西工大材料考研必看练习题2

更新时间:2023-09-24 17:00:01 阅读量: IT计算机 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1.分析固态相变的阻力。 2.分析位错促进形核的主要原因。

3.下式表示含n个原子的晶胚形成时所引起系统自由能的变化。

?G??bn(?Gv?Es)?an2/3??/?)

式中:?Gv —— 形成单位体积晶胚时的自由能变化;

γ

α/β

—— 界面能;

Es —— 应变能;

a、b —— 系数,其数值由晶胚的形状决定。 试求晶胚为球形时,a和b的值。若?Gv,γ晶核的形核功?G*。

4.A1-Cu合金的亚平衡相图如图8-5所示,试指出经过固溶处理的合金在T1,T2温度时效时的脱溶顺序;并解释为什么稳定相一般不会首先形成呢? 5.xCu=0.046的Al-Cu合金(见图4-9),在550℃固熔处理后。α相中含xCu=0.02,然后重新加热到100℃,保温一段时间后,析出的θ相遍布整个合金体积。设θ粒子的平均间距为5 nm,计算: (1) 每立方厘米合金中大约含有多少粒子?

(2) 假设析出θ后,α相中的xCu=0,则每个θ粒子中含有多少铜原子(θ

相为fcc结构,原子半径为0.143 nm)?

6.连续脱熔和不连续脱熔有何区别?试述不连续脱熔的主要特征?

α/β

,Es均为常数,试导出球状

7.试述Al-Cu合金的脱熔系列及可能出现的脱熔相的基本特征。为什么脱溶过程会出现过渡相?时效的实质是什么?

8.指出调幅分解的特征,它与形核、长大脱溶方式有何不同?

9.试说明脱熔相聚集长大过程中,为什么总是以小球熔解、大球增大方式长大。 10. 若固态相变中新相以球状颗粒从母相中析出,设单位体积自由能的变化为108J/m2,比表面能为1J/m2,应变能忽略不计,试求表面能为体积自由能的1%时的新相颗粒直径。

11. 试述无扩散型相变有何特点。

12. 若金属B熔入面心立方金属A中,试问合金有序化的成分更可能是A3B还是A2B?试用20个A原子和B原子作出原子在面心立方金属(111)面上的排列图形。

13. 含碳质量分数wc=0.003及wc=0.012的甲5 mm碳钢试样,都经过860℃加热淬火,试说明淬火后所得到的组织形态、精细结构及成分。若将两种钢在860℃加热淬火后,将试样进行回火,则回火过程中组织结构会如何变化?

1. 固态相变时形核的阻力,来自新相晶核与基体间形成界面所增加的界面能

Eγ,以及体积应变能(即弹性能)Ee。其中,界面能Eγ包括两部分:一部分是在母相中形成新相界面时,由同类键、异类键的强度和数量变化引起的化学能,称为界面能中的化学项;另一部分是由界面原子不匹配(失配),原子间距发生应变引起的界面应变能,称为界面能中的几何项。应变能Ee产生的原因是,在母相中产生新相时,由于两者的比体积不同,会引起体积应变,这种体积应变通常是通过新相与母相的弹性应变来调节,结果产生体积应变能。

从总体上说,随着新相晶核尺寸的增加及新相的生长,(Eγ+Ee)会增加。当然,Eγ、Ee也会通过新相的析出位置、颗粒形状、界面状态等,相互调整,以使(Eγ+Ee)为最小。

母相为液态时,不存在体积应变能问题;而且固相界面能比液—固的界面能要大得多。相比之下,固态相变的阻力大。

2. 如同在液相中一样,固相中的形核几乎总是非均匀的,这是由于固相中的非

平衡缺陷(诸如非平衡空位、位错、晶界、层错、夹杂物等)提高了材料的自由能。如果晶核的产生结果使缺陷消失,就会释放出一定的自由能,因此减少了激活能势垒。

新相在位错处形核有三种情况:一是新相在位错线上形核,新相形成处,位错消失,释放的弹性应变能量使形核功降低而促进形核;二是位错不消失,而且依附在新相界面上,成为半共格界面中的位错部分,补偿了失配,因而降低了能量,使生成晶核时所消耗的能量减少而促进形核;三是当新相与母相成分不同时,由于溶质原子在位错线上偏聚(形成柯氏气团)有利于新相沉淀析出,也对形核起促进作用。 4. 脱溶顺序为:

T1温度,α- θ’- θ; T2温度,α- θ”- θ’- θ。

判断一个新相能否形成,除了具有负的体积自由能外,还必须考虑新相形成时

16??3?/??G*?2??3?Gv?Es的界面能和应变能。由临界形核功可知,只有当界面能γ

α/β

和应变能Es,尽可能减小,才能有效地减小临界形核功,有利于新相形

核。在析出初期阶段,析出相很细小,此时应变能较小,而表面能很大。为了减小表面能,新相往往形成与母相晶格接近,并与母相保持共格的亚稳过渡相,以使体系能量降低,有利于相变。在析出后期,由于析出相粒子长大,应变能上升为相变的主要阻力,则新相形成与母相非共格的稳定相,以降低体系总能量。随时效温度不同,由于界面能和应变能的不同作用,将出现不同的亚稳过渡相。

6. 如果脱熔是在母相中各处同时发生,且随新相的形成母相成分发生连续变化,

但其晶粒外形及位向均不改变,称之为连续脱熔。

与连续脱熔相反,当脱熔一旦发生,其周围一定范围内的固熔体立即由过饱和状态变成饱和状态,并与母相原始成分形成明显界面。在晶界形核后,以层片相间分布并向晶内生长。通过界面不但发生成分突变,且取向也发生了改变,这就是不连续脱熔。其主要差别在于扩散途径的长度。前者扩散场延伸到一个相当长的距离,而后者扩散距离只是片层间距的数量级(一般小于1?m)

