The transcriptional regulatory repertoire of Corynebacterium glutamicum

更新时间:2023-06-10 22:30:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

JournalofBiotechnology149 (2010) 173–182

ContentslistsavailableatScienceDirect

Journalof

Biotechnology

journalhomepage:/locate/jbiote

c

ThetranscriptionalregulatoryrepertoireofCorynebacteriumglutamicum:Reconstructionofthenetworkcontrollingpathwaysinvolvedinlysineandglutamateproduction

KarinaBrinkrolf,JasminSchröder,AlfredPühler,AndreasTauch

InstitutfürGenomforschungundSystembiologie,CentrumfürBiotechnologie,UniversitätBielefeld,Universitätsstraße27,D-33615Bielefeld,Germany

articleinfoabstract

CorynebacteriumglutamicumisoneofthebeststudiedorganismsofthehighG+CbranchofGram-positivebacteriaandanemergingmodelsystemforthesuborderCorynebacterineae.TogaininsightsintotheregulatorygenecompositionandarchitectureofthetranscriptionalregulatorynetworkofC.glutamicum,componentsofthetranscriptionalregulatoryrepertoirewereintensivelystudiedbymanyscienti cgroupsinrecentyears.Inthismini-review,wesummarizethepresentknowledgeaboutthededucedtranscriptionalregulatoryrepertoireofC.glutamicumandthecurrentstatusoftranscriptionalregulatorynetworkreconstructionwithregardtothegenome-widedetectionoftranscriptionalregula-tions,coregulatoryinteractionsandhierarchicalcross-regulations.Moreover,weprovideanoverviewofthoseregulatorsandtheirtranscriptionalregulationscontrollinggenesinvolvedintheconversionofthecarbonsourcesglucose,fructoseandsucroseintotheindustriallyrelevantproductsl-lysineandl-glutamate.Thisdatawillcontributetoourunderstandingofl-lysineandl-glutamateproductionbyC.glutamicumfromtheperspectiveofsystemsbiologyandmayprovidethebasisforcomputationalmodelingoftherespectivebiotechnologicallyimportantmetabolicpathways.

© 2009 Elsevier B.V. All rights reserved.

Articlehistory:

Received18August2009Receivedinrevisedform19November2009

Accepted1December2009

Keywords:

CorynebacteriumglutamicumTranscriptionregulation

TranscriptionalregulatorynetworkGlutamatebiosynthesisLysinebiosynthesisSystemsbiology

1.Introduction

Thetranscriptionalregulatorynetwork(TRN)ofbacteriaisafundamentalbiologicalsystemcontrollingthe owofinforma-tionfromtheinternalandexternalenvironmenttothegenelevelandthustospeci ccellularfunctions(Seshasayeeetal.,2006).Inconjunctionwithadiversemetabolism,theTRNenablesarapidadaptationofmicroorganismstochangingenvironmentalcon-ditions.ThemaincomponentsofaTRNareregulatoryproteinstermedtranscriptionregulatorsthatsensediversestimuliandrec-ognizeandbindtospeci cDNAsequences(operators)tocontrolandmodulatetheexpressionoftheirtargetgenes(MadanBabuandTeichmann,2003).Thisbasicgeneticprincipleallowstherecon-structionofthis owofinformationinformofadirectedgraph,whichiscommonlyreferredtoastheTRN(Babuetal.,2004).Insuchnetworks,nodesrepresenttranscriptionregulatorsandtheirtargetgenes,anddirectededgesrepresenttheregulatoryinter-actionbetweenthem.Accordingly,transcriptionregulatorsandtargetgenesformregulatoryunitscross-linkedtosimplenetworkmotifsthatarecharacteristictopologicalandfunctionalelements

Abbreviation:TRN,transcriptionalregulatorynetwork.

Correspondingauthor.Tel.:+495211068703;fax:+4952110689041.E-mailaddress:tauch@cebitec.uni-bielefeld.de(A.Tauch).0168-1656/$–seefrontmatter© 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.jbiotec.2009.12.004

oftheregulatorynetwork.Thesepatternsofconnectionsincludesingleinputmotifs,bi-fanmotifs,feed-forwardloops,anddenseoverlappingregulons(Dobrinetal.,2004;Shen-Orretal.,2002).Beyondthat,autoregulation,multi-componentloopsandregula-torycascadeswerealsodescribedasnetworkmotifs(Yuetal.,2003).Inthecellularsystem,networkmotifsgenerallyarenotisolatedbutinterconnectedtocomplexstructures,formingthearchitecturalbackboneoftheTRN(Dobrinetal.,2004;MadanBabuetal.,2004).

NovelmethodsofultrafastDNAsequencingandgenome-widetranscriptionalpro lingwithtechniqueslikeDNAmicroarrayhybridizations,aswellascomputationalapproachesgeneratehugeamountsofdataontranscriptionalregulatoryprocessesinabacterialcell(Babu,2008;Ballezaetal.,2009).Overtheyears,considerableinformationhasbeenaccumulatedontranscriptionalregulationintheGram-negativemodelorganismEscherichiacoliandstoredinthereferencedatabaseRegulonDB(Collado-Videsetal.,2009).Currently,theTRNofE.coliisthemostdetailedreconstructionofregulatoryinteractionsinbacteria,providingvaluableinsightsintoitsglobaltopologicalorganization(Balajietal.,2007;Gama-Castroetal.,2008).Thiscomprehensivenetworkreconstructionrevealedamodularandhierarchicalstructureofregulatoryinteractionsatthetranscriptionallevel(Maetal.,2004;Resendis-Antonioetal.,2005).Recentresultsindicatedthatdiffer-entorganizationallevelsoftheTRNofE.coliarebridgedbythe

174K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182

presenceofpositiveandnegativefeedbackloops(Freyre-Gonzálezetal.,2008).ThemodularityoftheTRNaccountsfortherobustnessoftheentiresysteminthatwaythatdamageiskeptinacertainpartofthenetwork(Aderem,2005).Cross-genomecomparisonsofthetranscriptionalregulatoryrepertoiresandcorrespondingregulatoryinteractionsamongbacteriafromdiversephylogeneticlineagesindicatedthatTRNsareextremely exibleduringevo-lutionandplayimportantrolesinthephenotypicadaptationofbacteria(Lozada-Chávezetal.,2006).

Anothermicroorganismwithdetailedinformationabouttran-scriptionalregulationistheGram-positivebacteriumCorynebac-teriumglutamicum(Brinkrolfetal.,2007).Itisgenerallycharacterizedbyabroadspectrumofmetaboliccapabilitiesandindustriallyusedforthefermentativeproductionofaminoacids,inparticularl-lysineandl-glutamate(Kimura,2003;Pfefferleetal.,2003).Theavailabilityofthewholegenomesequenceofthewild-typeC.glutamicumATCC13032incombinationwithrecom-binantDNAtechniquesenablednewstrategiesforthedesignofindustrialproductionstrains.The“genomebreeding”strategy,forinstance,wasintroducedtomakeuseofacomparativegenomicsapproachbyscreeningthegenomesequenceofthewild-typestrainandthatofclassicall-lysineproducersforthepresenceofrelevantmutations(Ikedaetal.,2006).Bythismeanssixkeygenes(lysC,hom,pyc,gnd,mqo,andleuC)weredetectedinC.glutamicumtoenabletherationaldesignofanef cientl-lysineproducer(Hayashietal.,2006a;Ikedaetal.,2006;Mitsuhashietal.,2006).Thisstrat-egyalsosuggestedthatalterationsinglobalregulatoryprocessescontributetol-lysineproductioninclassicalstrains(Hayashietal.,2006a,b).Furtherimprovementsofrationallydesignedproductionstrainsmaythereforealsodependongeneticmodi cationsintheTRNofC.glutamicum.

Inthismini-review,wesummarizethecurrentknowledgeaboutthetranscriptionalregulatoryrepertoireandthereconstructedTRNofC.glutamicum.Wealsoprovideanoverviewoftranscriptionreg-ulatorscontrollinggenesinvolvedintheconversionofglucose,fructoseandsucroseintotheindustriallyrelevantproductsl-lysineandl-glutamate.

