光伏发电和风力发电混合发电系统论文中英文资料对照外文翻译文献综述

更新时间:2023-03-15 17:10:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中英文资料对照外文翻译

译文

在混合光伏阵列中采用滑模技术的电源控制发电系统 摘要

变结构控制器来调节输出功率的一个独立的混合发电系统。该系统包括光伏发电和风力发电,存储电池组和一个变量的单相负载。控制律承认两种操作模式。 第一条用在当日晒度足够满足对电力的需求的情况下。第二运作模式应用在日晒度不足的时候。后者致使系统在最大功率操作点(MPOP)操作下存储尽可能多的能量。根据IncCond算法开发的一种新方法。滑模控制用于技术设计的控制律。这些技术提供了一个简单的控制律设计框架,并有助于它们自带的鲁棒性。最后,指导方针根据考虑为实际系统的设计。

1引言 可再生能源,如风力和太阳能被认为是非常前途的能源。它们拥有可以满足不断增加的世界能源需求的特点。另一方面,他们是基于无公害转换流程,它们需要的主要资源是取之不尽,用之不竭,并且免费的。对于远程、远离电网的地方,它往往是比用输电线路[1] 提供一个独立的电力来源拥有可行性。在这些电网中,在混合动力系统结合模块的基础上,可再生能源发电以柴油为动力的备用发电机已考虑ERED等效为一个可行的选择[2, 3]。然而,柴油发电机在孤立的燃料供应和其运作领域是相当麻烦,相比较可再生能源,显得不划算[4]。为了取代柴油备用发电机,独立的混合动力系统经常采用结合可再生能源来源的TARY型材,如风力和光伏发电,合适的存储设备,如电池。自存储成本仍然是一个重大的经济约束,通常光伏/风能/电池系统是用“适当”的大小以减少资本成本。

本文提出了一种控制策略,以规范的混合动力系统,包括光伏发电和风力发电,蓄电池组和可变负载的输出功率作为研究。控制可调整的光伏发电、风力发电,以满足负载和电池充电的电源要求。系统以在独立控制下的最大发电的主要目标。该控制器的设计开发,在之前的文献[5]中提过。因此,根据不同的大气条件,不同的光伏阵列控制律使用的范围不同。第一条用在暴晒的地方,运作模式足以提供的总功率需求,和风力发电一起适用。另一条控制律是在曝晒度不足情况下跟踪最大功率操作点(MPOP),使系统保持尽可能多的储存的能量。跟踪MPOP的方法是一个新的扩展版本下的IncCond算法[6]。

对于这两种操作模式设计控制律均使用滑模方法。这种技术很有吸引力,它简化了设计任务,并使控制器具有鲁棒性。此外,根据第二次的运作模式,这种技术提供的MPOP收敛速度最快。

2光伏电池的电气特性

光伏电池产生的瞬时电能取决于几个电池参数和变量的环境条件,如日照和温度。其电动行为可以用简单的非线性电流源串联与内在电池串联电阻()为基础。在这种模式下的电流源,可以通过下面表达式表示[6-8]:

其中是一个给定的曝晒下的电流,是电池反向饱和电流,和分别是输出电流和太阳能电池的电压,q是电子电荷,K为波尔兹曼常数,T为电池的温度。因子A看成理想的p-n结特性的电池偏差,值在的1到5之间[6]。此外,反向饱和电流()

和光照下()取决于日照和温度:

其中是在参考温度下的反向饱和,是在电池中所使用的半导体的带隙能量,是在参考温度下日照电流,短路电流温度系数,λ为日照系数其单位是。这些常量的典型值在附录(第8篇)中。 在图1中,是一个特定的光伏电池的电气特性。其中提出了把日照作为一个可变参数,并考虑两个不同日照下的温度值。图2所示,可以观察到的大气条件下MPOP对系统的影响。

在光伏电池阵列中,产生的电流表达式类似于eqn. 1:

其中代表并行模块的数量,由串联的电池构成。因此,由eqn.4可得简单的阵列发电的表达式:

从上述表达式得到,通过改变值可最大限度地提高发电,它由暴晒和电池温度而定。

3系统建模

光伏发电系统通常通过固态转换器连接负载。这种拓扑结构允许光伏发电系统调节其发电端电压。此外,为减少电能供应的概率,光伏阵列往往与其它发电系统(风电,柴油等)或一些储能系统(主要是电池)相结合。通过这种方式,

系统可以应付变化莫测的天气条件,增强系统的可靠性[4]。

混合发电系统拓扑的不同取决于它涉及的模块和系统的主要意图。根据本文考虑结构如图3。这种拓扑结构由蓄电池组确定直流母线电压。光伏阵列通过DC/DC降压转换器连接。在另一侧,直流母线通过高压变频器连接到负载。负载将直流侧电流作为输出电流。最后,电流表示风力发电模块,但在一般情况下,在混合动力系统中它要考虑到许多其他的综合效应来源。

混合动力系统的动态模型可以通过瞬时切换模式的DC / DC降压转换器建立,以下是描述方程:

(6b)

