哈工大版线性代数与空间解析几何课后题答案

更新时间:2023-07-22 17:23:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

习 题 一

1.按自然数从小到大的自然次序,求解各题. (1) 求1至6的全排列241356的逆序数. 解:t(241356) 0 0 2 1 0 0 3.

(2) 求1至2n的全排列135 (2n 1)246 (2n)的逆序数.

解:t(13 (2n 1)24 2n) 0 0 0 (n 1) (n 2) 2 1 0 (3) 选择i与j,使由1至9的排列,91274i56j成偶排列.

解:由91274i56j是从1至9的排列,所以i,j只能取3或8.

当i 8,j 3时,t(912748563) 0 1 1 1 2 1 3 3 6 18,是偶排列. 当i 3,j 8时t(912743568) 0 1 1 1 2 3 2 2 1 13,是奇排列,不合题意舍去.

(4) 选择i与j,使由1至9的排列71i25j489成奇排列.

解:由71i25j489是从1至9的排列,所以i,j只能取3或6.

当i 3,j 6时,t(713256489) 0 1 1 2 1 1 3 0 0 9,是奇排列. 当i 6,j 3时,t(716253489) 0 1 1 2 2 3 3 0 0 12,是偶排列,不合题意舍去.

2.计算下列行列式 (1)

n(n 1)

. 2

9a18b3215332053

; (2) ;

26b13a7528475184

10

812

2

abbf

ac cdcf

aede. ef

3; (4) bd

(3) 15

203212

解:(1)

9a18ba2b

9 13 117(a2 4b2).

26b13a2ba

321533205332053 10032053320533205332053

(2)

752847518475184 10075184751847518475184

0 7518400 3205300 4313100.

10

(3) 15

812

22223 0.

3 5 433

203212

4812

·1·

ab

(4) bd

ac cdcf

ae ef

11

1 11

1 1

111

02 200

de abcdef11 abcdef0

bf

111

abcdef0

20 4abcdef. 02

x

3.已知3

yz

02 1,利用行列式性质求下列行列式. 11y3yy 2x

y3yy 201

z

3z 2; (2) z 2

zz 2

xxyz

3z 2 30

yz

x 1y 1z 134x

y01z

2. 3

1x

(1) 3x 3

x 2

解:(1) 3x 32 2302 2.

111111413111111

x 2

(2)

222

x 1y 1z 134

3

2 302 302

413x

yz

302 302 1 0 1. 11

1

4.用行列式定义计算:

010 0

2002 0

(1) ; (2) . 3

4000 n 15n00 0

12

( 1)t(p1p2p3p4p5)a1p1a2p2a3p3a4p4a5p5 解:(1) 3

45

( 1)t(54321)a15a24a33a42a51 ( 1)10 1 2 3 4 5 120.

·2·

1

0102

( 1)t(p1p2 pn)a1p1a2p2 anpn (2) 0

n 1

n0

( 1)

t(23 n1)

a12a23 a(n 1)nan1

( 1)n 1 1 2 3 n ( 1)n 1n! 5.用行列式的定义证明:

a11a21

(1) 0

a12a22000a12a22a32a42

a13a2300000a33a44

a14a24a34a44a5400a34a45

a15a25

a35 0;

a45a55a11a21

a12a33

a22a43

a34a44

00a11

(2)

a21a31a41

.

a11a21

证:(1) D 0

a12a22000

a13a23000

a14a24a34a44a54

a15a25

a35 ( 1)t(p1p2p3p4p5)a1p1a2p2a3p3a4p4a5p5 a45a55

00

假设有a1P1a2P2a3P3a4P4a5P5 0,由已知p3,p4,p5必等于4或5,从而p3,p4,p5中至少有两个相等,这与p1,p2,p3,p4,p5是1,2,3,4,5的一个全排列矛盾,故所有项

a1P1a2P2a3P3a4P4a5P5 0,因此D 0.

a11

(2)

a12a22a32a42

00a33a43

00a34a44

( 1)t(p1p2p3p4)a1p1a2p2a3p3a4p4,由已知,只有当p1,p2

a21a31a41

取1或2时,a1p1a2p2a3p3a4p4 0,而p1,p2,p3,p4是1,2,3,4的一个全排列,故p3,p4取

3或4,于是

·3·

D ( 1)t(1234)a11a22a33a44 ( 1)t(1243)a11a22a34a43 ( 1)t(2134)a12a21a33a44

( 1)

t(2143)

a12a21a34a43

a11a22a33a44 a11a22a34a43 a12a21a33a44 a12a21a34a43 从而

a11a21a12a33

a22a43

a34a44

(a11a22 a12a21)(a33a44 a34a43)

a11a22a33a44 a11a22a34a43 a12a21a33a44 a12a21a34a43 D 6.计算

a0

(1)

10

121102111

2 144 2 1110

123 n

xa a

110 0

ax a

; (4) Dn 101 0; (3) Dn

aa x

100 1

a00 111 10a0 0 11 1

(5) Dn 00a 0; (6) Dn 1 1 1.