2.ThetranscriptionalregulatorynetworkofC.glutamicum2.1.DetectionoftherepertoireoftranscriptionregulatorsinC.glutamicum

Thedetectionandsubsequentcharacterizationofthereper-toireofpotentialtranscriptionregulatorsinC.glutamicumwerethekeystepinunderstandingtheTRNinthisbacterium.Thecompletegenomesequenceofthewild-typestrainC.glutamicumATCC13032wasscreenedbydifferentbioinformaticsapproaches,andtheresultingdatawerecombinedwithpublishedknowledgebyperformingliteraturesearches(Bruneetal.,2005).Bythismeansatotalnumberof158geneswasinitiallydetectedasmini-malrepertoirefortranscriptionregulators(Brinkrolfetal.,2007)thatC.glutamicumapparentlyneedstocoordinatetheexpres-sionofaround3000predictedprotein-codinggenesundervaryingenvironmentalconditions(Kalinowskietal.,2003).Basedoncomputationalpredictions,thesegenesareorganizedin2087tran-scriptionunits,including528potentialoperons(Priceetal.,2005).Itshouldbekeptinmindthatthenumberofdetectedtranscrip-tionregulatorsstronglydependsonthecurrentstateofannotationofgeneandproteindatabasesandmaythereforeslightlyvaryinthefuturetobecomemoreandmorepreciseforfollowingreasons.

(i)NovelproteinfamiliesofDNA-bindingtranscriptionregulatorsmaybede nedbasedonexperimentalevidencededucedfromotherbacterialspecies.MembersofthenovelNrtRproteinfamily(Nudix-relatedtranscriptionalregulators),forexam-ple,wereinitiallyannotatedingenomeprojectsasADP-ribosepyrophosphatasesfromtheNudixproteinfamily,butwererecentlyshowntobeinvolvedintheregulationofvariousaspectsofNADbiosynthesisinabroadrangeofbacteria(Huangetal.,2009;Rodionovetal.,2008).InC.glutamicum,thecg1218geneencodesanNrtR-likeregulatoryproteinwithanamino-terminalNudix-likeeffectordomainandacarboxy-terminalhelix-turn-helix-likeDNA-bindingdomainthatmightberesponsibleforthetranscriptionalcontroloftheNADbiosynthesispathway.

(ii)Predictedproteinssupposedtobeinvolvedintranscrip-tionalregulationmayexertothercellularfunctions.TheregulatoryroleofproteinsbelongingtotheWhiBfamily,forinstance,remainsobscureinactinobacteria(denHengstandButtner,2008).ItwasshownthattheWhiB3proteinfromMycobacteriumtuberculosisinteractedwiththecarboxy-terminaldomainoftheprincipleRNApolymerasesigmafactorinayeasttwo-hybridscreening(Steynetal.,2002),suggestingafunctionofWhiB3astranscriptionregulatorbyindirectevi-dence,ter,itwasdemonstratedthatWhiBproteinsfromM.tuberculosis(WhiB1andWhiB4)containredox-sensitiveiron–sulfurclus-tersandcanfunctionasproteindisul dereductases(Alametal.,2007;Gargetal.,2007).However,itcannotbeexcludedatpresentthattheiron–sulfurclustershaveafurtherroleinaffectingtheDNA-bindingpropertiesofWhiBproteins(denHengstandButtner,2008).TheC.glutamicumgenomecon-tainsfourgenesforWhiBfamilyproteins(Bruneetal.,2005).ExperimentalcharacterizationofwhcEsuggestedthatitfunc-tionsastranscriptionregulatorbyactivatingtheexpressionofthetrxBgene(Kimetal.,2005).Likewise,thewhcAgeneofC.glutamicumseemstobeinvolvedinaregulatorypathwaycon-trollinggenesofthecellularheatandstressresponse(Choietal.,2009).FurtherexperimentalworkisthereforenecessarytoelucidatewhethertheWhiBproteinsofC.glutamicumareabletodirectlyinteractwithDNAtargetsites.

(iii)Theregulatorymechanismsofdistinctclassesoftranscrip-tionregulatorsmaydifferbetweenbacterialgenera.Thewell-characterizedpyrimidinebiosynthesisregulatorPyrRofBacillussubtilisisanexampleforactingatthepost-transcriptionallevelbydirectbindingtomRNAtargetsites(HoblandMack,2007).Ontheotherhand,thePyrRproteinofC.glutamicumnegativelycontrolstheexpressionofthepyrHgeneinvolvedinpyrimidinebiosynthesisbydirectbindingtothepyrHpromoter,asdeducedfromelectrophoreticmobilityshiftassayswithpuri edPyrRrepressor(Leeetal.,2006).Likewise,thecold-shockproteinCspAmaypossessDNA-bindingactiv-ityinC.glutamicumtoexertadirectregulatoryeffectongeneexpressionatthetranscriptionallevel(Gualerzietal.,2003;Kimetal.,2007).

(iv)Experimentaldatamaydemonstrateadirectroleinregulatory

processesofproteinswithpredictedfunctionsintranscrip-tionregulation,allowingtheirvalidatedclassi cationintotheregulatoryrepertoire.SuchproteinsinC.glutamicumarerepre-sentedbyCg1340andCg1552thatweregroupedintotheCOGclassesCOG2345andCOG1733,respectively,bothrepresent-ingclustersof“Predictedtranscriptionalregulators”,withoutanybiologicaldatasupportingthisphysiologicalrole(Tatusovetal.,2003).RecentexperimentalworkrevealedthatCg1340(nownamedArnR)speci callybindstothepromoterregionofthenarKGHIJoperonencodingaputativenitrate/nitritetrans-porterandnitratereductase(Nishimuraetal.,2008)andthatCg1552(nownamedQorR)directlyregulatestheexpressionofthequinoneoxidoreductasegeneqor2(Ehiraetal.,2009a).

K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182175

Thelatterexampleparticularlyshowsthatthegrowingamountoffunctionalproteindatastoredinpublicdatabaseswillgreatlyfacilitatethedetectionoftheregulatoryrepertoireofbacterialgenomesinthefuture.Inaddition,thesensitivityofcomputa-tionalmodelsgenerallyappliedforthedetectionofDNA-bindingtranscriptionregulators,likehiddenMarkovmodelsthattracktheoccurrenceofconservedDNA-bindingdomainsincandidatepro-teins,willmostlikelyincreaseandtherebycontributetomoreprecisepredictionsofregulatoryrepertoires.

Currently,acollectionof159genesencodingDNA-bindingtran-scriptionregulatorsandsigmafactorscanberegardedastheminimalregulatoryrepertoireusedfortranscriptionalregulationsinC.glutamicumATCC13032(Brinkrolfetal.,2007;Rodionovetal.,2008).Thisnumberofcandidatetranscriptionregulatorsrepre-sents5.3%ofthepredictedprotein-codingregionsofC.glutamicumandisinagreementwithpreviousestimatesthatlessthan10%ofthetotalnumberofproteinsareassociatedwithgeneregulationinbacterialspecies(Pérez-RuedaandCollado-Vides,2000;Rodionov,2007).Thisdatasetprovidedthebasisforthesystematicanalysisofindividualtranscriptionregulatorsandtheirregulonsbyboth,experimentalandcomputationalapproaches.Thedetectedtran-scriptionregulatorsofC.glutamicumATCC13032canbegroupedinto38proteinfamiliesbasedonsequencesimilaritieswithknownbacterialregulatoryproteins,including13two-componentsig-naltransductionsystemsandsevensigmafactors(Brinkrolfetal.,2007;Ehiraetal.,2009a;Koˇcanetal.,2006;Nishimuraetal.,2008;Rodionovetal.,2008).ThelargestfamilyofDNA-bindingtran-scriptionregulatorsinC.glutamicumATCC13032isTetRwith16members,followedbyArsRwith13proteins(Bruneetal.,2005).ThecompletesetofDNA-bindingtranscriptionregulatorsfromC.glutamicumATCC13032wastracedoncompletelysequencedcorynebacterialgenomesconsideringthegenomiccontextinfor-mation,indicatingacoresetofonly24orthologousregulatorsthatareconservedinallcorynebacteria(Brinkrolfetal.,2007;Tauchetal.,2008).Someoftheseregulatorsmayhaveimportanttopo-logicalandregulatoryfunctionsinaputativecoresegmentofacorynebacterialTRN,forinstancetheglobalregulatorynetworknodeGlxRandthetranscriptionregulatorsDtxR,McbR,LexA,andRamA(Bruneetal.,2006;Crameretal.,2006;Jochmannetal.,2009;Kohletal.,2008;Reyetal.,2005).AnextendedcomputationalsearchforsignatureproteinsinthetaxonomicclassActinobacte-riarevealedthatorthologsofWhiB1,WhiB2andCg1631oftheMerRproteinfamilyarepresentinallsequencedactinobacterialspeciesandthattheMerRfamilyproteinCg1633isconservedinallactinobacteria,withtheexceptionofBi dobacteriumlongumandTropherymawhipplei(Gaoetal.,2006).

