2013专转本高数不定积分复习资料(同方)

更新时间:2023-09-27 07:33:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

同方专转本高等数学核心教程

第三章 不定积分

本章主要知识点:

? ? ?

不定积分的意义,基本公式 不定积分的三种基本方法 杂例

一、不定积分的意义、基本公式

不定积分基本特点是基本公式较多,灵活善变,复习此章节主要诀窍在于:基本公式熟练,基本题型运算快捷,有一定题量的训练。

1.性质

??f(x)d?x?d?f( x)

??f(x)dx??f(x)dx

?dF(x)?F(x)?C ??2.基本公式

f?(x)dx?f(x)?C f(n)dx?f(n?1)(x)?C

(1)

?xdx?xn1n?1xn?1?cx(n??1),?x1xdx?ln|x|?c

(2) (3)

?adx?axlna?c,?edx?e?c

?sinxdx??cosx?c,?cosxdx?sinx?c,

- 78 -

第三章 不定积分

?sec(4)

22xdx?tanx?c,?cscxdx??cotx?c

??a1a?x1222dx?arcsin12axa?c,

(5)

?xdx?2ln|a?xa?x2|?c

(6)??a1x?a122dx?ln|x?1axax?a|?c (7)?x2?arctan?c 二、不定积分的三种基本方法 1.凑微分法(第一类交换法) 基本原理:?(x)dx?d(?(x)dx)。 ?一些常见的固定类型 ????f(ax?b)dx?f(e?x1a?1f(ax?b)d(ax?b) f(e2)e?xdx?12????x)de?x xf(x)dx?x1n?1n2f(x)dx 1n?f(x)dx nn2f(x)dx?x)dx??xf(ln?f(lnx)dlnx?sinxf(cosx)dx???f(cosx)dcosx

x)dx??cosxf(sin?1?f(sinx)dsinx

?1??1fdx??f??2??x?x??x??1?d???x?? ?- 79 -

同方专转本高等数学核心教程

?sec2xf(tanx)dx??f(tanx)dtanx

f(secx)dsecx 等等。

?tanxsecxf(secx)dx??例3.1.

?x(2x142?1)22007dx

2007解:原式=

?(2x?1)3sinx?1d(2x?1)?13218032(2x?1)1322008?c ?c 例3.2.?cosxedx??e3sinx?1d(3sinx?1)?e3sinx?1例3.3.?x2sin(5x?7)dx 3解:原式?13?sin(5x?7)dx115333?115?sin(5x?7)d(5x?7) 33 ??cos(5x?7)?C dx dlnxu?lnx12141例3.4.?x1lnx2lnx?1lnx解:原式??2lnx?1?22u?1?12u?1du 1214

?12?(1?x12u?1dx )du?u?ln2u?1?C?lnx?ln2lnx?1?C 例3.5.?4?x14解:原式=?22212?(x)22dx?214arctanx22 ?C 例3.6.?cos1x(2tanx?1)secx222dx解:原式??1?2tan2xdx??1?2tan12xdtanx?12arctan(2tanx)?C

例3.7.

?sin(2xx)dx

121214解:原式?2sin2?2xdxu?2x?(1?cos2u)du?- 80 -

u?sin(2u)?C

第三章 不定积分

=

xx?e?x14sin(4x)?C

例3.8.

?edx

x解:原式??e3e?edx?x?ede?eexxex?C

例3.9.

?x?3x?2x?2x?3x?2x?23dx

解:利用综合除法知 ?x?2x?7?12x?2212x?12133 2原式??(x?2x?7?x?x?x?3x?1422)dx?x?x?7x?12lnx?2?C 63例3.10.?2dx 2x?2x?12解:原式? ? ??(x?x?x?1?1515x?x?1x55)dx 121313x?x?3312121x?x?22?x?1d(x?1)?2?2211?x2dx x?x?ln(1?x)?2arctanx?C dx 例3.11.?sin1dx,?cosx解:

?sinx?cos1xdx??sinsinx2xdx???dcosx1?cosxdsinx22??12ln1?cosx1?cosx?C dx??coscosx2xdx??1?sinx?12ln1?sinx1?sinx?C 注:此例对于三角函数相当重要,请熟练掌握。 *例3.12.

