2017自动控制原理期末考试试卷(含答案)

更新时间:2023-10-06 07:51:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2017年自动控制原理期末考试卷与答案

一、填空题(每空 1 分,共20分)

1、对自动控制系统的基本要求可以概括为三个方面,即: 稳定性 、快速性和 准确性 。 2、控制系统的 输出拉氏变换与输入拉氏变换在零初始条件下的比值 称为传递函数。

3、在经典控制理论中,可采用 劳斯判据(或:时域分析法)、根轨迹法或奈奎斯特判据(或:频域分析法) 等方法判断线性控制系统稳定性。

4、控制系统的数学模型,取决于系统 结构 和 参数, 与外作用及初始条件无关。 5、线性系统的对数幅频特性,纵坐标取值为20lgA(?)(或:L(?)),横坐标为lg? 。

6、奈奎斯特稳定判据中,Z = P - R ,其中P是指 开环传函中具有正实部的极点的个数,Z是指 闭环传函中具有正实部的极点的个数,R指 奈氏曲线逆时针方向包围 (-1, j0 )整圈数。 7、在二阶系统的单位阶跃响应图中,ts定义为 调整时间 。?%是超调量 。

K8、设系统的开环传递函数为,则其开环幅频特性为s(T1s?1)(T2s?1)0?1?1?(?)??90?tg(T?)?tg(T2?)。 1频特性为

A(?)?K?(T1?)2?1?(T2?)2?1,相9、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。 10、若某系统的单位脉冲响应为g(t)?10e?0.2t?5e?0.5t,则该系统的传递函数G(s)为

105?。

s?0.2ss?0.5s11、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环控制系统;含有测速发电机的电动机速度控制系统,属于 闭环控制系统。 12、根轨迹起始于开环极点,终止于开环零点。

13、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。 14、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值越频率?c对应时域性能指标 调整时间ts,它们反映了系统动态过程的快速性

二、(8分)试建立如图3所示电路的动态微分方程,并求传递函数。

图3

解:1、建立电路的动态微分方程 根据KCL有

ui(t)?u0(t)d[ui(t)?u0(t)]u0(t) (2分) ?C?R1dtR2即 R1R2C2、求传递函数

du0(t)du(t)?(R1?R2)u0(t)?R1R2Ci?R2ui(t) (2分) dtdt对微分方程进行拉氏变换得

R1R2CsU0(s)?(R1?R2)U0(s)?R1R2CsUi(s)?R2Ui(s) (2分) 得传递函数 G(s)?U0(s)R1R2Cs?R2 (2分) ?Ui(s)R1R2Cs?R1?R2三、(共20分)系统结构图如图4所示:

1、写出闭环传递函数?(s)?C(s)表达式;(4分) R(s)2、要使系统满足条件:??0.707,?n?2,试确定相应的参数K和

(4分) ?;

图4

3、求此时系统的动态性能指标?00,ts;(4分)

4、r(t)?2t时,求系统由r(t)产生的稳态误差ess;(4分) 5、确定Gn(s),使干扰n(t)对系统输出c(t)无影响。(4分)

K22?nC(s)Ks解:1、(4分) ?(s)? ???2K?Ks2?K?s?Ks2?2??ns??nR(s)1??2ss2?K??n?22?4K?42、(4分) ? ????0.707

??K??2??n?221??23、(4分) ?00?e????4.3200 ts?4??n?42?2.83

KA2K1KK?1??se??2??1.414 4、(4分) G(s)? ? ss??KK?s(s?K?)?s(s?1)K?v?11?s?K??1?1???Gn(s)C(s)?s?s?=0 得:Gn(s)?s?K? 5、(4分)令:?n(s)?N(s)?(s)四、已知最小相位系统的对数幅频特性如图3所示。试求系统的开环传递函数。(16分)

图 3 ω1 -10 1 10 -40 20 L(ω) dB -40 -20 ω2 ω 解:从开环伯德图可知,系统具有比例环节、两个积分环节、一个一阶微分环节和一个惯性环节。

s?1)?1故其开环传函应有以下形式 G(s)? (8分)

21s(s?1)K(1?2由图可知:??1处的纵坐标为40dB, 则L(1)?20lgK?40, 得 K?100 (2分)

又由 ???1和?=10的幅值分贝数分别为20和0,结合斜率定义,有

20?0??40,解得 ?1?10?lg?1?lg103 .rad/s16 (2分)

同理可得

?20?(?10)??20 或 20lg2?30 ,

lg?1?lg?2?12?2?1000?12?10000 得 ?2?100 rad/s (2分)

故所求系统开环传递函数为

s100(?1)10 G(s)? (2分) ss2(?1)100五、(共15分)已知某单位反馈系统的开环传递函数为G(s)?Kr:

s(s?3)21、绘制该系统以根轨迹增益Kr为变量的根轨迹(求出:渐近线、分离点、与虚轴的交点等);(8分)

2、确定使系统满足0???1的开环增益K的取值范围。(7分) 1、绘制根轨迹 (8分)

(1)系统有有3个开环极点(起点):0、-3、-3,无开环零点(有限终点);(1分) (2)实轴上的轨迹:(-∞,-3)及(-3,0); (1分)

?3?3???a???2(3) 3条渐近线: ? (2分) 3???60?,180?(4) 分离点:

12??0 得: d??1 (2分) dd?32 Kr?d?d?3?4 (5)与虚轴交点:D(s)?s3?6s2?9s?Kr?0

?Im?D(j?)????3?9??0???3 (2分) ??2?Re?D(j?)???6??Kr?0?Kr?54绘制根轨迹如右图所示。

KrKr9?2、(7分)开环增益K与根轨迹增益Kr的关系:G(s)? 22s(s?3)??s??s????1?????3??得K?Kr9 (1分)

系统稳定时根轨迹增益Kr的取值范围:Kr?54, (2分)

系统稳定且为欠阻尼状态时根轨迹增益Kr的取值范围:4?Kr?54, (3分)

本文来源:https://www.bwwdw.com/article/7jgd.html

Top