envi遥感图像监督分类
更新时间:2024-01-21 05:18:01 阅读量: 教育文库 文档下载
envi遥感图像监督分类
监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。
遥感影像的监督分类一般包括以下6个步骤,如下图所示:
详细操作步骤
第一步:类别定义/特征判别 根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。
遥感图像处理软件下载就上遥感集市
启动ENVI5.1,打开待分类数据:can_tmr.img。以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。
通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。
第二步:样本选择
(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择\Region Of Interest\,打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。
1)在Region of Interest (ROI) Tool面板上,设置以下参数: ROI Name:林地
ROI Color:
2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;
3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;
4)这样就为林地选好了训练样本。
注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。
2、一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。 3、如果不小心关闭了Region of Interest (ROI) Tool面板,可在图层管理器Layer Manager上的某一类样本(感兴趣区)双击鼠标。
(2)在图像上右键选择New ROI,或者在Region of Interest (ROI) Tool面板上,选择工具。重复\林地\样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本;
(3)如下图为选好好的样本。
遥感图像处理软件下载就上遥感集市
(4)计算样本的可分离性。在Region of Interest (ROI) Tool面板上,选择Option>Compute ROI Separability,在Choose ROIs面板,将几类样本都打勾,点击OK;
(5)表示各个样本类型之间的可分离性,用Jeffries-Matusita, Transformed Divergence参数表示,这两个参数的值在0~2.0之间,大于1.9说明样本之间可分离性好,属于合格样本;小于1.8,需要编辑样本或者重新选择样本;小于1,考虑将两类样本合成一类样本。
遥感图像处理软件下载就上遥感集市
注:1、在图层管理器Layer Manager中,可以选择需要修改的训练样本。 2、在Region of Interest (ROI) Tool面板上,选择Options > Merge (Union/Intersection) ROIs,在Merge ROIs面板中,选择需要合并的类别,勾选Delete Input ROIs。
遥感图像处理软件下载就上遥感集市
图2.4 Merge ROIs面板
(6)在图层管理器中,选择Region of interest ,点击右键,save as,保存为.xml格式的样本文件。
注:1、早期版本的感兴趣文件格式为.roi,新版本的为.xml,新版本完全兼容.roi文件,在Region of Interest (ROI) Tool面板上,选择File>Open打开.xml或.roi文件。
2、新版本的.xml样本文件(感兴趣区文件)可以通过,File>Export>Export to Classic菜单保存为.roi文件。
第三步:分类器选择
根据分类的复杂度、精度需求等确定哪一种分类器。目前ENVI的监督分类可分为基于传统统计分析学的,包括平行六面体、最小距离、马氏距离、最大似然,基于神经网络的,基于模式识别,包括支持向量机、模糊分类等,针对高光谱有波谱角(SAM),光谱信息散度,二进制编码。下面是几种分类器的简单描述。
?
平行六面体(Parallelepiped)
根据训练样本的亮度值形成一个n维的平行六面体数据空间,其他像元的光谱值如果落在平行六面体任何一个训练样本所对应的区域,就被划分其对应的类别中。
?
最小距离(Minimum Distance)
遥感图像处理软件下载就上遥感集市
利用训练样本数据计算出每一类的均值向量和标准差向量,然后以均值向量作为该类在特征空间中的中心位置,计算输入图像中每个像元到各类中心的距离,到哪一类中心的距离最小,该像元就归入到哪一类。
?
马氏距离(Mahalanobis Distance)
计算输入图像到各训练样本的协方差距离(一种有效的计算两个未知样本集的相似度的方法),最终技术协方差距离最小的,即为此类别。
?
最大似然(Maximum Likelihood)
假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然度最大的一类当中。
?
神经网络(Neural Net)
指用计算机模拟人脑的结构,用许多小的处理单元模拟生物的神经元,用算法实现人脑的识别、记忆、思考过程。
?
支持向量机(Support Vector Machine)
支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。
?
波谱角(Spectral Angle Mapper)
它是在N维空间将像元与参照波谱进行匹配,通过计算波谱间的相似度,之后对波谱之间相似度进行角度的对比,较小的角度表示更大的相似度。
影像分类
基于传统统计分析的分类方法参数设置比较简单,在
Toolbox/Classification/Supervised Classification能找到相应的分类方法。这里选择支持向量机分类方法。在toolbox中选择/Classification/Supervised
Classification/Support Vector Machine Classification,选择待分类影像,点击OK,按照默认设置参数输出分类结果。
遥感图像处理软件下载就上遥感集市
图2.5 支持向量机分类器参数设置
图2.6 支持向量机分类结果
第五步:分类后处理
遥感图像处理软件下载就上遥感集市
包括更改类别颜色、分类后统计、小斑块处理、栅矢转换等,这部分专门有一节课讲解。在此不做叙述。
第六步:精度验证
对分类结果进行评价,确定分类的精度和可靠性。有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较抽象。
真实参考源可以使用两种方式:一是标准的分类图,二是选择的感兴趣区(验证样本区)。两种方式的选择都可以通过主菜单->Classification->Post Classification->Confusion Matrix或者ROC Curves来选择。
真实的感兴趣区验证样本的选择可以是在高分辨率影像上选择,也可以是野外实地调查获取,原则是获取的类别参考源的真实性。由于没有更高分辨率的数据源,本例中就把原分类的TM影像当作是高分辨率影像,在上面进行目视解译得到真实参考源。
(1)在Data Manager中,分类样本上右键选择Close,将分类样本从软件中移除
(2)直接利用ROI工具,跟分类样本选择的方法一样,即重复第二步,在TM图上选择6类验证样本。
注:可直接File>open,打开can_tm-验证样本.roi。
图2.7选择验证样本
遥感图像处理软件下载就上遥感集市
(3)在Toolbox中,选择/Classification/Post Classification/Confusion Matrix Using Ground Truth ROIs,选择分类结果,软件会根据分类代码自动匹配,如不正确可以手动更改。点击OK后选择报表的表示方法(像素和百分比),点击OK,就可以得到精度报表。
图2.8 验证操作面板
遥感图像处理软件下载就上遥感集市
图2.9分类精度评价混淆矩阵
下面对混淆矩阵中的几项评价指标进行说明:
?