?2?cosxdx1

解:原式??(2?cosx)(2?cosx)dx

2?cosx22?cosx??4?cosxdx??4?cos22xdx??3?sindsinx2x

- 81 -

同方专转本高等数学核心教程

??4sec2secx22x?1dx?13arctan(sinx3) ?2?dtanx4tanx?32?13arctan(sinx3)

??(2tanx)13d2tanx2?(3)2?13arctan(sinx3)

?arctan(2tanx3)?13arctanx(sinx3)?C 例3.13. ?sinx?cosxdx ?dx?12sinx解:原式=?1(sinx?cosx?sinx?cosx)1?dx=2sinx?cosx212x?12lnsinx?cosx?c ??d(cosx?sinx)sinx?cosx =例3.14.?2sinx?3cosxdx 313f(x)?213f?(x)

cosx解:令f(x)?2sinx?3cosx,则f?(x)?2cosx?3sinx,cosx?3原式=?13f(x)?213f(x)2f?(x)dx?dx 313x?213ln|2sinx?3cosx|?C 例3.15.?2sin12x?cosx2解:原式=?2tan4secx2x?1dx??12tanx?12dtanx?12arctan(2tanx)?C 例3.16.?tanxdx 4解:原式=?[tan2x?tan2x?(tan22x?1)?1]dx 22dx=tanxdtanx?tanx?x?c ?? =?tanx(1?tan133x)dx??secxdx? =

tanx?tanx?x?c 2x?32例3.17.

?x?2x?2dx

- 82 -

第三章 不定积分

解:原式=

?(x?1)22(x?1)?52?1dx=?d(x?1)22(x?1)?1?5?1(x?1)?12dx

=ln(x?2x?2)?5arctan(x?1)?c

例3.18.

?x3?2x?x2dx

解:原式=?x?1?14?(x?1)2dx=12?d(x?1)22?4?(x?1)x?12?c ?14?(x?1)2d(x?1) =-4?(x?1)?arcsin xx2例3.19.?1?e?dxx2x解:原式=1?e2?e2xdx=x?2?de2xx=x?2ln(1?e2)?c 例3.20.dx ?(2x?1)(3x?2)1?e211?e2解:原式=??3(2x?1)?2(3x?2)(2x?1)(3x?2)dx=??3x?23dx??2x?1dx 2=?ln3x?2?ln2x?1?c 例3.21.?(x?1)1212(x?1)dx 11121解:原式=?(x?1)1e2x1?x?1?x2(x?1)dx=?2x?1??1?xdx =?2112x?1?14ln1?x1?x?c 例3.22.?dx ?11e?x?2x解:原式=

?ex1?e3?2xdx=?dx=?1?e?de?x?x2=?arcsine?x?c

1?(e)例3.23.

?secxtanxdx

3- 83 -

同方专转本高等数学核心教程

解:原式=

?secxtanxdsecx?xarctanx1?x12423222?(secx?secx)dsecx?4215secx?513secx?C

3例3.24.

?dx dx?2解:原式=

?tanx1?x4312?tanxd(arctanx)?32218arctan(x)?C

422.直接交换法 a)题型?f(ax?b)dx 方法:令t?ax?b,x?2a(t?b)a2, ?例3.25.f(ax?b)dx??tf(t)dt ?1x?1dx 2解:令t?原式=x,x?t, ?t?112tdt=2?dt?2?dtt?1=2t?2lnt?1?c=2x?2ln(1?x)?c 例3.26.?x?21x?1?32dx 解:令t?x?1,x?t?1 原式=?t2t2?2t?413dt?2?t?13t?1?1(t?1)?32dt??(t?1)12?3d(t?1)??1321(t?1)?3x?1?132dt

=ln(t?2t?4)?2arctan()?C?ln(x?2x?1?3)?arctan()?C

例3.27.

?6136dx x5x?6tx?t解:原式

dt??23dt=6?x?t1?tt?t32t3=6(t?2?t?1?11?t)dt

=2t?3t?6t?ln(1?t)?c x?33x?66x?ln(1?6=2

x)?c

- 84 -

第三章 不定积分

例3.28.