2.2.Regulatoryinteractions,coregulationsandcross-regulationsinC.glutamicum

Amongthecollectionof159potentialtranscriptionregulatorsdetectedinC.glutamicumATCC13032,knowledgeaboutregula-toryinteractionswasobtainedfor77regulatoryproteins(48%oftheregulatoryrepertoire)fromwet-labexperimentsand/orreli-ablebioinformaticspredictions(Table1).Thesedatainconjunctionwithliteratureinformationwerecompiledandstoredintherefer-encedatabaseCoryneRegNet(Baumbachetal.,2006,2009b).Thesetofcharacterizedtranscriptionregulatorscurrentlycomprise42repressorsand24activators(includingfoursigmafactors),whereastheremainingelevenproteinswereidenti edasdualregulators,exertingpositiveandnegativeregulationsondifferenttargetgenes.Itisnoteworthythatsomeofthedetecteddualregulatorsexerttheirregulatoryfunctioninthatwaythattheydonotdirectlyacti-vateorrepressthetargetgene,butinterferewithDNA-bindingofcoregulators,asdeducedfromthecharacterizationoftheDtxRandLexAregulonsofC.glutamicum(Bruneetal.,2006;Jochmannetal.,2009).Uptonow895regulatoryinteractionsareintegratedinCoryneRegNet5.0(July2009),including621negative(69.4%)and274positiveregulations(30.6%)(Baumbachetal.,2009a).Duetothehighproportionofrepressorproteinsintheregulatoryreper-toireandthehighnumberofnegativeregulatoryinteractionsthatwerehithertodetected,repressionseemstobethemostcommonregulatorymechanisminC.glutamicum.ThistrendisincontrasttoobservationsmadeintheTRNofE.coli(Gama-Castroetal.,2008),butcorrelateswiththe ndingthatmostpromotersareprevalentlyrepressedinbacterialgenomes(Moreno-Campuzanoetal.,2006).

ThecollectionoftranscriptionalregulatoryinteractionsstoredinCoryneRegNetrevealedthattheexpressionofmanyC.glu-tamicumgenesismodulatedbytheactionoffewtranscriptionregulators.Inthecurrentdataset,158genesofC.glutamicumATCC13032areregulatedbytwotranscriptionregulators,46genesbythreetranscriptionregulators,and15genesarecontrolledbyfouror vetranscriptionregulators(Baumbachetal.,2009a).Thishighrateofinterconnectionbetweenregulatorsandtheircommontar-getgenessuggestedthatcoregulationisanimportantprincipleintheTRNarchitectureofC.glutamicumtoenablethecoordinate owofinputinformationfromtheenvironmenttowardsregulonsofdifferentfunctionality.Fig.1representsadiagramshowingthenumberofregulationsexertedbyindividualregulatoryproteinsversusthenumberofcoregulationsoccurringatcorrespondingtar-getgenes.ThisplotleadstotheconclusionthatthetranscriptionregulatorsofC.glutamicumcanberoughlydividedintothreetypes,comprising(i)localregulatorsthatcontroltheexpressionofasmallnumberoffunctionallyrelatedgenesandtendtobeclusteredwiththeirtargetgenes(Rodionov,2007),(ii)masterregulatorsthatcontroltheexpressionofalargenumberofgenesbelongingtoacorrespondingfunctionalmodul,and(iii)theglobalregulatorGlxRthatrepresentsanoutlierduethehighnumberofregulationsandcoregulationsoftargetgenes.Globalregulatorsarede nedaspro-teinsthatcontrolmorethan20genes(includinggenescodingforothertranscriptionregulators)organizedindifferenttranscriptionunitsandbelongingtoaminimumoffourdifferentfunctionalcat-egories(Moreno-Campuzanoetal.,2006;Resendis-Antonioetal.,2005).Inprinciple,itseemsthattheglobalregulatorGlxRand/oronemasterregulatoractinconcertwithamorespeci clocalreg-ulatorto ne-tunetheexpressionofgenesindistinctfunctionalmodulesofC.glutamicum(Kohletal.,2008).

Additionally,wedetected50transcriptionregulatorsofC.glutamicumthatwerereportedtobecross-regulatedbyothertran-scriptionregulators(Baumbachetal.,2009a).Fig.2showsthematrixofregulatoryinteractionsofthesetranscriptionregulators,including54repressions(72%)and21activations(28%).Asimi-lartrendhasbeenobservedforcoregulationsintheregulatorynetworkofE.coli(Pérez-RuedaandCollado-Vides,2000).TheseinterconnectionsmightberelevantforthehierarchicalstructureoftheTRNofC.glutamicumtoestablishdifferentexecutivelevelsinthe owofinformationfromtheenvironmentalsignaltowardstheaffectedgenes.Moreover,32transcriptionregulatorswerefoundtobeautoregulated,mostofthemwerenegative(28)(Fig.2).Negativeautoregulationoccurswhenarepressorcontrolstheexpressionofitsowngene.Inthecaseofpositiveautoregulation,anactivatorenhancesitsownrateofgeneexpression(Alon,2007).Nega-tiveautoregulationgenerallyspeedsuptheresponsetimeoftheregulatorysystem(Rosenfeldetal.,2002),whereastheeffectofpositiveautoregulationisoppositeinslowingdowntheresponsetimeofthecell(MaedaandSano,2006).MostgenesencodingmasterregulatorsinC.glutamicumarenegativelyautoregulated(Fig.2),withtheexceptionofamtRanddtxR(Bruneetal.,2006;Muhletal.,2009).BythismechanismtheymostlikelyenabletheC.glutamicumcelltorapidlyadaptgeneexpressioninthecorrespondingfunctionalcontextto uctuationsintheenviron-ment.

176K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182

Table1

FeaturesandphysiologicalrolesoftranscriptionregulatorsinCorynebacteriumglutamicumATCC13032.Codingregioncg0012cg0019cg0051cg0090cg0112cg0156cg0196cg0215cg0313cg0317cg0337cg0350cg0444cg0454cg0500cg0527cg0702cg0800cg0862

Alternativeidenti erNCgl0009NCgl0015NCgl0035NCgl0068NCgl0082NCgl0120NCgl0154NCgl0171NCgl0253NCgl0257NCgl0275NCgl0286NCgl0358NCgl0368NCgl0405NCgl0430NCgl0581NCgl0668NCgl0721

GenenamessuR––citBureRcysRiolRcspAlrparsR2whcAglxRramB–qsuRglyR–prpRmtrA

ProteinfamilyROKLysRAraC

ResponseregulatorMarRROKGntRColdAsnCArsRWhiBCrpHTHTetRLysRArsRLysRHTHResponseregulator

Numberoftargetgenesa

913471810132815055341134

EvidencebEPPEPEEEEEPEEPEEPEE

Regulatoryroleandphysiologicalfunctionoftranscriptionregulatorc

Activatorofsulfonateandsulfonateesterutilizationgenes

Activatorofmembraneproteingenecg0018ActivatorofABC-typetransportergenescg0052–cg0054

ActivatorofcitratetransportergenescitHandtctCBA

RepressorofureasegenesureABCEFGD

Dualregulatorofassimilatorysulfatereductiongenes

RepressorofinositolmetabolismgenesRepressorofmalatesynthasegeneaceB

ActivatorofaminoacidexportergenesbrnFERepressorofarsenitepermeasegenearsB2andarsenatereductasegenearsC2

RepressorofoxidativestressresponsegenesDualregulator(globalregulator)functioningasnetworkhub

Dualregulator(masterregulator)ofcarbonmetabolism

RepressorofMFS-typetransportergenescg0455andcg0456

ActivatorofquinateandshikimateutilizationgenesqsuABCD

ActivatorofserinehydroxymethyltransferasegeneglyA

Activatorofsecondarytransportergenecg0701ActivatorofpropionateutilizationgenesprpD2B2C2

Dualregulatorofgenesinvolvedincellmorphology,antibioticssusceptibilityandosmoprotection

ECFsigmafactor(masterregulator)involvedinglobalstressresponse

ActivatorofthioredoxingeneclustertrxBC-cwlM

ActivatorofpyridoxalphosphatesynthasegenespdxST

RepressorofABC-typetransportergenescg0977andcg0978

Repressor(masterregulator)ofnitrogenmetabolism

Repressorofsecondarytransportergenecg0992Repressorofsecondarytransportergenecg1033RepressorofMmpL-typetransportergenecg1054

Repressorofgenesforironprotein

RepressorofMFS-typetransportergenecg1212RepressorofNADbiosynthesisgenesnadAC-cg1214

ECFsigmafactorinvolvedinresponsestocellsurfacestresses

Repressorofhydroxyquinolpathwaygenescg1310andcg1311

Dualregulator(masterregulator)ofrespirationRepressorofriboseuptakeanduridineutilizationgenes

