八年级数学上册 5.2平面直角坐标系精品教案 北师大版

更新时间:2023-05-17 13:40:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

5.2平面直角坐标系(第1课时)

教学目标:

【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。

2、认识并能画出平面直角坐标系。

3、能在给定的直角坐标系中,由点的位置写出它的坐标。

【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意

识。

2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐

标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

【情感目标】 由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现

实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

教学重点:

1、 理解平面直角坐标系的有关知识。

2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。3、由点的坐标观察,

纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

教学难点:

1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。

2、坐标轴上点的坐标有什么特点的总结。 教学方法:讨论式学习法

教学过程设计:

一、导入新课

『师』 :同学们,你们喜欢旅游吗?

假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(图5-6) (1) 你是怎样确定各个景点位置的?

(2) “大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各

多少个格?

(3) 如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?

在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式。在这个问题中大家看用哪种方法比较合适?

『生』 用反映直角坐标思想的定位方式。

『师』 在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课的

任务。 二、新课学习

1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。 『师』看书,倒数第二段P130 ~P131第一段。(三分钟后)请一位同学加以叙述。

『生』在平面内,两条互相垂直用公共原点的数轴组成平面直角坐标系。通常, 有序实数对(a,b)叫做点P的坐标。

『师』在了解有关直角坐标系的知识后,我们再返回刚才讨论的问题中,请大家思考后回答。

『生』(2)“大成殿”在“中心广场”南两格,西两格。“碑林”在“中心广场”北一

格,东三格。

(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则 “碑林”的位置是(3,1)。“大成殿”的位置是(-2,-2)。

『师』很好,在(3)的条件下,你能把其他景点的位置表示出来吗?

『生』能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7)。 例题讲解(出示投影)例1 课本P131。

图1 图2

y

E

AD

B1C

x

例1 写出图1中的多边形ABCDEF各各顶点的坐标。让学生回答。 『师』 :上图中各顶点的坐标是否永远不变? 『生甲』 :是。

『生乙』不是。当坐标轴的位置发生变动时,各点的坐标相应地变化。 『师』你能举个例子吗?

『生』可以,如图2,若以线段BC所在的直线为x轴,纵轴(y轴位置不变,则六个顶点的坐标分别为:A(-2,3),B(0,-3),C(3,0),D(4,3),E(3,6),F(0,6) 『师』那大家再思考这位同学的结论是否是永恒的呢?

『生』不是。还能再改变坐标轴的位置,得出不同的坐标。『师』 :请大家在课后继续进行坐标轴的变换,总结以一下共有多少种。 3、想一想 在例1中,

(1)点B与点C的纵坐标相同,线段BC的位置有什么特点? (2)线段测定位置有什么特点? (3)坐标轴上点的坐标有什么特点?

『师』由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B、C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。

请大家讨论第(2)题。

『生』由C(3,-3),E(3,3)可知,他们的横坐标相同,即C、E两点到y轴的距离相等,所以线段CE平行于纵轴(y轴),垂直于横轴(x轴)

『师』请大家找出坐标轴上的点。

『生』B(0,-3),A(-2,0),D(4,0),F(0,3) 『师』这些点的坐标中由什么特点呢? 『生』坐标中都有一个数字是0。

『师』从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上。当两个数字为0时,这个点是否在坐标轴上?

『生』当两个数字都为0时,就是坐标原点(0,0),原点既在x轴上,又在y轴上。 『师』那如何确定在哪个坐标轴上呢?

『生 』A(-2,0),D(4,0)在x轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B(0,-3),F(0,3)在y轴上,可知它们的横坐标为0,纵坐标不为0。

『师』经过大家的共同探讨,我们可以总结出:坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。

『师』刚才已知x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限。

各个象限内的点的坐标特征是怎样的?