100 a11 1a305

a30

按第4 按第3 0b02a34 4

解:(1) ( 1)d0b0( 1)3 3dc abcd.

12c3行展开0b列展开

12c

000d121112111211021110211102111

(2)

2 14403660366 2 11100331200 36

3b2000c052

; (2) 3d

·4·

10

3

00

2111211121112201220122

3 3 9.

211100 3700 370 3600 36000 1

xa a r1 r2 (n 1)a x(n 1)a x (n 1)a x

(3) Dax a r1 r3axn aa xr1 rn

aa11 1ax

a [(n 1)a x]aa

a a

a

111 10x a

0 0 [(n 1)a x]00

x a 0

000

x a

[(n 1)a x](x a)n 1.

1

23 n 1

10 0 c c 2 3 n

12 (4) Dn 1

01 0c1 c

30

1

00

1c1 c

n0

1 2 3 n n(n 1)

2

.

a00 10a0 0

(5) Dn 00a 0

100 a

23 10 01 00 a

x

n00

1

·5·

a0 0

按第1行展开 0a 01 1

( 1)a ( 1)1 n

00 a

an ( 1)1 n( 1)n 1 1an 2 an an 2.

00 01a0 0a

0 0 00 a0

11 11

(6) Dn 1 1

11111 1 1110 2000 2 000100 2

( 2)n 1 ( 1)n 12n 1. 7.证明

a2

(1) 2a

abb2

1a2

证:2a

a b2b (a b)2 11ab

b2

a b2b2a a ba b 2b2b

c ( 1)c3

112001

3 3

c1 ( 1)c2

a2 abab b2b2

1

a(a b)b(a b)

( 1)

a ba bab

(a b)2 (a b)3

11

a2

(2)

(a 1)2(b 1)2(c 1)2(d 1)2

a2b2c

2

(a 2)2(b 2)2(c 2)2(d 2)2

(a 3)2(b 3)2(c 3)2(d 3)2

a2 4a 4b2 4b 4c 4c 4

2

b2c2d2

0

a2 2a 1b2 2b 1c 2c 1

2

a2 6a 9b2 6b 9c 6c 9

2

证:等式左端

d2

·6·

d2 2d 1d2 4d 4d2 6d 9

2

2a 1ac2 ( 1)c1

b22b 1

c3 ( 1)c12

c2c 1

c4 ( 1)c12

d2d 1

4a 46a 94c 4

a2

2

2a 1262b 1262c 1262d 126x1

x12

2x22x32x4

4b 46b 9c3 ( 2)c2 b26c 9c4 ( 3)c3c

4d 46d 9d2

x13 c1x12 c2x1 c3

32

x2 c1x2 c2x2 c3

0

x1 a1

(3)

x12 b1x1 b2

2

x2 b1x2 b22x3 b1x3 b22x4 b1x4 b2

x13

3

x2

3x33x4

x2 a1x3 a1x4 a1

x2 32

x3 c1x3 c2x3 c3x3

x4

x12 b1x1

2

x2 b1x22x3 b1x32x4 b1x4

32x4 c1x4 c2x4 c3

c2 ( a1)c1 x1

x2

证:等式左端c ( b)c321

x3

c4 ( c3)c1

x4

c3 ( b1)c2x

2c4 ( c2)c2x3

x4

x1

x12

2x2

x13 c1x12 c2x1

32x2 c1x2 c2x232x3 c1x3 c2x332x4 c1x4 c2x4

x13 c1x12x cx

3

334

213214

x1x3x4

x12

2x2

x13

3x2

32c ( c)c c1x2x2x2413x

x

2

324

x

x cxx

2324

x

x

3334

等式右

端.

8.解关于未知数x的方程

x

(1) 3

1x 201x 20

26x 12

6 (x 1)x 1

x3

1x 2

0

0x

解:3

(x 1)[x(x 2) 3] (x 1)[x2 2x 3] (x 1)(x 3)(x 1) 0 所以x1 1,x2 3,x3 1.

a

(2) m

ax

xb

mm 0(m 0)

b

·7·

a

解:m

ax

xb

aab

x00b

x

x a1b

mm m111 m11

xb

b

11

m(x a) m(x a)(x b) 0

bx

因m 0,所以x1 a,x2 b.

a11

9.设

a12 a1na22 a2n an2 ann

a22 a2na12 a1na1p1

a1p2a2p2 anp2

a1pn a2pn

anpn

,其中“ ”是对1,2, ,n的所有全排列p1p2 pn

; (2)

a21 an1

a,求下列行列式:

an2 ann

a1n

a12

a11a21 an1

an1

(1)

a21a11

a2n a22ann an2

(3)

p1p2 pn

a2p1 anp1

取和,n 2.