ActivatorofaminoacidexportergenelysERepressorofleucineandtryptophanbiosynthesisgenes

Repressorofuridineutilizationandriboseuptakegenes

Repressorofquinoneoxidoreductasegeneqor2RepressorofargininebiosynthesisgenesRepressorofABC-typetransportergenescg1652–cg1649andcg1653

RepressorofarsenitepermeasegenearsB1andarsenatereductasegenesarsC1andarsC1’Repressorofaconitasegeneacn

Repressorofiron–sulfurclusterbiogenesisgenes

RepressorofpyrimidinebiosynthesisgenesRepressorofABC-typetransportergenescg1832–cg1834

cg0876cg0878cg0897cg0979cg0986cg0993cg1032cg1053cg1120cg1211cg1218cg1271cg1308cg1340cg1410cg1425cg1486cg1547cg1552cg1585cg1648cg1704cg1738cg1765cg1817cg1831

NCgl0733NCgl0734NCgl0753NCgl0823NCgl0829NCgl0836NCgl0869NCgl0886NCgl0943NCgl1019NCgl1025NCgl1075NCgl1110NCgl1138NCgl1203NCgl1215NCgl1261NCgl1312NCgl1317NCgl1345NCgl1401–

NCgl1483NCgl1504NCg1551lNCgl1563

sigHwhcEpdxR–amtR–––ripA–nrtRsigE–arnRrbsRlysGltbRuriRqorRargRrpiRarsR1acnRsufRpyrR–

SigmafactorWhiBGntRPadRTetRArsRArsRTetRAraCArsRNrtRsigmafactorTetRCOG2345LacILysRIclRLacICOG1733ArgRRpiRArsRTetRArsRPyrRArsR

583233922218141379191029632743

EPEEEPEEEPPEEEEEEEEEPEEEEP

K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182

Table1(Continued)Codingregioncg1846cg1861cg1935cg2102

Alternativeidenti erNCgl1578NCgl1590NCgl1650NCgl1844

Genename–relgntR2sigB

ProteinfamilyTetR–

GntR

Sigmafactor

Numberoftargetgenesa

471017

EvidencebEPEE

Regulatoryroleandphysiologicalfunctionoftranscriptionregulatorc

177

cg2103cg2112cg2114cg2115cg2118cg2152cg2268cg2309cg2500cg2502cg2516cg2615cg2624cg2783cg2831cg2888cg2894cg2942cg2965cg3082cg3097cg3202cg3224cg3239cg3253cg3352cg3388cg3420

abc

NCgl1845NCgl1853NCgl1855NCgl1856NCgl1859NCgl1887NCgl1989NCgl2025NCgl2199NCgl2200NCgl2211NCgl2299NCgl2308NCgl2440NCgl2472NCgl2518NCgl2523NCgl2567NCgl2587NCgl2584NCgl2699NCgl2794NCgl2814NCgl2827NCgl2840NCgl2921NCgl2954NCgl2983

dtxRnrdRlexAsugRfruRclgR–bioQznrzurhrcAvanRpcaRgntR1ramAphoR––––hspRfarRlldR–mcbRnagR–sigM

DtxRNrdRLexADeoRDeoRHTH3LysRTetRArsRFurHrcAPadRIclRGntRLuxR

ResponseregulatorTetRAsnCAraCArsRMerRGntRGntRLysRTetRIclRIclR

Sigmafactor

64348405816294312102418211471061465317

EPEEEEPPEEEEEEEEEPPEEEEPEEPE

Repressorofcg1845-cg1844genesandcg1847(p)ppGppsynthetaseinvolvedinsigmafactorcompetition

DualregulatorinvolvedincarbonmetabolismGroup2sigmafactor(masterregulator)

involvedingeneexpressionduringtransitionphaseandunderoxygendeprivationDualregulator(masterregulator)ofironmetabolism

RepressorofribonucleotidereductasegenesnrdHIE

Dualregulator(masterregulator)ofSOSresponse

Repressor(masterregulator)involvedincarbonmetabolism

RepressoroffructosePTSsystemgenes

ActivatorofproteolysisandDNArepairgenesActivatorofmembraneproteingenecg2269Repressorofbiotinuptakeandbiosynthesisgenes

RepressoroftranscriptionregulatorgenezurRepressorofzincuptakesystemgenes

RepressorofheatshockresponsegeneswithCIRCEelements

RepressorofvanillatemetabolismgenesvanABK

RepressorofprotocatechuatemetabolismgenesDualregulatorinvolvedincarbonmetabolismDualregulator(masterregulator)ofcarbonmetabolism

Activator(masterregulator)ofphosphatemetabolism

RepressorofMFS-typetransportergenecg2893ActivatorofLysE-typetranslocatorgenecg2941Activatorofphenoldegradationgenecg2966Repressorofcg3083–cg3085genes

RepressorofheatshockresponsegeneswithHAIRelements

Repressorofarginineandglutamatebiosynthesisgenes

Repressorinvolvedincarbonmetabolism

ActivatorofMFS-typetransportergenecg3240Repressor(masterregulator)ofsulfurmetabolism

Activatorofgentisateuptakeanddegradationgenes

Activatorofhydroxyquinolpathwaygenescg3387–cg3385

ECFsigmafactorinvolvedinexpressionofoxidativestressresponsegenes

CurrentnumberoftargetgenesstoredinCoryneRegNet5.0(July2009).Abbreviations:E,experimentalevidence;P,computationalprediction.

ReferencesforcorrespondingoriginalarticlesareavailablefromtheliteraturesectioninCoryneRegNet.

2.3.CurrentstatusoftranscriptionalregulatorynetworkreconstructioninC.glutamicum

RecentregulatorynetworkreconstructionswithGraphVisandtheentiredatasetofregulatoryinteractionsstoredinCoryneReg-Netincluded544genes,i.e.around20%ofthepredictednumberofC.glutamicumATCC13032genes(KohlandTauch,2009).Thesenetworkreconstructionsrevealedacross-linkageofregulatoryunitstoacomplexnetworkstructure,aso-calledmotifsuper-cluster(Dobrinetal.,2004),including92%ofthehithertoknownregulatoryinteractionsinC.glutamicum.Moreover,amodulararchitectureoftheregulatorynetworkwasobserved,showingsixconnectedunitswithwell-de nedphysiologicalfunctions,includ-ing(i)carbonmetabolism,(ii)sulfurandironhomeostasis,(iii)SOSandstressresponse,(iv)respiration,(v)nitrogenmetabolism,and(vi)phosphatemetabolism.Asexpected,eachofthesefunctionalmoduleswascharacterizedbythepresenceofmasterregulators,suchasMcbR,DtxR,LexA,SigH,ArnR,AmtR,andPhoR,sensingdistinctenvironmentalinputstocontroltheexpressionoffunction-allyrelatedtargetgeneswithintheircorrespondingmodules.ThehierarchicalstructureoftheregulatorynetworkofC.glutamicumwasalsoevidentfromthereconstruction,sincelocalregulatorsweredetectedwithinfunctionalmodules,eitheraspartofthesuperclusterorasseparatemotifswithcorrespondingphysiolog-icalfunctions(Kohletal.,2008).Theonlyregulatoryhub(globalregulatorynetworknode)currentlyknownintheTRNofC.glu-tamicumisGlxR.Recentcomputationalpredictionswithare nedpositionweightmatrixindicatedthatGlxRmightbeinvolvedindirectlycontrollingaround14%oftheentiregenesetofC.glutam-icumATCC13032(KohlandTauch,2009).Thissetincludes23genesfortranscriptionregulators,suggestingthatahighnumberofC.glu-tamicumgenesareunderhierarchicalcontrolbyGlxR,asithasbeenobservedforthehomologousregulatorCRPinE.coli(MadanBabuandTeichmann,2003).

178K.Brinkrolfetal./JournalofBiotechnology

149 (2010) 173–182

Fig.1.CoregulationsinthetranscriptionalregulatorynetworkofC.glutamicumATCC13032.Thediagramvisualizesthenumberofregulatoryinteractionsexertedbydetectedtranscriptionregulatorsandthenumberoftargetgenesthatareunderdirecttranscriptionalcontrolbyotherregulatoryproteins(coregulations).Genenamesandidenti ersareusedforlabeling.Thelowerleftpartofthediagramisshowninmoredetailintheseparatepanel.Symbols:blackdiamond,localregulator;blackcircle,masterregulator;blacksquare,globalregulator.