其中 和 ,是DC / DC转换器输出端子的电压和电流,u是开关控制信号,它只能采取离散值0(开关打开)或1(开关闭合)。

然后,考虑到电池组模型,包括一个理想的电压源(),电容器()和电阻() [9],整个动态串联系统模型可以写成:

(7b) (7c)

其中是上的电压,,和是可测量的电流。应当强调的是,这个模型是非线性的,u可表示为,f和g可表示为:

4滑模控制器的设计

最初的模块是为了控制所产生的功率满足光伏阵列的瞬时能量在高度干扰的环境下的电力需求。这些干扰不仅有气候的变化,也有负荷变化和电流的变化。 总的电力需求包括负载和电池组所需的功率。考虑到有效的充电和电池组的最长寿命,将一个给定的电流称为恒定电流。另一方面,电流需要保持完全充电状态(自放电补偿),称为浮充电流。因此,电池电流可看作恒定或浮充电流,根据电池组设定。

控制模块有两个操作模式。第一个是对应环境条件允许下的足够的光伏发电,用以满足总功率需求。在此模式下,对光伏发电系统加以规范,以匹配参考值:

第二个操作模式应用在当光伏发电系统是无法产生足够的电力满足。备在这种情况下控制律要用 MPOP来推进太阳能系统。

图4中是一个光伏阵列中特殊的曲线。此图描绘时考虑到了系统的平均模型。因此,曲线 A和B是不同情况下的图形。在模型下右侧操作光伏阵列特性(B点)更适合点,因为它允许更广泛的功率调节范围。另一方面,操作上左侧(A

点)的规定能量下限,因为不能比小。最后,在最大发电的曲线上,C点代表MPOP。在C上注明增量和瞬时阵列的电导具有相同的绝对值和不同的标记是很重要的。这点来自于:

考虑一个理想的DC / DC变换器,决定一种工作模式或其他方式可与 (eqn. 9)进行比较,阵列可以根据MPOP建立。以能用下式表示

其中eqn.11中的左侧操作可以通过乘以eqn. 10中电流得到。 滑模控制技术常用来设计控制律。这种技术很有吸引力,它允许一个简单的控制律设计并且有助于系统的鲁棒性。此外,值得一提的是在真正的滑模中开关时间延迟和动态生成非衰减振荡元件有限振幅和频率的存在,对系统有很大影响。通常,在滑动模式的应用程序这是一个不良的副作用。然而,在这种特殊情况下,其内在影响是有用的,因为它提供所需的扰动实施MPOP跟踪方法。

4.1第一个操作模式:充足的发电条件

这种运作模式下的暴晒条件和电池温度都足以满足.。要实现滑模这一目表要用到电池组的电流即:

为了建立滑模模型要满足[10]中所提条件。因此,滑模需要满足eqn.12中的条件:

这始终是消极的。然后,为了实现滑动存在的条件[10],切换的控制信号必须是:

等效控制是连续控制信号用来保持表面的不变性,得到

然后,把eqn. 16代入 eqn. 7,理想的滑模动态可得:

Eqn. 17a绘制在图5。由此可以看出,有两个平衡点的光伏阵列可以提供所需的电流。 B点是稳定的,显然是所需的操作点。另一方面A点明显不稳定,在这种操作模式下系统永久运行。然而,最终的控制策略不会允许一个是一个有效的操作点(4.3节中给出更多的细节)。

可以指出的是,eqn.17b代表非最小相位行为。这种行为的物理意义是很清楚的:它代表了电池组能源再利用。

4.2第二种运作模式:发电条件不足

不足发电条件下必须改变操作单元阵列最大功率点的控制目标。 MPOP依赖大气条件所以它必须跟踪。已有文献报道用不同的技术来实现这一目标。其中有些是基于测量大气条件[8],其他方法有用改变阵列配置[11],以及其他基于算法不断调整光伏阵列的有效载荷[6,7,12]。所有这些方法当中,相比最成功的为MPOP跟踪的,因为它们不受特定的大气条件或实际负载影响[6]。这些算法,通常被称为扰动与观察(P&O)算法,通过工作点的离散转变生产和检测结果的光伏输出功率变化。如果输出功率的增加,转变将在同一方向,反之则反。自适应可以包含在这些算法中,一旦MPOP已达到[13]它可以减少收敛时间和扰动过程中的功率损耗减少。P&O算法的主要缺点是,他们无法应付快速变化的大气条件,因为他们无法在扰动的大气条件区分输出功率的变化。为了克服这个问题,在[6]中提出一种不同的方法,称为IncCond。增量和瞬时电导测量要依据eqn.10的基础上。但是,报告中的算法保持一个固定步实施,最终可能限制对MPOP的收敛速度。

对于这种操作模式,IncCond方法滑模控制在发电条件不足的下的设计要满足eqn.10:

然后,基于滑动面的考虑,可以看出,横截条件根据MPOP实行:

因此,要实现滑动的存在条件,切换的控制信号必须是:

在这种情况下,相当于控制假设下面的表达式:

然后,考虑eqn.18和eqn.7 ,eqn.21,理想的滑模动态将写成:

(22b)