?1e?1xxdx

t?1?e解:原式

?x?ln(t?1)2?t1?2tt?12dt

=2?t12?12dt=ln1?t1?t?c=ln(1?e1?exx?1?1)?c b) 题型?f(ax?b)dx ???22f(a?x)dx 变换x?asint f(a?x)dx 变换x?atant f(x?a)dx 变换x?asect 2222例3.29.?9?xx2dx 解:令x?3sint, 原式??3sint?323cost3costdt=3?1?sinsint2tdt=3?1sintdt?3?sintdt 2 =ln1?cost1?cost?3cost?C=?321?ln1?9?x39?x32?9?x32?C 例3.30.?x141?x2dx 232解:令x?tant,原式? =??tan13sect4t?sectdt??sincost4tdt??1?sintsint4dsint

csct?csct?C

3例3.31.

?x23dx

x?4- 85 -

同方专转本高等数学核心教程

解:令x?2sect,

原式??8sect2tant342tantsectdt?8?sectdt 2=8(1?tant)dtant?8tant?

例3.32.?83tant?C(还原略)

3?1?1?x?23dx 2解:令x?tant, 原式??sec13tsectdt?2?costdt?sint?c?dx x1?x2?c 例3.33.?(x?2)1x?2x?22解:令x?1?tant, 原式=?sint?cost122ln|1?1?1dt??sinsint?cost2t?cost2dt=??dcost1?2cost2??1?2sindsint2t =?2cost2cost|?122ln|1?1?2sint2sint。 |?C(还原略)3.分部积分法 公式:

?udv?uv??vdu ??P?x?emx四种基本题型 a)题型1 dx 例3.34.

?(2x?1)e122xdx

2x解:原式=

?(2x?1)de12(2x?1)e?12(2x?1)e?C

2x?1?e22xd2x

=

2x?e2x例3.35.

?e2x?1dx

- 86 -

第三章 不定积分

解:原式t?2x?1?etdt??tde2x?1tttt?te?e?C

=2x?1ex?x24?e2x?1?C

例3.36.

?xxe232dx

x4解:

??x2?122xed???2??2uu2?ed(x4u?x222)?x2?2uedu?x2u12x4x4e2?2?ude?u12x4e2 =2ue?2e?12x4e2?C?xe22?2e2?12e2?C 题型2 ?Pm(x)cos?xdx或?Pm(x)sin?xdx 例3.37.?3xsin(2x?1)dx ?3232解:原式=?xdcos(2x?1)??3432xcos(2x?1)?32?cos(2x?1)dx =?xcos(2x?1)?2sin(2x?1)?C 例3.38.?xcosxdx 解: 原式=?xxx?21?cos2x214142dx?1418x24?1xdsin2x ?4? =42??xxsinx?xsin2x?dx ?sin2xdx cos(2x)?C 4例3.39.?cosx解: 原式=?xdtanx?xtanx??tanxdx?xtanx?ln|cosx|?C x?1)dx

例3.40.

?sin(解:原式t?x?sin(t?1)2tdt??2?tdcos(t?1)??2tcos(t?1)?2?cos(t?1)dt

xcos(x?1)?2sin(x?1)?C

??2tcos(t?1)?2sin(t?1)?C??2- 87 -

同方专转本高等数学核心教程

题型3

?e?x?xcos?xdx或?esin?xdx

例3.41.

?e2xcos3xdx

2x解:设I??e1212eecos3xdx?cos3x?cos3x?2e2x12?cos3xde2x2x?12e94122xe2xcos3x?34e3?e22x2xsin3xdx

94 =

2x3434?sin3xdee2x?cos3x?sin3x??e2xcos3xdx?C

=2xsin3x?C?313e2xI 解得:I?题型4 13cos3x?sin3x?C ?Pm(x)l?n(o)r(a?rctan?( ) dx例3.42.?xln(x?1)dx 1ln(x?1)dx?222解:原式==12xln(x?1)?1x?11221dx ?2x?1x2 =1212xln(x?1)?xln(x?1)?21214?(x?1?x?2)dx =12x?lnx?1?C 例3.43.?t?xxln(x?1)dx 解:原式??tln(t?1)2tdt?tln(t?1)?3323?ln(t?1)dt3dt=2333 =232?3t?1332ttln(t?1)?23?(t?t?1?21t?1)dt 2t12 =tln(t?1)?(?t?t?ln(t?1))?C 3332 =例3.44.

