特殊三角形复习-典型例题分析

更新时间:2023-07-25 11:50:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

精品

特殊三角形复习

【内容综述】

等腰三角形和直角三角形是两种非常特殊的三角形,本讲中通过一系列有关等腰三角形或直角三角形的问题的解决,既是复习有关三角形全等的知识,同时也是培养同学们分析、解决问题的能力。同学们通过学习下面问题的分析、解答过程,特别要注意体会如何根据题目的已知信息和图形特征作出适当的辅助线。这是学习本节的难点所在。

【要点讲解】

★★例1 如图2-8-1,中,AB=AC,D为AB上一点,E为AC延长线上一点,且BD=CE,DE交BC于G。

求证:DG=EG。

思路因为△GDB和△GEC不全等,所以考虑在△GDB内作出一个与△GEC全等的三角形。

证明:过D作DH∥AE,交BC于H

∵AB=AC

∴DB=DH

又∵DB=CE

∴DH=CE

又∵

∴DG=EG.

说明本题易明显得出DG和EG所在的△DBG和△ECG不全等,故要构造三角形的全等,本题的另一种证法是过E作EF∥BD,交BC的延长线于F,证明△DBG≌△EFG,读者不妨试一试。

★★例2 如图2-8-2,D为等边△ABC的内部一点,DB=DA,BE=AB,∠DBE=∠DBC,求∠BED的度数。

.

精品

思路从已知中知等边△ABC的每个内角为60°。所以要想办法把∠BED和60°这一信息产生联系。

解:连结DC

由△ABC是等边三角形且BE=AB可得BE=BC

又∵∠DBE=∠DBC,BD=BD

∴△DBE≌△DBC,

∴∠BED=∠BCD

∵DB=DA,DC=DC,CB=CA,

∴△CBD≌△CAD

∴∠BCD=∠ACD=∠BCA=×60°=30°

∴∠BED=30°

说明证明两角相等的重要思路之一就是证明这两角所在的两个三角形能全等。

★★★例3 如图2-8-3,在△ABC中,AB=AC,∠A=100°,作∠B的平分线与AC 边交于E,求证:BC=AE+BE。

思路要想办法把AE+BE替换成一条线段a,然后只需证明BC=a。

证明延长BE到F,使EF=AE,连结FC,作∠BEC的平分线交BC于G,由AB=AC,∠BAC=100°,可知∠ABE=∠CBE=20°

因而∠AEB=∠GEB=60°

于是△AEB≌△GEB

则有EG=EA=EF

又由∠GEC=∠FEC=60°

所以△GEC≌△FEC

所以∠EFC=∠EGC=180°-100°=80°

从而∠BCF=80°

故BC=BF=AE+BE

.

精品

★★★例4 如图2-8-4, P为等边△ABC内任一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F。

求证:PD+PE+PF是定值。

思路考虑把PD+PE+PF

用等边△ABC的边长、周长、高、

面积等不变量表示出来。

证明连结PA、PB、PC,过A作AH⊥BC于H。

∵,

又∵AB=BC=CA,

∴PD+PE+PF=AH

因为等边三角形的大小已给定,则它的高也随之确定。

∴PD+PE+PF是定值。

说明题中的PD、PE、PF这三段都是点到线段的距离,故联想到了三角形的面积,利用各个部分的面积之和等于整体的面积建立了等式关系。

★★★例5 如图2-8-5,在△ABC中,BF⊥AC,CG⊥AB,垂足分别是F、G,D 是BC的中点,DE⊥FG,垂足是E。

求证:GE=EF。

思路利用等腰三角形的三线合一性质,只需证明DG=DF。

证明连结DG、DF。

∵DG是Rt△BCG的斜边BC上的中线。

∴,同理可证

.

精品

∴DG=DF

又∵DE⊥FG,

∴GE=EF

说明若题目中作了三角形的高,就应注意所形成的直角三角形这一图形,如本题图中的Rt△BGC和Rt△CFB。

★★★★例6 已知一个直角三角形的边长都是自然数,且周长和面积的量数相等,求这个三角形的三边长。

思路列出三边长满足的关系式,然后通过分析、讨论得出三边的长度。

解设三边长分别为a,b,c,其中c为斜边,则

由②得,代入①得

∵ab≠0,

∴ab―4a―4b+8=0

∴(a、b为自然数)

∴a-4=1,2,4,8

∴a=5,6,8,12;b=12,8,6,5;

c=13,10,10,13

∴三边长分别为6、8、10或5、12、13。

说明本题是用代数方法解几何题,这种方法今后还大有用处,请读者注意它。

★★★★例7 如图2-8-6,在△ABC中,AB=AC=CB,AE=CD,AD、BE相交于P,BQ⊥AD于Q。

求证:BP=2PQ。

思路在Rt△BPQ中,本题的结论等价于证明∠PBQ=30°

.

精品

证明∵AB=CA,∠BAE=∠ACD=60°,AE=CD,

∴△BAE≌△ACD

∴∠ABE=∠CAD

∴∠BPQ=∠ABE+∠BAP

=∠CAD+∠BAP=60°

又∵BQ⊥AD

∴∠PBQ=30°

∴BP=2PQ

说明本题把证明线段之间的关系转化为证明角的度数,这种转换问题的方法值得读者细心体会。

.

本文来源:https://www.bwwdw.com/article/7iqm.html

Top