3.Transcriptionalregulationsinvolvedinl-lysineandl-glutamatebiosyntheses

In2006,Ikedaandco-workerspublishedafeworiginalarti-clesrelatedto“genomebreeding”withC.glutamicum,revealingsixkeygenes(lysC,hom,pyc,gnd,mqo,andleuC)thatareimpor-tanttargetsfortherationaldesignofanindustriall-lysineproducer(Hayashietal.,2006a;Ikedaetal.,2006;Mitsuhashietal.,2006).Takingthisgeneticinformationintoaccount,Fig.3showsthatpartoftheTRNofC.glutamicumATCC13032thatisinvolvedintheconversionofthecarbonsourcessucrose,glucoseandfruc-toseintothebiotechnologicallyrelevantproductsl-lysineandl-glutamate.ThispartialnetworkreconstructionrevealedahighcomplexityofregulatoryinteractionsinthecentralmetabolismofC.glutamicumexertedby19transcriptionregulators,includ-ingtenrepressors,sixdualregulators,oneactivator,andtwosigmafactors(inadditiontothehousekeepingsigmafactorSigA).Highlyregulatednodesinthenetworkstructureare

the

Fig.2.MatrixofregulatoryinteractionsamongtranscriptionregulatorsandregulatorygenesinC.glutamicumATCC13032.Eachcolouredboxshowsthedirectionoftheregulatoryinteractionofthetranscriptionregulatorlistedinthecorrespondingrowontheexpressionoftheregulatorygeneshowninthecorrespondingcolumns.Thediagonalofthematrixrepresentsautoregulatoryinteractions.Colourcode:red,repression;green,activation.

K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182

179

Fig.3.Transcriptionregulatorsandtranscriptionalregulatoryinteractionsinvolvedincontrollingtheconversionofthesugarsubstratessucrose,glucoseandfructoseintotheaminoacidsl-lysineandl-glutamateinC.glutamicumATCC13032.Relevantmetabolicpathwaysareshownschematically.Reactionsinvolvedinglycolysisandthecitratecycleareshownbyblackarrowsandarelabeledbygenenames.Thesixkeygenesdetectedby“genomebreeding”arespeci callymarkedinred.Colourcode:rednode,repressor;greennode,activator;bluenode,dualregulator;yellownode,sigmafactor;dark-graynode,targetgene;light-graynode,genewithoutregulation;redline;repression;greenline,activation;graytrianglenode,antisenseRNA;greendashedline,positivecontrolbyantisenseRNA.

aconitasegeneacnandthesdhABCoperonencodingsuccinatedehydrogenase(Fig.3).Accordingly,acnandsdhABCareappro-priatecandidatesforso-calledintermodulargenes,integratingsignalsattheirpromotersitescomingfromdifferentfunctionalmodulsofthecell(Freyre-Gonzálezetal.,2008).Thereconstruc-tionalsoshowsdifferentexecutivelevelsandthusamulti-layeredhierarchyinthispartoftheC.glutamicumregulatorynetwork(Fig.3).

180K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182

Inprinciple,networkmotifscanberegardedasthesimplestorganizationunitsofabacterialTRN(Dobrinetal.,2004).Atleasttworegulatorycascadesareinvolvedincontrollingtheexpressionoftheacngene:(i)SugR–RamA–AcnR–acnand(ii)DtxR–RipA–AcnR–acn.Thisregulatoryhierarchyoftranscriptionregulatorsrepresentsatypicaltopologicalnetworkmotif,knownasregulatorchain(Yuetal.,2003)andallowingacomplexinte-grationofenvironmentalsignalsintotheregulatorynetwork.Thehierarchicalarchitectureofthenetworkisalsocharacterizedbythehighnumberoffeed-forwardloops.Inthisregulatorynetworkmotif,tworegulators,XandY,jointlycontroltheexpressionofthetargetgeneZ,whereasXalsocontrolstheexpressionofY(Alon,2007).TypicalX–Y-pairsoftranscriptionregulatorsconsti-tutingfeed-forwardloopsinthispartoftheC.glutamicumnetworkareDtxR/RipA,GlxR/RamB,RamA/RamB,GlxR/FruR,andSugR/FruR(Fig.3).Anunusualfeatureofthepartialnetworkreconstructionisthepresenceofamulti-componentloop(Yuetal.,2003),consist-ingofthemutualregulatoryinteractionsbetweenSugRandRamA(Engelsetal.,2008;Toyodaetal.,2009).Thecompletenetworkstructurecanbeobtainedbymergingthedifferenttypesofregu-latorynetworkmotifstoasinglemotifsuperclusterofregulatoryinteractions(Dobrinetal.,2004;Shen-Orretal.,2002).

InadditiontotranscriptionalregulationsexertedbyDNA-bindingtranscriptionregulatorsandsigmafactors,wehavetoconsiderfurthermolecularmechanismsthatareinvolvedinreg-ulatoryprocessesinthispartoftheC.glutamicummetabolism.Recently,anantisensemechanismbythesmallnoncodingArnARNAswasreportedtopositivelycontroltheexpressionofthereg-ulatorygenegntR2(Frunzkeetal.,2008;Zemanováetal.,2008).ThisregulatorymechanismisapparentlylinkedtotheglobalstressresponseofC.glutamicum,sincetheextracytoplasmicfunctionsigmafactorSigHisinvolvedinthesynthesisofArnARNAs,espe-ciallyunderheat-shockconditions(Ehiraetal.,2009b;Zemanováetal.,2008).Moreover,thephosphorylationstatusoftheOdhIpro-teinturnedouttoberelevantfortheactivityofthe2-oxoglutaratedehydrogenasecomplexinC.glutamicum(Niebischetal.,2006).PhosphorylationofOdhIiscontrolledbythefourserine/threonineproteinkinasePknA,PknB,PknG,andPknL,withPknGbeingthemostimportantone(Schultzetal.,2009).Initsunphosphory-latedstate,theOdhIproteinbindstotheOdhA(E1)subunitoftheoxoglutaratedehydrogenasecomplex,therebyinhibitingitsactiv-itywhichisessentialforef cientglutamateproduction(Niebischetal.,2006;Schultzetal.,2007).Theseexamplesindicatethatwecanexpectthedetectionofmoreregulatoryelementsatthevariouslevelsofgeneexpressionandprotein–proteininteractionthatcon-tributetothecontrolofmetabolicpathwaysinvolvedinl-lysineandl-glutamateproductioninC.glutamicum.

4.Conclusionsandoutlook

Inrecentyears,tremendousprogresshasbeenmadeintheexperimentalcharacterizationoftranscriptionregulatorsinC.glu-tamicum.Since2007,atleast53originalarticlesrelatedtotheexaminationoftranscriptionregulatorsinC.glutamicumhavebeenpublished(Baumbachetal.,2009a).Currently,almost900regula-toryinteractionshavebeendeducedfromwet-labexperimentsandreliablecomputationalpredictionsandarestoredinthereferencedatabaseCoryneRegNet5.0(Baumbachetal.,2009a).Despitethisrecentprogress,ourknowledgeabouttheTRNofC.glutamicumisfarfrombeingcomplete.Inparticular,thereislackofinformationonglobalregulatorsinC.glutamicum(withtheexceptionofGlxR)thatful llimportantfunctionsinthearchitectureofTRNs.IntheE.colinetworkmodel,mainlynucleoid-associatedproteins,sigmafactorsandtwo-componentsignaltransductionsystemscontributetotherepertoireofglobalregulators(Freyre-Gonzálezetal.,2008;

Maetal.,2004).Threetwo-componentsystemswerecharacterizedinC.glutamicumsofar,includingCitAB,MtrABandPhoRS(Brockeretal.,2009;Mökeretal.,2004;SchaafandBott,2007),butnoneofthesesystemswasattributedaglobalroleintheTRN.PromisingcandidatesforglobaltranscriptionregulatorsinC.glutamicumare,ontheotherhand,thegroup2sigmafactorSigB(Ehiraetal.,2008;Larischetal.,2007)andtheextracytoplasmicfunctionsigmafactorSigH(Ehiraetal.,2009b).However,furtherresearchisnecessarytoestablishaglobalroleoftheseproteinsintheTRNmodelofC.glutamicumbydirectexperimentalevidence.