解:(1)经行的交换得

a11an1

原式 ( 1)n 1

a12 a1nan2 ann a32

a3n

a31a21

a22 a2n

a11

a12 a1na22 a2n

an2 ann

( 1)

(n 1) (n 2) 2 1

a21 an1

( 1)

n(n 1)2

a.

(2) 与(1)类似,经列的交换得

·8·

n(n 1) 原式 ( 1)

2

a.

(3) 经列的交换,得

a1p1

a1p2 a1pna11a12 a1n

a2p1a2p2 a2pn

pn)

a21a22 a2n (p1p2 pn) ( 1) (p1p2

( 1)a

anp1

anp2

anpn

an1

an2 ann

11 1 故原式 ( 1) (p1p2 pn)

a a

11 1

p1p2 pn

0.

1

1 1

10.计算行列式

a aa000100b1 11 aa00

(1)

0a2b200b; (2) 0 11 aa0;

3a30b00 11 aa4

a4

000 11 a61111 10001

61110 100

(3) 1

1611; (4) 00 10.

11161000 111

11

6

k000

a100b1a100b1a1b100 解:(1) 0a2b200b3a30

b400a4b4a4000b

3a30

00a3b3b4

a4

a2b20

b2

a2

a1b1a3b3b (a1a4 b1b4)(a2a3 b2b3).

4

a4b2

a2

(2) 将前4行依次加到第5行,再按第5行展开得

aa000

11 aa0

aa00

原式 0 11 aa

0 a5

11 aa0

00 11 aa

0 11 aa

a000

1

00 11 a

·

aa00

a5

11 aa

aa

040 11 aa

a5 a 11 aa a00

1

0 11 a

a

a

a5

a4

1

1 aa a5 a4 a3 aa

a

01

11 a

1 a a2 a3 a4 a5

61111101010

10101

611116111 (3) 1

1611 11611 11161111611111

611

116111111111116

11105000 1011

6

11 1000500

111610005011116

00005

10 54 6250. (4) 按最后一行展开得

10000 100

1

000 100 00 10 k

1

000 10

000 10

1

0 00 1

k000

1000

k 5

11.计算行列式

1 11 1x 1

1 11x 11

x1 mx1x1 (1) 1 1x 1 11

; (2) x2x2 mx21x 11 11

x3x3x3 mx 1 11 11

x4x4x4 解:(1) 依次将第2,3,4,5列加到第1列得

·10 ·

x1

x2

x 3

x4 m

x 1 11 1x 1x 1 11x 11

原式 x 1 1x 1 11

x 1x 11 11x 1 11 11

11 1x 1 11x 11

(x 1) 1x 1 11

x 11 11 11 11000x00x0

(x 1)0x00

x0000000

4(4 1) ( 1)

2

(x 1)x4 x4(x 1)

(2) 依次将第2,3,4行加到第1行得

44

4

4

xi

m 1

xi

mi 1

xi

mi 1

xi

m

ii 1

原式

x2x2 mx2x2x3x3x3 mx3x4x4

x4

x4 m

11114

(

x m)x2

x2 mx2x2i

i 1

x

3

x3x3 mx3x4

x4

x4

x4 m

1111

4 ( x0 m00

i m)

i 1

00 m0000 m

4

(m

x3

i)m

i 1

12.计算行列式

11·

·

a1 b1

(1)

a1 b2a2 b2a3 b2a4 b21 a1b2

a1 b3a2 b3a3 b3a4 b31 a1b3

a1 b4a2 b4a3 b4a4 b41 a1b4

a2 b1a3 b1a4 b11 a1b1

(2)

a2b11 a2b21 a2b31 a2b4 a3b11 a3b21 a3b31 a3b4 a4b11 a4b21 a4b31 a4b41 100

(3)

; (4)