『生』第一象限(+,+), 第二象限(-,+),

第三象限(-,-), 第四象限(+,-)。

4、做一做

(出示投影) 书P131

『师』请大家先独立思考,然后再进行交流。

『生』A(-3,4),B(-6,-2),C(6,-2),D(9,4)

A与D两点的纵坐标,B与C两点的纵坐标相同,因为AD、BC分别平行于横轴,A与B,C与D的横坐标不同,因为AB与CD是与x轴斜交,他们向横轴作垂线,垂足不同。

三、随堂练习

补充:1、在下图中,确定A、B、C、D、E、F、G的坐标。

yC

E

F

AD

1

B

x

(第1题) (第2题) 2、如右图,求出A、B、C、D、E、F的坐标。 四、本课小结

1、 认识并能画出平面直角坐标系。

2、 在给定的直角坐标系中,由点的位置写出它的坐标。 3、 能适当建立直角坐标系,写出直角坐标系中有关点的坐标。

4、 横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直

线平行于x轴,垂直于y轴。

5、 坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。

6、各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),第三象

限(-,-), 第四象限(+,-)。 五、课后作业

课本P132 习题5.3

5.2平面直角坐标系(第2课时)

教学目标:

【知识目标】:1、在给定的直角坐标系下,会根据坐标描出点的位置。

2、通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直

角坐标系的基本内容。

【能力目标】:1、经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形

结合思想,培养学生的合作交流能力。

2、通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意

识。

【情感目标】 通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,

提高学生学习数学的兴趣。

教学重点:

在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。 教学难点:

在已知的直角坐标系下找点、连线、观察,确定图形的大致形状 教学方法: 导学法

教具准备:方格纸若干张 教学过程设计:

一、 导入新课

『师』在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。 练习:指出下列各点所在象限或坐标轴: A(-1,-2.5),B(3,-4),C( F(0,

23

14

,5),D(3,6),E(-2.3,0),

), G(0,0) (抽生答)

『师』由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

二、 新知学习

1、『师』请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的

坐标,在直角坐标系中描点,并依次用线段连接起来。

(-9,3),(-9,0),(-3,0),(-3,3)(学生操作完毕后) 『师』 下面大家看和我画的一样吗?

『生』 一样。

『师』 这是一个什么图形? 『生』 长方形。

2、(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。 (1)(-6,5),(-10,3),(-9,3),(-3,

3),(-2,3),(-6,5);

(2)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9); (3)(3,7),(1,5),(2,5),(5,5)(6,5),(4,7);

(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

观察所得的图形,你觉得它象什么?

『师』 分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?(学生操作)

『师』 (出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么?

『生』 这个图形像一栋“房子”旁边还有

一棵“大树”。 3、做一做

(出示投影)书 P134

『师』 在书上已建立的直角坐标系画,要求每位同学独立完成。 (学生描点、画图)

『师』(拿一位做对的学生的作品投影)

你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?

『生』像猫脸。 三、随堂练习

(补充)1、在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

(2)(0,0),(4,-3),(8,0),(4,3),(0,0);

(3)(2,0)观察所得的图形,你觉得它像什么?(像移动的菱形)

2、在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的“十”字。

(选取的坐标系不同,得出的坐标也不同。)

『师』 现独立完成,然后小组讨论是否正确? 四、本课小结

本节课在复习上节课的基础上,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。 五、活动与探究

『师』 在例题和练习中,我们画出了不少美丽的图形,下面我们自己设计一些图形,并把图形方赛直角坐标系下,写出点的坐标。大家一定要自己设计,然后我们展示给同学们,看谁设计的图形最漂亮?如右图:

六、课后作业 课本P135 习题5.4

5.2平面直角坐标系(第3课时)

教学目标:

【知识目标】1、进一步巩固画平面直角坐标系,在给定的直角坐标系中,会根据坐标轴描出

点的位置,由点的位置写出它的坐标。

2、能在方格纸上建立适当的直角坐标系,描述物体的位置。 3、能结合具体情景灵活运用多种方式确定物体的位置。

【能力目标】 根据已知条件有不同的解决问题的方式,灵活地选取既简便又易懂的方法求

解是本节课的重点,通过多角度的探索既可以拓宽学生的思维,又可以从中找到解决问题的捷径,让学生的解决问题的能力得以提高。

【情感目标】1、通过学习建立直角坐标系有多种方法,让学生体验数学活动充满着探索与创

造。

2、通过确定旅游景点的位置,让学生认识数学与人类生活的密切联系,提高他们

学习数学的兴趣。

教学重点:根据实际问题建立适当的坐标系,并能写出各点的坐标。 教学难点:根据已知条件,建立适当的坐标系。 教学方法:探究式学习 教具准备:方格纸若干张。 教学过程设计:

一、 创设问题情境,引入新课

『师』 :在前两节课中,我们学习了在直角坐标系下由点找坐标,和根据坐标找点,

并把点用线段连接起来组成不同的图形,还自己设计出了不少漂亮的图案。这些都是在已知的直角坐标系下进行的,如果给出一个图形,要你写出图中一些点的坐标,那么你必须建立直角坐标系,直角坐标系应如何建立?是惟一的情形还是多种情况,这就是本节课的内容。

二、 探索新知

1、【例】如图,矩形ABCD的长与宽分别是6,4, 建立适当的直角坐标系,并写出各个顶点的坐标。

『师』在没有直角坐标系的情况下师不能写出各个顶点的坐标的, 所以应先建立直角坐标系,那么应如何选取直角坐标系呢?请大家思考。 『生1』 如图所示,以点C为坐标原点, 分别以CD、CB所在直线为x轴、y轴, 建立直角坐标系。由CD的长为6,CB

长为4,可得A、B、C、D的坐标分别 为A(6,4),B(0,4),C(0,0), D(6,0)

『生2』 如下图所示,以点D为坐标原点,

分别以CD、AD所在直线为x轴、y轴,建立直角坐标系。

yB

D

4321

A-4

-3

-2

-1

O

1

-6

-5

x

『师』

:这两位同学选取坐标系的方式都是以

矩形的某一个顶点为坐标原点,举行的相邻两边所在直线分别作为x轴、y轴,建立直角坐标系的。这样建立直角坐标系的方式还有两种,即以A、B为原点,矩形两邻边分别为x轴、y轴建立直角坐标系。除此之外,还有其他方式吗?

『生3』有,如右图所示,以矩形的中心(即对角线的交点)为坐标原点,平行于矩形相邻两边的直角为x轴,y轴,建立直角坐标系。则A、B、C、D的坐标分别为A(3,2),B(-3,2),C(-3,-2),D(3,-2)。

『生4』把上图中的横坐标逐渐向上、下移动,纵坐标左、右移动,则可得到不同的坐标系,从而得到A、B、C、D四点的不同坐标。

『师』从刚才我们讨论的情况看,大家能发现什么? 『生』建立直角坐标系有多种方法。

2、【例】对于边长为4的整三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标。解:略(书P136)

『师』 :正三角形的边长已经确定是4,则它一边上 的高是不是会因所处位置的不同而发生变化? 『生』 :不会,只是位置变化,而长度不会变。

『师』 :除了上面的直角坐标系的选取外,是否还有其他的选取方法? 『生』 :有,

3、【议一议】在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道葬保地点的坐标为(4,4),除此外不知道其他信息。如何确定直角坐标系找到“宝藏”?与同伴进行交流。

三、 随堂练习

课本P136页 随堂练习 (体现建立直角坐标系的多样性)

(补充)某地为了发展城市群,在现有的四个中小城市A、B、C、D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。

C

四、 本课小结

本节课的目的是在方格纸上建立适当的直角坐标系,描述物体的位置。 五、 活动与探究 书P137页 试一试 六、 课后作业

书P137页 习题5.5

本文来源:https://www.bwwdw.com/article/7l04.html

Top