ThehighnumberofregulatoryinteractionsknowninC.glu-tamicumprovidesthebasisforapplyingnovelcomputationalapproachestothereofdeducethefunctionalarchitectureoftheTRN.Therecentlydescribednaturaldecompositionapproach,forexample,mayshednewlightonthetopologicaldesignprinci-plesoftheTRN,inconjunctionwithde nedsigni cancemeasures,suchasthenovelconnectivityvalueÄ(Freyre-Gonzálezetal.,2008).Bythismeansthehierarchicalandfunctionalcomposi-tionoftheTRNcanbestrengthenedbystatisticalanalysesandmayleadtothedetectionofintermodulargenesthatplayimpor-tantrolesintheintegrationofdifferentphysiologicalresponses(Freyre-Gonzálezetal.,2008).Distinctpartsofthegeneregu-latorynetwork,suchasthemetabolicroutesrelevantfortheindustrialproductionofl-lysineandl-glutamate,mayprovidethebasisforthedesignofintegratedmodelsbycombiningregulatorydatawiththerecentlypublishedcomprehensivemetabolicmod-elsofC.glutamicum(KjeldsenandNielsen,2009;Shinfukuetal.,2009).Thisintegratedmodelcanbeusedforcomputationalsim-ulationstodetectpotentialtargetsformetabolicengineeringandoptimizationofaminoacidproducingstrains.Furthermore,novelhigh-throughputsequencingtechnologiesseemtobeappropriateforlarge-scaleexpressionstudiestovalidateandextendthecur-rentTRNmodelofC.glutamicum(DroegeandHill,2008;Faithetal.,2007;Lemmensetal.,2009).Thistypeofexperimentcanalsohelptoovercomethecurrentstaticaldescription(thatismainlycausedbythelackofknowledgeabouteffectorslinkingthereg-ulatorysystemwiththemetabolicnetwork)andmayresultinadata-driven,dynamicviewonthecontrolofgeneexpressioninselectedpartsoftheC.glutamicumnetwork.Inadditiontomodel-ingapproaches,geneticengineeringoftheregulatorynetworkwillbecomeanimportanttaskintheemerging eldofsyntheticbiologywithindustriallyrelevantmicroorganisms(Choetal.,2007).References

Aderem,A.,2005.Systemsbiology:itspracticeandchallenges.Cell121,511–513.Alam,M.S.,Garg,S.K.,Agrawal,P.,2007.MolecularfunctionofWhiB4/Rv3681c

ofMycobacteriumtuberculosisH37Rv:a[4Fe-4S]clusterco-ordinatingproteindisulphidereductase.Mol.Microbiol.63,1414–1431.

Alon,U.,workmotifs:theoryandexperimentalapproaches.Nat.Rev.

Genet.8,450–461.

Babu,M.M.,Luscombe,N.M.,Aravind,L.,Gerstein,M.,Teichmann,S.A.,2004.Struc-tureandevolutionoftranscriptionalregulatorynetworks.Curr.Opin.Struct.Biol.14,283–291.

Babu,M.M.,putationalapproachestostudytranscriptionalregulation.

Biochem.Soc.Trans.36,758–765.

Balaji,S.,Babu,M.M.,Aravind,L.,2007.Interplaybetweennetworkstructures,

regulatorymodesandsensingmechanismsoftranscriptionfactorsinthetran-scriptionalregulatorynetworkofE.coli.J.Mol.Biol.372,1108–1122.

Balleza,E.,Lopez-Bojorquez,L.N.,Martinez-Antonio,A.,Resendis-Antonio,O.,

Lozada-Chavez,I.,Balderas-Martinez,Y.I.,Encarnacion,S.,Collado-Vides,J.,2009.Regulationbytranscriptionfactorsinbacteria:beyonddescription.FEMSMicrobiol.Rev.33,133–151.

Baumbach,J.,Brinkrolf,K.,Czaja,L.F.,Rahmann,S.,Tauch,A.,2006.CoryneRegNet:

anontology-baseddatawarehouseofcorynebacterialtranscriptionfactorsandregulatorynetworks.BMCGenomics7,24.

Baumbach,J.,Rahmann,S.,Tauch,A.,2009a.Reliabletransferoftranscriptionalgene

regulatorynetworksbetweentaxonomicallyrelatedorganisms.BMCSyst.Biol.3,8.

Baumbach,J.,Wittkop,T.,Kleindt,C.K.,Tauch,A.,2009b.Integratedanalysisand

reconstructionofmicrobialtranscriptionalgeneregulatorynetworksusingCoryneRegNet.Nat.Protoc.4,992–1005.

K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182

181

Brinkrolf,K.,Brune,I.,Tauch,A.,2007.Thetranscriptionalregulatorynetwork

oftheaminoacidproducerCorynebacteriumglutamicum.J.Biotechnol.129,191–211.

Brocker,M.,Schaffer,S.,Mack,C.,Bott,M.,2009.CitrateutilizationbyCorynebac-teriumglutamicumiscontrolledbytheCitABtwo-componentsystemthroughpositiveregulationofthecitratetransportgenescitHandtctCBA.J.Bacteriol.191,3869–3880.

Brune,I.,Brinkrolf,K.,Kalinowski,J.,Pühler,A.,Tauch,A.,2005.Theindividualand

commonrepertoireofDNA-bindingtranscriptionalregulatorsofCorynebac-teriumglutamicum,Corynebacteriumef ciens,CorynebacteriumdiphtheriaeandCorynebacteriumjeikeiumdeducedfromthecompletegenomesequences.BMCGenomics6,86.

Brune,I.,Werner,H.,Hüser,A.T.,Kalinowski,J.,Pühler,A.,Tauch,A.,2006.The

DtxRproteinactingasdualtranscriptionalregulatordirectsaglobalregula-torynetworkinvolvedinironmetabolismofCorynebacteriumglutamicum.BMCGenomics7,21.

Cho,B.K.,Charusanti,P.,Herrgard,M.J.,Palsson,B.O.,2007.Microbialregulatoryand

metabolicnetworks.Curr.Opin.Biotechnol.18,360–364.

Choi,W.W.,Park,S.D.,Lee,S.M.,Kim,H.B.,Kim,Y.,Lee,H.S.,2009.ThewhcAgene

playsanegativeroleinoxidativestressresponseofCorynebacteriumglutamicum.FEMSMicrobiol.Lett.290,32–38.

Collado-Vides,J.,Salgado,H.,Morett,E.,Gama-Castro,S.,Jiménez-Jacinto,V.,

Martínez-Flores,I.,Medina-Rivera,A.,Mu niz-Rascado,L.,Peralta-Gil,M.,Santos-Zavaleta,A.,2009.Bioinformaticsresourcesforthestudyofgeneregulationinbacteria.J.Bacteriol.191,23–31.

Cramer,A.,Gerstmeir,R.,Schaffer,S.,Bott,M.,Eikmanns,B.J.,2006.Identi cationof

RamA,anovelLuxR-typetranscriptionalregulatorofgenesinvolvedinacetatemetabolismofCorynebacteriumglutamicum.J.Bacteriol.188,2554–2567.

denHengst,C.D.,Buttner,M.J.,2008.Redoxcontrolinactinobacteria.Biochim.Bio-phys.Acta1780,1201–1216.

Dobrin,R.,Beg,Q.K.,Barabasi,A.L.,Oltvai,Z.N.,2004.Aggregationoftopological

motifsintheEscherichiacolitranscriptionalregulatorynetwork.BMCBioinfor-matics5,10.

Droege,M.,Hill,B.,2008.TheGenomeSequencerFLXSystem—longerreads,more

applications,straightforwardbioinformaticsandmorecompletedatasets.J.Biotechnol.136,3–10.

Ehira,S.,Shirai,T.,Teramoto,H.,Inui,M.,Yukawa,H.,2008.Group2sigmafactorSigB

ofCorynebacteriumglutamicumpositivelyregulatesglucosemetabolismunderconditionsofoxygendeprivation.Appl.Environ.Microbiol.74,5146–5152.Ehira,S.,Ogino,H.,Teramoto,H.,Inui,M.,Yukawa,H.,2009a.Regulationof

quinoneoxidoreductasebytheredox-sensingtranscriptionalregulatorQorRinCorynebacteriumglutamicum.J.Biol.Chem.284,16736–16742.

Ehira,S.,Teramoto,H.,Inui,M.,Yukawa,H.,2009b.RegulationofCorynebacterium

glutamicumheatshockresponsebytheextracytoplasmic-functionsigmafactorSigHandtranscriptionalregulatorsHspRandHrcA.J.Bacteriol.191,2964–2972.Engels,V.,Lindner,S.N.,Wendisch,V.F.,2008.TheglobalrepressorSugRcontrols

expressionofgenesofglycolysisandofthel-lactatedehydrogenaseLdhAinCorynebacteriumglutamicum.J.Bacteriol.190,8033–8044.

Faith,J.J.,Hayete,B.,Thaden,J.T.,Mogno,I.,Wierzbowski,J.,Cottarel,G.,Kasif,S.,

Collins,J.J.,Gardner,T.S.,rge-scalemappingandvalidationofEscherichiacolitranscriptionalregulationfromacompendiumofexpressionpro les.PLoSBiol.5,e8.