11a30 1a401

00

a1a2

a1 b1

a1 b2a2 a1a3 a2a4 a3

a1 b3a2 a1a3 a2a4 a3

a1 b4a2 a1a3 a2a4 a31 a1b3

11123x

2

49x827x3

解:(1)依次将第3,2,1行乘 1加到第4,3,2行得

原式

a2 a1a3 a2a4 a31 a1b1

0

(2) 依次将第3,2,1行乘 1加到第4,3,2行得

1 a1b21 a1b4

原式

b1(a2 a1)b2(a2 a1)b3(a2 a1)b4(a2 a1)b1(a3 a2)b2(a3 a2)b3(a3 a2)b4(a3 a2)b1(a4 a3)b2(a4 a3)b3(a4 a3)b4(a4 a3)

a1b11 a1b21 a1b31 a1b4

(a2 a1)(a3 a2)(a4 a3)

b1b1b1

b2b2b210

00

b3b3b30 1

b4b4b4 10

1 10

0

(3) 按最后一列展开得

1

原式 a4 1

01

010

0001 1

0 a3 110 a20 11 a10

0 110 1

a1 a2 a3 a4

(4) 由Vandermonde行列式的计算公式得

·12·

原式 (x 3)(x 2)(x 1)(3 2)(3 1)(2 1) 2(x 1)(x 2)(x 3) 13.证明

a1 10 00a2

x 1 0

0 (1) Da30x 0

n

a11xn a 22xn an 1x an

an 100 x 1an

0

x

a1 10 000a2

x 1 000rx)ra0x 0

00 证:等式左端

n (n 1

3

an 200 x 10an 100 0x 1an an 1x

0x20

a1 10 000a2x 1

000rn (x2)rn 2a3

0x 000

r3

n (x)rn 3

r1n (xn )rnan 200

x 10an 100 0x 1f(x)00 000

1x 1

( 1)n 1

f(x)

f(x)

1x

1(n 1)阶

其中f(x) a 11xn an 1x an.

13·

·

210

(2) D

00

121 00012 00 00 00 00

n 1 21 12

证:1 n 1时,D1 2 1 1

21

2 假设当n k时结论成立,当n k 1时,若k 1 2,D2

12

4 1 3 2 1结论成立. 若k 1 3,将Dk 1按第一行展开得

21Dk 1

121

2Dk Dk 1 2(k 1) (k 1 1) (k 1) 1

1

12

1 1

1

11

ai(1

i 1

i 1

n

n

由数学归纳法,对一切自然数n结论成立.

a1

(3) D

1 1

1 a21

1

ai 0,i 1,2, ,n. ai

1 1 an

证:(用加边法)

1

等式左端 0

11 1

111 a2

1

1 1 1

111

1 1 1

10 0

10 0

100

01 a1 0

1a1

a2

1 1 an an

111 a1a2an

0 0

11 1

a10 0

0a2 0 00 an

·14·

nn

1111

a1a2 an ai(1 等式右端. (1 a1a2ani 1aii 1x yxy0 001x yxy 0001x y 00xn 1 yn 1

(4) Dn ,其中x y.

x y000 x yxy000 1x y

x2 y2

,等式成立. 证:当n 1时,D1 x y

x y

假设n k时等式成立,当n k 1时,若k 1 2,则

x3 y3

Dk 1 D2 x xy y ,等式成立. 若k 1 3,将Dk 1按一列展开,得

x yx yxy0 001x yxy 00

Dk 1 (x y)( 1)1 10 1x y 00

1x yk阶000

2

2

xy1

( 1)2 10

0

0x y1 0

0xy 0

0 0

000

x y 0

1x yk阶

xk 1 yk 1xk ykx(k 1) 1 y(k 1) 1

(x y)Dk xyDk 1 (x y) xy

x yx yx y

由归纳法原理,等式对一切自然数n都成立.

14.设f(x)是一个次数不大于n 1的一元多项式,证明如果存在n个互不相同的数

a1,a2, ,an使f(ai) 0,i 1,2, ,n. 则f(x) 0.

证:设f(x) kn 1xn 1 kn 2xn 2 k1x k0,依题意有

k0 a1k1 a1n 1kn 1 0

(1)

k ak an 1k 0

nn 1 0n1

因a1,a2, ,an互不相同,故(1)的系数行列式

·15·

a1

D

a2

an

a12 a1n 1

n 12

a2 a2

1 i j n

(aj ai) 0,

2n 1an an

所以关于k0,k1, ,kn 1的线性方程组(1)只有零解,所以k0 k1 kn 1 0,f(x) 0. 15.用Cramer法则解方程组

5x1 4x2 11

(1)

6x 5x 20 12

54

解:D 25 24 1 0,方程组有唯一解.

65114511

D1 55 80 25,D2 100 66 34,由克莱姆法则,

205620DD

x1 1 25,x2 2 34

DD 5x1 6x2 1

(2) x1 5x2 6x3 0

x 5x 0

23

56056 30

5 30

解:D 156 15 19

1 19

015010

[5 ( 19) ( 30) 1] 65 0,方程组有唯一解.

160

D1 0

56

56151501

510

25 6 19,D2 106

005

1.

1605

5,

015561

D3 1

50

010

所以由克莱姆法则得,x1

D119D11 ,x2 2 ,x3 . D65D1365

·16·

本文来源:https://www.bwwdw.com/article/7lzm.html

Top