不连续脱熔有以下特征:

(1) 在析出物与基体界面上,成分是不连续的;析出物与基体间的界面都为大角度的非共格界面,说明晶体位向也是不连续的。

(2) 胞状析出物通常在基体(α’)晶界上形核,而且总是向。’相的相邻晶粒之一中长大。

(3) 胞状析出物长大时,熔质原子的分配是通过其在析出相与母相之间的界面扩散来实现的,扩散距离通常小于1?m。 6. A1—Cu合金的脱溶系列有:

GP区-θ\过渡相-θ’过渡相-θ平衡相 脱熔相的基本特征:

GP区为圆盘状,其厚度为0.3~0.6 nm,直径约为8 nm,在母相的{100}面上形成。点阵与基体α相同(fcc),并与α相完全共格。

θ\过渡相呈圆片状,其厚度为2 nm,直径为30~40 nm,在母相的{100}面上形成。具有正方点阵,点阵常数为a=b=0.404 nm,c=0.78 nm,与基体完全共格,但在z轴方向因点阵常数不同而产生约4%的错配,故在θ\附近形成一个弹性共格应变场。

θ' 过渡相也在基体的{100}面上形成,具有正方结构,点阵常数a=b=0.404 nm,c=0.58 nm,其名义成分为CuAl2。由于在z轴方向错配量太大,所以只能与基体保持局部共格。

θ相具有正方结构,点阵常数a=b=0.607 nm,c=0.487 nm,这种平衡沉淀相与基体完全失去共格。

时效的实质,就是从过饱和固熔体分离出一个新相的过程,通常这个过程是由温度变化引起的。时效以后的组织中含有基体和沉淀物,基体与母相的晶体结构相同,但成分及点阵常数不同;而沉淀物则可以具有与母相不同的晶体结构和成分。由于沉淀物的性质、大小、形状及在显微组织中的分布不同,合金的性能可以有很大的变化。

7. 调幅分解是指过饱和固熔体在一定温度下分解成结构相同、成分和点阵常数不同的两个相。调幅分解的主要特征是不需要形核过程。调幅分解与形核、长大脱熔方式的比较如附表2.6所示。

附表2.6 调幅分解与形核、长大脱熔方式的比较

脱熔类型 调幅分解 形核长大 凹 自由能成分曲线特点 凸 自发涨落 过冷度及临界形核功 8. 若固态合金中,含有大小不同的沉淀相粒子,在高温退火时,将会出现小粒子熔解,大粒子长大的现象。其物理实质:假定始态只有附图2.23(a)所示的两种尺寸的第二相粒子。由粒子大小对固熔度的影响可知,小粒子的固熔度较大,因而在。相内,从小粒子到大粒子之间,有一个从高到低的熔质浓度梯度,小粒子周围的熔质有向大粒子周围扩散的趋势。这种扩散发生后,破坏了亚稳平衡,使小粒子周围的熔质浓度(Cr2)小于亚稳平衡时的熔质浓度(Cr1),如附图2.23(b)所示,因而小粒子熔解而变得更小,如附图2.23(c)所示;而大粒子周围的熔质浓度(Cr2’)又大于亚稳平衡时的熔质浓度(Cr1’),因而发生沉淀,使大粒子长大,如附图2.23(c)所示。因此,不均匀尺寸的固相粒子粗化,是通过小粒子继续熔解以及大粒子继续长大而进行的。 9. 直径2r=6×10-6m。

形核 明晰 下坡 低 非形核 宽泛 上坡 高 数量多、颗粒小 颗粒大、数量少 条 件 形核特点 界面特点 扩散方式 转变速率 颗粒大小 10. 无扩散型相变具有如下特点:

(1) 存在由于均匀切变引起的形状改变,使晶体发生外形变化。 (2) 由于相变过程无扩散,新相与母相的化学成分相同。 (3) 母相与新相之间有一定的晶体学位向关系。 (4) 相界面移动速度极快,可接近声速。

13. 860℃加热,两种钢均在单相区(见Fe—Fe3C相图),淬火后均为M体。

WC=0.012的碳钢中有一定量的残余奥氏体。

WC=0.003的碳钢,其马氏体成分为WC=0.003,形态为板条状,精细结构为位错。

WC=0.012的碳钢,其马氏体成分为WC=0.012,形态为针状,精细结构为孪晶。

WC=0.003的碳钢,在200℃以下回火时,组织形态变化较小,硬度变化也不大。但碳原子向位错线附近偏聚倾向增大。当回火温度高于250℃时,渗碳体在板条间或沿位错线析出,使强度、塑性降低;当回火温度达300~400℃时,

析出片状或条状渗碳体,硬度、强度显著降低,塑性开始增高,当400~700℃回火时,发生碳化物的聚集、长大和球化及。相的回复、再结晶。此时,硬度、强度逐渐降低,塑性逐渐增高。

WC=0.012的碳钢,低于100℃回火时,碳原子形成富碳区;100~200℃回火时,析出大量细小碳化物,因此,硬度稍有提高;200~300℃回火时,残留奥氏体转变为回火马氏体(或贝氏体)使硬度升高,但同时,马氏体的硬度降低,因此,总体上硬度变化不大;高于300℃回火时,碳化物继续析出,随后便是碳化物长大及球化,而α相发生回复、再结晶,使硬度降低,韧性增高。

本文来源:https://www.bwwdw.com/article/7jsd.html

Top