233x2ln(x?1)?229x2?13x?23x?23ln(x?1)?C ??2x?1?lnxdx

222解:原式?22lnxd(x?x)?(x?x)lnx?2?(x?x)?1x2lnxdx

?(x?x)lnx?2(x?1)lnxdx?(x?x)lnx?2lnxd(22?2?x22?x)

- 88 -

第三章 不定积分

22 ?(x?x)lnx?2( ?(x例3.45.

222x2?x)lnx?2?(x1?x)dx 2x2122?x)lnx?(x?2x)lnx?2x2?x?c

?xarctan2xdx

1arctan2xdx?22解:原式? ??141412xarctan2x?4x?1?11?4x18222?1?4xx22dx

1212xarctan2x?xarctan2x?22?dx ?例3.46.x?arctan2x?c ?(x?1)arcsinxdx x?sint解:原式??????????(sint?1)tcostdt?1412?tsin2tdt??tcostdt ?tdcos2t??tdsint 4?1cos2tdt?tsint??sintdt ?418sin2t?tsint?cost?C 2tcos2t1414tcos2t?arcsinx?(1?2x)?14x1?x?xarcsinx?21?x?C 24.四类杂例 (1)含绝对值的不定积分 例3.47.?xdx ?x2?c1,x?0??2解:原式?F(x)??,F(x)可导必连续:c1?c2,

2x???c2,x?0??2- 89 -

同方专转本高等数学核心教程

????故原式?F(x)??????例3.48.

xx222?c1,x?0 。

2?c1,x?0?x?2x?3dx

2?x2?2x?3,x??1?22解: f(x)?x?2x?3?(x?3)(x?1)???x?2x?3,?1?x?3, ?2?x?2x?3,x?3?1?3??f(x)dx?????1??3x?x?3x?c1,133232x??1原式?F(x)??x?x?3x?c2,?1?x?3 , 32x?x?3x?c3,x?31?1??1?3?c??1?3?c21??33由F(x)可导知,成立?, ??27?9?9?c?27?9?9?c23?3?310?c???c12??3解得:? , 1044?c?18?c?18??c1??c132?33??1?3??所以,F(x)?????1??3(2)分段函数积分

x?x?3x?c1,13x?x?3x?323232x??1?c1,?1?x?3 。 x?3103x?x?3x?443?c1,x?1?x,?例3.49.f(x)??2x?1,1?x?2,求?f(x)dx 。

?x?1,x?2? - 90 -

第三章 不定积分

解:F(x)???x2?c1,x?1?2??2f(x)dx??x?x?c2,1?x?2,

?2x??x?c3,x?2??2?1??c1?2?c2由F(x)可导知,成立?2 ?6?c?4?c23?解得:c2??32?c1,c3?2?c2?12?c1 所以,??x2?c1,x?1?2?3?2f(x)dx??x?x??c1,1?x?2 。 2??x21?x??c1,x?2?2?2(3)递推关系 例3.50.In??sinn?12nxdx 解:In??sin?xdcosx xcosx?2??n?1cos?In??sinIn??sinn?1xsinn?2xdx nn?1xcosx??n?1??sinn?2xdx??n?1??sinxdx nIn??sinn?1xcosx??n?1?In?2 In??1nsinn?1xcosx?xdx

2n?2?n?1?nIn?2 ?n?1,2,....?. .例3.55.In?解:In??tan2n2n?(tan?tanx?tanx)dx??tan2(n?1)dx

In?2n?2xdtanx??tan2(n?1)dx

- 91 -

同方专转本高等数学核心教程

In?12n?1tan32n?1x?In?1 ?n?1,2,....?. .例3.56.I?解:I??secxdx

2?secxdtanx?secxtanx??tan?secxdx,

14ln1?sinx1?sinxxsecxdx

=secxtanx?I? I?12secxtanx??C (4)一些特殊的变换 例3.57.?x1x16(1?x)2dx 解:令t?, 66原式??t?1??dt??dt ?2?2?11?t???t??1?2?t??t15131??42??t?t?t?arctant?C ????t?t?1?dt?2531?t????115x5?113x3?1x?arctan1x?C 例3.58.?1?x1?x1?x1?x?4tdx 解:令t?,解得:t2?1?x1?x,t?xt?1?x,x?221?t1?t22,则 dx?(1?t)22dt

原式???(1?t?4t2t?tanu2)2dt???4tanusecu42secudu

2 - 92 -

第三章 不定积分

??4?sin(5)一些特殊积分 例3.59.

