2019年全国各地中考数学试题分类汇编:轴对称

更新时间:2023-10-20 12:43:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学精品复习资料

(2013?郴州)在图示的方格纸中

(1)作出△ABC关于MN对称的图形△A1B1C1;

(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?

考点: 作图-轴对称变换;作图-平移变换. 专题: 作图题. 分析: (1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可; (2)根据平移的性质结合图形解答. 解答: 解:(1)△A1B1C1如图所示; (2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位). 点评: 本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键. (2013?株洲)下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( ) A.等边三角形 B. 矩形 C. 菱形 D. 正方形 考点: 轴对称图形. 分析: 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案. 解答: 解:A、等边三角形有3条对称轴; B、矩形有2条对称轴; C、菱形有2条对称轴; D、正方形有4条对称轴; 故选D. 点评: 本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义. (2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )

A.30° B.45° C.60° D.75°

考点:生活中的轴对称现象;平行线的性质.

分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.

解答:解:要使白球反弹后能将黑球直接撞入袋中, ∠2+∠3=90°, ∵∠3=30°, ∴∠2=60°, ∴∠1=60°. 故选C.

点评:本题是考查图形的对称、旋转、分割以及分类的数学思想. (2013?绵阳)下列“数字”图形中,有且仅有一条对称轴的是( )

D. C. B. A.

(2013?潜江)如图,在△ABC中,AB?AC,∠A?120°,BC?6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为 A.4cm

B.3cm

C.2cm

D.1cm

(2013?十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )

7cm 10cm 12cm 22cm A.B. C. D. 考点: 翻折变换(折叠问题). 分析: 首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC的长. 解答: 解:根据折叠可得:AD=BD, ∵△ADC的周长为17cm,AC=5cm, ∴AD+DC=17﹣5=12(cm), ∵AD=BD, ∴BD+CD=12cm. 故选:C. 点评: 此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. (2013?三明)下列图形中,不是轴对称图形的是( ) A.B. C. D. 考点: 轴对称图形. 分析: 根据轴对称图形的概念对各选项分析判断后利用排除法求解. 解答: 解:A、不是轴对称图形,故本选项正确; B、是轴对称图形,故本选项错误; C、是轴对称图形,故本选项错误; D、是轴对称图形,故本选项错误. 故选A. 点评: 本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. (2013?厦门)如图5,在平面直角坐标系中,点O是原点,点B(0,3), 点A在第一象限且AB⊥BO,点E是线段AO的中点,点M 在线段AB上.若点B和点E关于直线OM对称,且则点M

的坐标是 ( , ) .(1,3)

(2013?宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.

考点: 概率公式;轴对称图形. 分析: 根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形. 解答: 解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形, 选择的位置有以下几种:1处,2处,3处,选择的位置共有3处. 故答案为:3. 点评: 本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. (2013?苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(小值为

1,0),点P为斜边OB上的一动点,则PA+PC的最213 23?19C.

2A.

B.

31 2 D.27

(2013?宿迁)在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P 到A、B两点距离之差的绝对值最大时,点P的坐标是 ▲ .

(2013?苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,

),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的

最小值为( )

A. B. C. D. 2 考点: 轴对称-最短路线问题;坐标与图形性质. 分析: 作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案. 解答: 解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N, 则此时PA+PC的值最小, ∵DP=PA, ∴PA+PC=PD+PC=CD, ∵B(3,), ∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2, 由三角形面积公式得:×OA×AB=×OB×AM, ∴AM=, ∴AD=2×=3, ∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN⊥OA, ∴∠NDA=30°,

本文来源:https://www.bwwdw.com/article/7kaf.html

Top