Freyre-González,J.A.,Alonso-Pavón,J.A.,Trevi no-Quintanilla,L.G.,Collado-Vides,

J.,2008.FunctionalarchitectureofEscherichiacoli:newinsightsprovidedbyanaturaldecompositionapproach.GenomeBiol.9,R154.

Frunzke,J.,Engels,V.,Hasenbein,S.,Gatgens,C.,Bott,M.,2008.Co-ordinatedregula-tionofgluconatecatabolismandglucoseuptakeinCorynebacteriumglutamicumbytwofunctionallyequivalenttranscriptionalregulators,GntR1andGntR2.Mol.Microbiol.67,305–322.

Gama-Castro,S.,Jiménez-Jacinto,V.,Peralta-Gil,M.,Santos-Zavaleta,A.,Pe naloza-Spinola,M.I.,Contreras-Moreira,B.,Segura-Salazar,J.,Mu niz-Rascado,L.,

Martínez-Flores,I.,Salgado,H.,Bonavides-Martínez,C.,Abreu-Goodger,C.,Rodríguez-Penagos,C.,Miranda-Ríos,J.,Morett,E.,Merino,E.,Huerta,A.M.,Trevi no-Quintanilla,L.,Collado-Vides,J.,2008.RegulonDB(version6.0):generegulationmodelofEscherichiacoliK-12beyondtranscription,active(experi-mental)annotatedpromotersandTextpressonavigation.NucleicAcidsRes.36,D120–124.

Gao,B.,Paramanathan,R.,Gupta,R.S.,2006.Signatureproteinsthataredistinctive

characteristicsofActinobacteriaandtheirsubgroups.AntonieVanLeeuwenhoek90,69–91.

Garg,S.K.,SuhailAlam,M.,Soni,V.,RadhaKishan,K.V.,Agrawal,P.,2007.Charac-terizationofMycobacteriumtuberculosisWhiB1/Rv3219asaproteindisul dereductase.ProteinExpr.Purif.52,422–432.

Gualerzi,C.O.,Giuliodori,A.M.,Pon,C.L.,2003.Transcriptionalandpost-transcriptionalcontrolofcold-shockgenes.J.Mol.Biol.331,527–539.

Hayashi,M.,Mizoguchi,H.,Ohnishi,J.,Mitsuhashi,S.,Yonetani,Y.,Hashimoto,

S.,Ikeda,M.,2006a.AleuCmutationleadingtoincreasedl-lysineproductionandrel-independentglobalexpressionchangesinCorynebacteriumglutamicum.Appl.Microbiol.Biotechnol.72,783–789.

Hayashi,M.,Ohnishi,J.,Mitsuhashi,S.,Yonetani,Y.,Hashimoto,S.,Ikeda,M.,2006b.

Transcriptomeanalysisrevealsglobalexpressionchangesinanindustriall-lysineproducerofCorynebacteriumglutamicum.Biosci.Biotechnol.Biochem.70,546–550.

Hobl,B.,Mack,M.,2007.TheregulatorproteinPyrRofBacillussubtilisspeci cally

interactsinvivowiththreeuntranslatedregionswithinpyrmRNAofpyrimidinebiosynthesis.Microbiology153,693–700.

Huang,N.,DeIngeniis,J.,Galeazzi,L.,Mancini,C.,Korostelev,Y.D.,Rakhmani-nova,A.B.,Gelfand,M.S.,Rodionov,D.A.,Raffaelli,N.,Zhang,H.,2009.StructureandfunctionofanADP-ribose-dependenttranscriptionalregulatorofNADmetabolism.Structure17,939–951.

Ikeda,M.,Ohnishi,J.,Hayashi,M.,Mitsuhashi,S.,2006.Agenome-basedapproach

tocreateaminimallymutatedCorynebacteriumglutamicumstrainforef cientl-lysineproduction.J.Ind.Microbiol.Biotechnol.33,610–615.

Jochmann,N.,Kurze,A.K.,Czaja,L.F.,Brinkrolf,K.,Brune,I.,Hüser,A.T.,Hansmeier,

N.,Pühler,A.,Borovok,I.,Tauch,A.,2009.GeneticmakeupoftheCorynebac-teriumglutamicumLexAregulondeducedfromcomparativetranscriptomicsandinvitroDNAbandshiftassays.Microbiology155,1459–1477.

Kalinowski,J.,Bathe,B.,Bartels,D.,Bischoff,N.,Bott,M.,Burkovski,A.,Dusch,N.,

Eggeling,L.,Eikmanns,B.J.,Gaigalat,L.,Goesmann,A.,Hartmann,M.,Huth-macher,K.,Kramer,R.,Linke,B.,McHardy,A.C.,Meyer,F.,Mockel,B.,Pfefferle,W.,Pühler,A.,Rey,D.A.,Rückert,C.,Rupp,O.,Sahm,H.,Wendisch,V.F.,Wiegräbe,I.,Tauch,A.,2003.ThecompleteCorynebacteriumglutamicumATCC13032genomesequenceanditsimpactontheproductionofl-aspartate-derivedaminoacidsandvitamins.J.Biotechnol.104,5–25.

Kim,T.H.,Park,J.S.,Kim,H.J.,Kim,Y.,Kim,P.,Lee,H.S.,2005.ThewhcEgeneof

mun.337,757–764.

Kim,W.S.,Park,S.D.,Lee,S.M.,Kim,Y.,Kim,P.,Lee,H.S.,2007.Expressionanalysis

ofthecsp-likegenesfromCorynebacteriumglutamicumencodinghomologsoftheEscherichiacolimajorcold-shockproteinCspA.J.Microbiol.Biotechnol.17,1353–1360.

Kimura,E.,2003.Metabolicengineeringofglutamateproduction.Adv.Biochem.

Eng.Biotechnol.79,37–57.

Kjeldsen,K.R.,Nielsen,J.,2009.Insilicogenome-scalereconstructionandvalidation

oftheCorynebacteriumglutamicummetabolicnetwork.Biotechnol.Bioeng.102,583–597.Koˇcan,M.,Schaffer,S.,Ishige,T.,Sorger-Herrmann,U.,Wendisch,V.F.,Bott,M.,2006.

Two-componentsystemsofCorynebacteriumglutamicum:deletionanalysisandinvolvementofthePhoS-PhoRsysteminthephosphatestarvationresponse.J.Bacteriol.188,724–732.

Kohl,T.A.,Tauch,A.,2009.TheGlxRregulonoftheaminoacidproducer

Corynebacteriumglutamicum:detectionofthecorynebacterialcoreregulonandintegrationintothetranscriptionalregulatorynetworkmodel.J.Biotechnol.143,239–246.

Kohl,T.A.,Baumbach,J.,Jungwirth,B.,Pühler,A.,Tauch,A.,2008.TheGlxRregulon

oftheaminoacidproducerCorynebacteriumglutamicum:insilicoandinvitrodetectionofDNAbindingsitesofaglobaltranscriptionregulator.J.Biotechnol.135,340–350.

Larisch,C.,Nakunst,D.,Hüser,A.T.,Tauch,A.,Kalinowski,J.,2007.Thealterna-tivesigmafactorSigBofCorynebacteriumglutamicummodulatesglobalgeneexpressionduringtransitionfromexponentialgrowthtostationaryphase.BMCGenomics8,4.

Lee,H.H.,Chung,S.S.,Jo,J.H.,2006.ExpressionofpyrHgeneencodingUMP-kinase

isregulatedbydirectbindingofPyrRtothepromoterinCorynebacteriumglu-tamicum.Genet.Ind.Microorganism10,91.

Lemmens,K.,DeBie,T.,Dhollander,T.,Monsieurs,P.,DeMoor,B.,Collado-Vides,J.,

Engelen,K.,Marchal,K.,2009.Thecondition-dependenttranscriptionalnetworkinEscherichiacoli.Ann.N.Y.Acad.Sci.1158,29–35.

Lozada-Chávez,I.,Janga,S.C.,Collado-Vides,J.,2006.Bacterialregulatorynet-worksareextremely exibleinevolution.NucleicAcidsRes.34,3434–3445.

Ma,H.W.,Buer,J.,Zeng,A.P.,2004.Hierarchicalstructureandmodulesinthe

Escherichiacolitranscriptionalregulatorynetworkrevealedbyanewtop-downapproach.BMCBioinformatics5,199.

MadanBabu,M.,Teichmann,S.A.,2003.Functionaldeterminantsoftranscription

factorsinEscherichiacoli:proteinfamiliesandbindingsites.TrendsGenet.19,75–79.