2udu??2?(1?cos2u)du??2u?sin2u?C。

?e2x(tanx?1)dx

2x2解:原式=

2x?esecxdx?2?e2x22xtanxdx?2x?e2xdtanx?2?e2x2xtanxdx

=etanx?2?etanxdx?2?ex?1xtanxdx?etanx?C 例3.60.?(1?x??e?ex?1x1x)edx 12解:原式=dx?dx??x(1?x?xex?x?1x)ex?1xdx )??ex?1xx?1x =d(x?x?1x1xdx??xdex?1x =?e2x?1x1xdx?xex2??edx?xex?1x?C 例3.61.?(x?1)ex22dx x2x2x2x2x2解:原式=

?xde2??e2dx?xe2??e2dx??e2dx?xe2?C 单元练习题3 1.

?dcos2x? 。 22.已知f(cosx)?sinx,则?f(x?1)dx? 。 3.

d?1?3tanxln(1?)dx?? 。 ??dx?x?4.已知

?f(x)dx?21?xx2?C,则limf(h)?f(?h)hh?0? 。

5.已知

?xf(x)dx?xe,则f(x)? 。

6.下列积分谁正确( )

- 93 -

同方专转本高等数学核心教程

A.

?xdx?1a1a?1dx?xa?1?C?a为常数? B.?xsinx2dx??cos2x2?C1x?C

C.

?3?2x12ln3?2x?C D.?lnxdx?7.计算下列不定积分

(1)

?31?3xdx (22)

?xearctxan3dx

(1?x(2)22)??1x(1?x)arctanx1?x2dx (23)?sin?lnx?dx ?eex2x2sinxdx (3)dx (24)(4) ?1?x?tan31?x24dx (25)?arctanexdx dx (5)xdx (26)?cosx2xx(6)??11?e12xdx (27)?(1?x)1xe2dx (7)x(1?x)dx (28)?sinxcos4xdx (8)?cosx2?cos2xx2dx (29)?1x1??4x?3 (9)?1?x4dx 2 (30)?sinsinx3x?cosx3dx (10)?x?x?1x?214dx (31)?xx?221?x2dx (11)

?cosxdx

(32)

?xln?4?x2?dx

(12)

?tanxcosxlnxdx (33)

?x?1?x?dx

22arctanx(13)

?x1?lnxdx (34)

?e2x(tanx?1)dx

2 - 94 -

第三章 不定积分

(14)

?xeexxdx ?1 (35)

?xlnx?1?x?22dx

(15)

??xx2a?xx222dx

(36)

?sin2x1?cosx4dx

(16)dx (37)a?x??|1?x|?|1?x|?dx (17)?xln2xdx (38)?max?x?ex2,x3?dx dx (18)?sinxlntanxdx (39)1?sinx1?cosx(19)?arctan?(arcsinxdx (40)?x?1?xe?dx xx?1(20)x)dx 2 ?(41)????x?3x?1?x?1??dx x?3??(21)

?xsinxdx 历年考试真题 1.(2001)不定积分?11?x11?x2dx?( ) A.

11?x2 B. 2?C C. arcsinx D. arcsinx?C 2. (2001)计算

?1?e1ae2xxdx。

3. (2002)设f(x)有连续的导函数,且a?0,1,则下列命题正确的是( ) A.

?f?(ax)dx?f(ax)?C B.

??f?(ax)dx?f(ax)?C f?(ax)dx?f(x)?C

C. (?f?(ax)dx)??af(ax) D.

- 95 -

同方专转本高等数学核心教程

4. (2002)求积分

?xarcsinx1?x42dx

5. (2003)若F?(x)?f(x),f(x)连续,则下列说法正确的是( )

A.

?F(x)dx?f(x)?c B. ?f(x)dx?F(x)?c D.

ddxddx?F(x)dx??F(x)dx?f(x)dx f(x)

C.