总体分类精度
等于被正确分类的像元总和除以总像元数。被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所有真实参考源的像元总数,如本次精度分类精度表中的Overall Accuracy = (1849/2346) 78.8150%。
?
Kappa系数
它是通过把所有真实参考的像元总数(N)乘以混淆矩阵对角线(XKK)的和,再减去某一类中真实参考像元数与该类中被分类像元总数之积之后,再除以像元总数的平方减去某一类中真实参考像元总数与该类中被分类像元总数之积对所有类别求和的结果。
遥感图像处理软件下载就上遥感集市
Kappa计算公式
?
错分误差
指被分为用户感兴趣的类,而实际属于另一类的像元,它显示在混淆矩阵里面。本例中,林地有419个真实参考像元,其中正确分类265,12个是其他类别错分为林地(混淆矩阵中林地一行其他类的总和),那么其错分误差为12/419=2.9%。
?
漏分误差
指本身属于地表真实分类,当没有被分类器分到相应类别中的像元数。如在本例中的耕地类,有真实参考像元465个,其中462个正确分类,其余3个被错分为其余类(混淆矩阵中耕地类中一列里其他类的总和),漏分误差为3/465=0.6%
?
制图精度
是指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。如本例中林地有419个真实参考像元,其中265个正确分类,因此林地的制图精度是265/419=63.25%。
?
用户精度
是指正确分到A类的像元总数(对角线值)与分类器将整个影像的像元分为A类的像元总数(混淆矩阵中A类行的总和)比率。如本例中林地有265个正确分类,总共划分为林地的有277,所以林地的用户精度是265/277=95.67%。 注:监督分类中的样本选择和分类器的选择比较关键。在样本选择时,为了更加清楚的查看地物类型,可以适当的对图像做一些增强处理,如主成分分析、最小噪声变换、波段组合等操作,便于样本的选择;分类器的选择需要根据数据源和影像的质量来选择,比如支持向量机对高分辨率、四个波段的影像效果比较好。
遥感图像处理软件下载就上遥感集市
Kappa计算公式
?
错分误差
指被分为用户感兴趣的类,而实际属于另一类的像元,它显示在混淆矩阵里面。本例中,林地有419个真实参考像元,其中正确分类265,12个是其他类别错分为林地(混淆矩阵中林地一行其他类的总和),那么其错分误差为12/419=2.9%。
?
漏分误差
指本身属于地表真实分类,当没有被分类器分到相应类别中的像元数。如在本例中的耕地类,有真实参考像元465个,其中462个正确分类,其余3个被错分为其余类(混淆矩阵中耕地类中一列里其他类的总和),漏分误差为3/465=0.6%
?
制图精度
是指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。如本例中林地有419个真实参考像元,其中265个正确分类,因此林地的制图精度是265/419=63.25%。
?
用户精度
是指正确分到A类的像元总数(对角线值)与分类器将整个影像的像元分为A类的像元总数(混淆矩阵中A类行的总和)比率。如本例中林地有265个正确分类,总共划分为林地的有277,所以林地的用户精度是265/277=95.67%。 注:监督分类中的样本选择和分类器的选择比较关键。在样本选择时,为了更加清楚的查看地物类型,可以适当的对图像做一些增强处理,如主成分分析、最小噪声变换、波段组合等操作,便于样本的选择;分类器的选择需要根据数据源和影像的质量来选择,比如支持向量机对高分辨率、四个波段的影像效果比较好。
遥感图像处理软件下载就上遥感集市
正在阅读:
envi遥感图像监督分类01-21
最新论服务贸易壁垒的形式和特点1论文04-08
学校班主任年度工作计划例文合集04-03
药品基础知识试题2.001-19
中共中央组织部《关于妥善解决共产党员信仰宗教问题的通知》05-16
班加罗尔特利郝斯国际酒店(Hotel Telehaus International)04-13
混凝土习题 - 图文12-02
电子政务模拟题与答案209-18
临床药师知识技能大赛复习题库08-21
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 遥感
- 图像
- 监督
- 分类
- envi
- 重庆巴蜀中学中考模拟试卷-英语
- 厦门市翔安区闽南民俗文化度假村项目投资可行性报告资料要点
- 发展旅游业对当地经济发展的影响
- Book6 Unit1 基础知识测试
- 电路的组成和连接方式 练习题精选附答案 - 图文
- 工程化学2
- 国美电器经营管理手册客户系统分册一二三部分
- 日常实用英语大全
- 2018年贵州省黔东南州、黔南州、黔西南州中考物理试卷(原卷+解析版)
- 《经济法学》试题库
- 2018年江苏省徐州市高二学业水平测试二模地理试卷(word版含答案)
- 高级生物化学(摘要)
- 试题题库-—园林规划设计复习题最新版
- Dusmji新世纪大学英语综合教程2答案
- 淄博四中高中新课程实验实施方案
- 调查研究:关于规范全省行政审批中介服务的调查和思考
- 学会观课评课
- 2018年济南中考数学试题及答案解析
- 三软煤层回采巷道刚柔结合强力支护技术研究 实施方案
- 手术室护理不良事件发生原因及防范措施