MadanBabu,M.,Luscombe,N.M.,Aravind,L.,Gerstein,M.,Teichmann,S.A.,2004.

Structureandevolutionoftranscriptionalregulatorynetworks.Curr.Opin.Struct.Biol.14,283–291.

Maeda,Y.T.,Sano,M.,2006.Regulatorydynamicsofsyntheticgenenetworkswith

positivefeedback.J.Mol.Biol.359,1107–1124.

Mitsuhashi,S.,Hayashi,M.,Ohnishi,J.,Ikeda,M.,2006.Disruptionofmalate:quinone

oxidoreductaseincreasesl-lysineproductionbyCorynebacteriumglutamicum.Biosci.Biotechnol.Biochem.70,2803–2806.

Möker,N.,Brocker,M.,Schaffer,S.,Krämer,R.,Morbach,S.,Bott,M.,2004.Deletionof

thegenesencodingtheMtrA-MtrBtwo-componentsystemofCorynebacteriumglutamicumhasastrongin uenceoncellmorphology,antibioticssusceptibil-ityandexpressionofgenesinvolvedinosmoprotection.Mol.Microbiol.54,420–438.

Moreno-Campuzano,S.,Janga,S.C.,Pérez-Rueda,E.,2006.Identi cationandanalysis

ofDNA-bindingtranscriptionfactorsinBacillussubtilisandotherFirmicutes—agenomicapproach.BMCGenomics7,147.

Muhl,D.,Jeszberger,N.,Hasselt,K.,Jardin,C.,Sticht,H.,Burkovski,A.,2009.DNA

bindingbyCorynebacteriumglutamicumTetR-typetranscriptionregulatorAmtR.BMCMol.Biol.10,73.

Niebisch,A.,Kabus,A.,Schultz,C.,Weil,B.,Bott,M.,2006.Corynebacterialprotein

kinaseGcontrols2-oxoglutaratedehydrogenaseactivityviathephosphoryla-tionstatusoftheOdhIprotein.J.Biol.Chem.281,12300–12307.

Nishimura,T.,Teramoto,H.,Vertes,A.A.,Inui,M.,Yukawa,H.,2008.ArnR,a

noveltranscriptionalregulator,repressesexpressionofthenarKGHJIoperoninCorynebacteriumglutamicum.J.Bacteriol.190,3264–3273.

182K.Brinkrolfetal./JournalofBiotechnology149 (2010) 173–182

Pérez-Rueda,E.,Collado-Vides,J.,2000.TherepertoireofDNA-bindingtranscrip-tionalregulatorsinEscherichiacoliK-12.NucleicAcidsRes.28,1838–1847.Pfefferle,W.,Möckel,B.,Bathe,B.,Marx,A.,2003.Biotechnologicalmanufactureof

lysine.Adv.Biochem.Eng.Biotechnol.79,59–112.

Price,M.N.,Huang,K.H.,Alm,E.J.,Arkin,A.P.,2005.Anovelmethodforaccurate

operonpredictionsinallsequencedprokaryotes.NucleicAcidsRes.33,880–892.Resendis-Antonio,O.,Freyre-Gonzalez,J.A.,Menchaca-Mendez,R.,Gutierrez-Rios,

R.M.,Martinez-Antonio,A.,Avila-Sanchez,C.,Collado-Vides,J.,2005.ModularanalysisofthetranscriptionalregulatorynetworkofE.coli.TrendsGenet.21,16–20.

Rey,D.A.,Nentwich,S.S.,Koch,D.J.,Rückert,C.,Pühler,A.,Tauch,A.,Kali-nowski,J.,2005.TheMcbRrepressormodulatedbytheeffectorsubstanceS-adenosylhomocysteinecontrolsdirectlythetranscriptionofareguloninvolvedinsulphurmetabolismofCorynebacteriumglutamicumATCC13032.Mol.Microbiol.56,871–887.

Rodionov,D.A.,parativegenomicreconstructionoftranscriptionalregu-latorynetworksinbacteria.Chem.Rev.107,3467–3497.

Rodionov,D.A.,DeIngeniis,J.,Mancini,C.,Cimadamore,F.,Zhang,H.,Osterman,A.L.,

Raffaelli,N.,2008.TranscriptionalregulationofNADmetabolisminbacteria:NrtRfamilyofNudix-relatedregulators.NucleicAcidsRes.36,2047–2059.

Rosenfeld,N.,Elowitz,M.B.,Alon,U.,2002.Negativeautoregulationspeedsthe

responsetimesoftranscriptionnetworks.J.Mol.Biol.323,785–793.

Schaaf,S.,Bott,M.,2007.TargetgenesandDNA-bindingsitesoftheresponseregu-latorPhoRfromCorynebacteriumglutamicum.J.Bacteriol.189,5002–5011.

Schultz,C.,Niebisch,A.,Gebel,L.,Bott,M.,2007.GlutamateproductionbyCorynebac-teriumglutamicum:dependenceontheoxoglutaratedehydrogenaseinhibitorproteinOdhIandproteinkinasePknG.Appl.Microbiol.Biotechnol.76,691–700.Schultz,C.,Niebisch,A.,Schwaiger,A.,Viets,U.,Metzger,S.,Bramkamp,M.,Bott,M.,

2009.Geneticandbiochemicalanalysisoftheserine/threonineproteinkinasesPknA,PknB,PknGandPknLofCorynebacteriumglutamicum:evidencefornon-essentialityandforphosphorylationofOdhIandFtsZbymultiplekinases.Mol.Microbiol.74,724–741.

Seshasayee,A.S.,Bertone,P.,Fraser,G.M.,Luscombe,N.M.,2006.Transcriptional

regulatorynetworksinbacteria:frominputsignalstooutputresponses.Curr.Opin.Microbiol.9,511–519.

Shen-Orr,S.S.,Milo,R.,Mangan,S.,Alon,U.,workmotifsinthetranscrip-tionalregulationnetworkofEscherichiacoli.Nat.Genet.31,64–68.

Shinfuku,Y.,Sorpitiporn,N.,Sono,M.,Furusawa,C.,Hirasawa,T.,Shimizu,H.,2009.

Developmentandexperimentalveri cationofagenome-scalemetabolicmodelforCorynebacteriumglutamicum.Microb.CellFact.8,43.

Steyn,A.J.,Collins,D.M.,Hondalus,M.K.,JacobsJr.,W.R.,Kawakami,R.P.,Bloom,

B.R.,2002.MycobacteriumtuberculosisWhiB3interactswithRpoVtoaffecthostsurvivalbutisdispensableforinvivogrowth.Proc.Natl.Acad.Sci.U.S.A.99,3147–3152.

Tatusov,R.L.,Fedorova,N.D.,Jackson,J.D.,Jacobs,A.R.,Kiryutin,B.,Koonin,E.V.,

Krylov,D.M.,Mazumder,R.,Mekhedov,S.L.,Nikolskaya,A.N.,Rao,B.S.,Smirnov,S.,Sverdlov,A.V.,Vasudevan,S.,Wolf,Y.I.,Yin,J.J.,Natale,D.A.,2003.TheCOGdatabase:anupdatedversionincludeseukaryotes.BMCBioinformatics4,41.

Tauch,A.,Schneider,J.,Szczepanowski,R.,Tilker,A.,Viehoever,P.,Gartemann,K.-H.,

Arnold,W.,Blom,J.,Brinkrolf,K.,Brune,I.,Götker,S.,Weisshaar,B.,Goesmann,A.,Dröge,M.,Pühler,A.,2008.UltrafastpyrosequencingofCorynebacteriumkroppenstedtiiDSM44385revealedinsightsintothephysiologyofalipophiliccorynebacteriumthatlacksmycolicacids.J.Biotechnol.136,22–30.

Toyoda,K.,Teramoto,H.,Inui,M.,Yukawa,H.,2009.InvolvementoftheLuxR-type

transcriptionalregulatorRamAinregulationofexpressionofthegapAgene,encodingglyceraldehyde-3-phosphatedehydrogenaseofCorynebacteriumglu-tamicum.J.Bacteriol.191,968–977.

Yu,H.,Luscombe,N.M.,Qian,J.,Gerstein,M.,2003.Genomicanalysisofgeneexpres-sionrelationshipsintranscriptionalregulatorynetworks.TrendsGenet.19,422–427.

Zemanová,M.,Kadeˇrábkova,P.,Pátek,M.,Knoppová,M.,ˇSilar,R.,Neˇsvera,J.,2008.

ChromosomallyencodedsmallantisenseRNAinCorynebacteriumglutamicum.FEMSMicrobiol.Lett.279,195–201.

本文来源:https://www.bwwdw.com/article/7ix1.html

Top