6. (2003)?xlnxdx ?arcsinx1?x237. (2004)求不定积分dx?_____ 8. (2004)设f(x)的一个原函数为9. (2005)若exx,计算?xf?(2x)dx ?f(x)dx?F(x)?C,则?sinxf(cosx)dx?() A. F(sinx)?C B. ?F(sinx)?C C. F(cosx)?C D. ?F(cosx)?C 10. (2005)计算

本章测试 1.f(x) 的一个原函数为3tanxsecxdx ?1x,则f?(x)?_________。 2.

?dcosx?________3x。 3.

?(xe)?dx?______, 4. 已知

?f(x)dx?xdx

x221?x

?c,则?sinxf(cosx)dx?_______。

5.

?(x?1)ln6.

?lnxxdx

- 96 -

第三章 不定积分

7.

?dxx2

24?xdx

28.

?cossin2x2x9.

?1?cos2xdx ?1?sinxdx 31?sinx10.

11.

?(xlnx)22(lnx?1)dx 12.

?x?4x2dx 13.

?2sinx?cosxdx sinxx, cosx14.已知f(x)的一个原函数为 证明:??32xf?(x)?xcosx?4xsinx?6cosx?C 15.已知函数f(x)有二阶连续导数, 证明:xf??(2x?1)dx?x2f?(2x?1)?14f(2x?1)?C 16.

?ln(x?x?1)dx 2 单元练习题3答案 e1??x?x?c 3.tanxln?1?? 4.2 5.e?1.cos2x 2.? 6.C 3xx??23x3x7.解:(1)原式=?1?331?3xd(1?3x)=?144(1?3x)3?C

- 97 -

第三章 不定积分

=?(34)原式=

arctanxx2x2?ln|x|?12ln(1?x)?212arctanx?C

2x2?e(tanx?1?2tanx)dx?2x?edtanx?2?e2x2xtanxdx

=etanx?2?tanxedx?2?e2x2xtanxdx?C=etanx?C

(35)原式=?12?lnxd(211?x122)??1lnx21?xx2?12?(1?x12)xdx =? =?1lnx21?x1lnx21?x2???(1x?1?x142)dx 212ln|x|?ln(1?x)?C (36)原式=?11?cos4dsinx2x???dcos22xx)2??ln(cos2x?1?cos4x)?c

1?(cos??x?1?(1?x)??2,x??1?(37)令f(x)?|1?x|?|1?x|??1?x?(1?x)?2x,?1?x?1 ?1?x?(x?1)?2,x?1???2x?c1,x??1?2f(x)dx??x?c2,?1?x?1 ?2x?c,x?13?2 F(x)??由连续特性知:2?c1?1?c2,1?c?2?c3,?c2?1?c1,c3??1?c2?c1 x??1??2x?c1,?2故F(x)??x?1?c1,?1?x?1 ?2x?c,x?11?(38)解:f?x??max?x2,x3?3??x,x?1 ? ?2??x,x?1?14x?c1,x?1??4原式=?

?1x3?1?c,x?11?12?3- 103 -

同方专转本高等数学核心教程

xx??sin?cos??22?x?(39)原式=e?dx ?2?x?2cos???2??0.5?e(tanx2x2?1)dx?0.5?e(secx2x2x2?2tanx2)dx

?x??xedtan????2??x?etanx2dx?etanxx2??etanxx2dx??etanxx2dx?C ?etanx2?C (40)原式=?xe?1?xe?xx?x?1?exdx?1?1?xxx?d?xe??lnxe?ln1?xe?C xx???1?xe??xe(41)令u?x?3x?1u?3u?122,u2?x?3x?1,xu?u22?x?3 所以x?,dx??8u?u2?1?2du 1??8uu?11?du??8du??8du 原式=??u??222??22uu?1???u?1??u?1?2 ?4ln1?u1?u?C?4lnx?1?x?1?x?3x?3?C

本章测试答案 1.

2x3 2.cosx?C 3. xe?C 223x4. ?cosxsinx2?C??cotx?C

x25.原式=

?lnxd(?(x22?x)?(x2x22?x)lnx??(x22?x)?1xdx

2?x)lnx?4?x?C

- 104 -

第三章 不定积分

26.原式u?x?2sintx?lnuu2udu?4?lnudu?4ulnu?4u?C?4xln1?2costdt

x?4x?C

7.原式

???14?4sin2t?2costcot(t)?C

2??144?xx?C sinxcosx8.原式=?2sinxcosxcosxx2?C 2dx?2?dx??2lncosx?C 9. tanx?10.?2sinx?C 11.