Eqn. 22a清楚地显示了一个稳定的平衡点。注意到根据标志,eqn.22b表示稳定或不稳定的动态。在第一种情况,当的标志是负的,稳定的动力学特征代表电

池组的放电。反之,当其标志是正的,这个公式代表非最小相位相同的(行为在上一节分析)。唯一不同的是,在这种情况下,电池组充电通过改变而不是。 在整个模式建立中,控制律将开关固定在一个位置(打开或关闭)。这样,MPOP对收敛速度的影响取决于三个因素,即转换器的活性元素,大气条件和负载的大小。因此,IncCond方法滑模技术提出对MPOP进行最快的速度收敛这一概念。

一旦系统达到滑动流形切换控制律就可以使系统保持在滑动面上。然而, 考虑到IGBT的有限开关频率,系统代表了典型的抖振系统。MPOP周围的振荡行为,一方面是由于不同的大气条件在不变或缓慢的情况下有功率损耗,但另一方面,它有利于增量电导的测量。在4.4节给出了关于此方面的指导方针。

4.3综合控制法

真正的最终控制法包括两种操作模式,可以通过下面的表达式表达:

当大气条件足以满足要求的能量,提出的控制律,分别建立两区的第一和第二操作模式。要确定每种模式的域,如图6所示,光伏阵列和控制器所产生的电力,能量表达式为()。从这个图表中可以直接看到,第一种模式只能运用在系统运作上的右操作点S,反之则反。因此,该控制策略用于消除不稳定的平衡点,根据第一种模式的域迫使系统运作所需的B点。应当指出的是在第二种模式下,A点不是系统的平衡点。

4.4 L和C设计基础上的考虑

在实际应用中的开关设备有开关频率的上限。这非理想滑动制模型有约束,即条件h = 0不能完成系统的发展,在滑动面附近需要跨越两个方向。这种典型的行为被称为振动,图7是固定开关频率实现。从这个图表得到振动模块的可写为[14]:

其中代表施加控制信号记作,是一个给定的开关器件的开关周期,是系统在此期间的增益。经过直观的操作,eqn.24可以写成:

需要注意的是有两种不同的取值,。但前提是eqns.25和26右端的参数最高值是已知的, L和C的值可以调节以确保滑动面上的等幅振荡。eqn.25日提出了

光伏阵列端电压的线性关系。从eqn.4可得,此电压最高值影响函数的日照和温度:

然后,把eqn.27代入eqn.25得:

在图8中eqn.28的右端被描绘为两种可能的控制 信号值,可以看出它对日照和温度的影响。可以得出,当采取最大的日照和运作的最低温度最大。然后,可以改变eqn. 28中L的值,得到一些参数值和给定值。由此得出的L的值能确保振幅值比点和任何大气条件的低。类似的情况确定C的值,以确保在点振幅值比低。图9显示了eqn.26等式右边两种可能的控制信号值下的日照和温度。可以看出,最大的日照和温度下控制信号获得最大。因此,从eqn.26得到的联系,C值可以直接确定。

5仿真结果

计算机仿真是在一个固定的开关频率测试控制器的性能。通过下列两个例子的检验控制功能。在模拟中使用的参数值在附录中(第9)。 5.1示例A

为了使该控制器的一些鲜明的特点清晰可见,在这个例子中所要求的功率是作为一个变量的阶梯序列,假定天气条件常数(λ= 80 T= T= 53°C)。在图10中所要求的能量是光伏阵列和光伏发电的最大功率。图figs.11和12描绘左右滑动流形和的运动状态。由图11可得如何在足够的时间(0 -0.016s)和(0.04-0.056s)里控制调节DC / DC变换器的输出功率和输出功率的变化。和分别绘制在Figs.13和14中。振荡图形中观察到的数字与在图7中的相似,由固定的开关频率实现。图12显示了如何控制不充足时间内迅速推动MPOP对光伏阵列的作用。搭建的模型维持在一个固定的位置保证打开或关闭开关收敛速度最快。图15可以观察到这种现象其中u是已知的。在模型中可以观察到,图10中电容C减少一部分光伏终端电压(图14)。一旦MPOP控制保持系统在滑动面上,就不管所要求的功率的变化。此操作在Figs.13和14中可观察到。

5.2示例B

在这个例子中在考虑所有系统操作的实际情况下对控制策略进行评价。 figs.16-2 0是环境条件下描绘的的时间序列。Figs.16和17是光伏阵列的温度和日照条件。另一方面,Figs.18和19分别描绘风力发电系统电流()的直流母线的负载电流()。所有这些变量确定一个时间序列的可再生能源最大功率和其他相应要求的总功率。这些序列有两个明显的阶段:一个是足够的条件,满足所要求的能量(0-190s),另一种是不足的条件下(190-360s),图Figs.21和22是滑动流形和 处系统动作行为。在图21中显示的是在大气条件下的快速变化和负载要求(如Figs.16-20)下如何控制保持系统表面的稳定。Fig.22显示MPOP在日照和温度不足的条件下的动作情况。最Figs.23和24分别显示光伏阵列端子的电压和电流的下降。

本文来源:https://www.bwwdw.com/article/7k6v.html

Top