁移动edge优化总结报告月
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- singularities
- correlations
- dynamical
- chains
- Exact
- edge
- spin
- 12
- 个人独资企业和合伙企业投资者申报表
- Android NFC framework introduction and develop guide
- 寺冈条码秤简易操作SM-80,SM-110,SM-120
- 毕业设计:涡轮减速箱体加工工艺规程及工艺装备的设计
- 消防验收规范标准(最新完整版)
- 《煤矿机电设备管理》课程简介与标准
- 北京市政府采购货物招标文件范本
- 申请清华MBA提前面试必须了解的
- 宁夏高中名校2016届高三上学期第三次月考数学(文)试题(含答案)
- 低碳经济下公共交通运输管理研究
- “数字化校园”硬件平台建设规划草案2013.1.8
- 新乡医学院教研室预防题库
- 论高层建筑地下室防水工程施工质量的控制
- 教师如何听课评课
- 九年级英语感叹句
- 导线复测的各项精度要求
- 上海交大昂立英语抚州分校2011年新世纪一下期末考试试卷
- 班级自制教玩具登记表
- 2010年英语考研大纲
- 2012年度工程部营销计划