255(xlnx)2?C x?4x212.ln(x?4?x)?252?C 13.?15x?ln|2sinx?cosx|?C sinxx)??xcosx?sinxx3214.证明:f(x)?(, 2

?3xf?(x)dx??xdf(x)?xf(x)?3?xf(x)dx 3=x(xcosx?sinx)?3xdsinx?3sinxdx?xcosx?4xsinx?6cosx?C ??215.

?xf??(2x?1)dx?=

1?2?2142xf??(2x?1)d(2x?1)?f?(2x?1)dx?x21xdf?(2x?1) ?21x2x2f?(2x?1)?f?(2x?1)?1f?(2x?1)??4f?(2x?1)d(2x?1)

f(2x?1)?C

16.原式xln(x?x?1)??xx?12dx?xln(x?x?1)?2x?1?C

2

- 105 -

同方专转本高等数学核心教程

(2)原式=2?11??x?2dx?2arctanx?C

(3)原式=

?arctanxd?arctanx??12arctanx?C

?12(4)原式=

?x?x31?x?2?2dx??d?x?x??x?x??12?12arctanx?x2?1?C

?2(5)

?(tanx?tanx)dx?2?tanxdx??tanxdtanx??dcosxcosx ?0.5tanx?ln|cosx|?C dxx(6)

?e1?e?2x???de?x?2x??ln(e?x?1?e?2x)?C 1?ed(x?(7)原式=12)12?arcsin)2x?1212?c?arcsin(2x?1)?C?14?(x?(8)原式=??dsinx2?1?2sinx122??dsinx3?2sinx2?1?2d22sinx2 (3)?(2sinx)arcsin6sinx3?C (9) 原式=?(x?1?31x?12)dx?x22?x?ln|x?1|?C 13)dx?14x?4(10)原式=?(x?2x?3x?6??secxdx?423x?22x?133323x?6x?13ln|x?2|?C

2(11)原式=?(1?tanx)dtanx?tanx?tanx?C (12)原式=(13)原式=

?cos?23sinx3/2xdx???cosdcosx3/2x?2cos?12x?C du?3lnx1?lnx32d?lnx?u?lnx23?u1?u?(1?u?11?u)d(u?1)

=

(u?1)?21?u?C?(1?lnx)2?21?lnx?C

- 98 -

第三章 不定积分

(14)原式=2xd?e?1?2xe?1?2?2t1?t1t?1x2a?x2xxxe?1dx

t?e?1x?ln(t?1)x??22xe?1?2?txx2dt

?2xe?1?4?(1?)dt?2xe?1?4e?1?4arctanxxe?1?C

x(15)令x2a?x?u,得?u,x?2au?xu, 222x?2au1?u22,dx??4au(1?u)22du 则原式=?1?u22au22u3?4au(1?u)222du??8a2?(1?uu32)3du u?tant??8a ??8a2?sectant42tsectdt costdt??8a242?sintcost23?sina23tcostdt??2asint?C(代入略) a224(16) 原式 x?asint ??asintacostxa?2acostdt?222?(1?cos2t)dt?2t?a24sin2t?C a22arcsinxx2t2a?x?C 2tdt?8?tln22(17)原式t??tln2tdt?83?ln32dt3?83tlnt?32163?tlntdt

2 ?8383tlnt?3169?lntdttlnt?33?8333tlnt?2169tlnt?169?t2dt ?tlnt?321691627t?C (18)解:原式??lntanxdcosx=?cosxlntanx???cosx?cotx?sec2xdx

??cosxlntanx? ??cosxlntanx??sin121xdx

|?C

ln|1?cosx1?cosx- 99 -

同方专转本高等数学核心教程

22t?x(19)原式?2?arctant?2tdt??arctantdt2?tarctant?x?2?1?ttdt

x?C

?tarctant?t?arctant?C?xarctanarcsinx?tx?arctan(20)原式

?2?t?costdt??2?tdsint?tsint?2?tsintdt

222 ?tsint?2tdcost?tsint?2tcost?2costdt

? ?tsint?2tcost?2sint?C?xarcsinx?21?xarcsinx?2x?C x?t222(21)解:原式??t23?sint?2tdt?2?tsintdt 33232??2?tdcost??2tcost?6?t?costdt??2tcost?6?tdsint 32??2tcost?6tsint?12?tsintdt 32??2tcost?6tsint?12?tdcost ??2tcost?6tsint?12tcost?12sint?C 332??2x2cosarctanx?tx?6xsintx?12txcosx?12sintx?C (22)原式It?tanx??tantesectdt?tt?costsint?cost?edt?t?esintdt t??sintdet?esint?t?ecostdt?esint?ttt?costde t?esint?ecost?I?12esint?t?e12esintdt?esint?ecost?I ?sin(tanx)?12earctanx12ecost?C?tarctanx?cos(tanx)?C (23)解:I??sin(lnx)dx?xsin(lnx)??cos?lnx?dx ?xsin(lnx)?xcos?lnx???sinxlnxdx?xsin?lnx??xcos?lnx??C?I

I?(24)原式?12(xsin(lnx)?xcos(lnx))?C

2x?e?1?cosx2dx?14e2x?12?e2xcosxdx,令I??e2xcos2xdx

- 100 -

第三章 不定积分

I=

12????cos2xde12121214eee2x2x?12121212e2xcos2x?2x?e2xsin2xdx

cos2x?cos2x?cos2x??sin2xdesin2x?ee2x2x

2x2x?C??ecos2xdx

2xsin2x?C?I

I?e2xcos2x?e2x2xsin2x?C 18e2x原式?14e?18e2xcos2x?sin2x?c x?x(25)原式??e?xarctanedx???arctanedexxx??ex?xarctane?12x?e?xex2x1?e)?c dx ??(26)原式?arctanee??1?e2x?e2x2x1?edx??arctaneex?x?ln(1?e2x?xdtanx?xtanx??tanxdx?xtanx?ln|cosx|?c (27)原式??e(xx1x?1?x1(x?1))dx?2x?1?xexexdx??edx1x?1 ??1?xdx?1?x??1?xdx?sinx1cosx4eee(28)原式?dx??x?1sinx4??c dx???1u12dcosx(1?cosx2sinxcosx222)cosx14 u?cosx???(1?u1udu2)u4???(1?u?u)du?1?u?u24???1udu?4??1?u?u22du ????1du?413?(1u12?11?u12)du?213u?3??ln|1?u1?u|?c 3cos4x?cosx?ln|1?cosx1?cosx|?c

x?t(29)原式?4x?t?t12(1?t)34tdt?4?3t(1?t)3dt

?4(?1(1?t)2?1(1?t))dt??341?t?21(1?t)2?C

- 101 -

同方专转本高等数学核心教程

??41?4x?2(1?4x)2?C

(30)原式??tanx?sectan32xx?1dx??tantanx3u?tanxx?1dtanx13??1?uudu3

?1?u?1??u?1???u2?u?1?du?3?u?1??u2?u?1?u?12?2??uu?12?u?1du?13?u?1du1

32du?13ln|1?u| ?1?31?3?u????2?4??1616?ln(u?u?1)?212?23u?arctan112?2?1ln|1?u|?C 33?ln(tanx?tanx?1)?sint?222?2tanx?1?1arctan???ln|1?tanx|?C 33??3dcostsin2x?sint(31)原式?sinln|tcost?costdt???t?2?csctdt 2 ??121?cost1?cost2|?2cot(t)?C 2u?x2(32)原式?121212?ln(4?x)dx?12?ln(4?u)du?12uln(4?u)??4?udu u??(33)原式=uln(4?u)?u?4ln(4?u)?C xln(4?x)?x?4ln(4?x)?C 1x22222?arctanx(arctanxx?111?x12)dx?dx?2?arctanxdarctan21x?12arctan2x =???x1?x2122x

=?arctanxxarctanxx??1?x?xx1?x1?2?dx?12arctan2x

=???xdx??x2?1?x?dx?12arctan2x

- 102 -

本文来源:https://www.bwwdw.com/article/7l4d.html

Top