八年级数学下册第16章教案表格式
更新时间:2024-04-14 19:35:01 阅读量: 综合文库 文档下载
大西沟中心学校教案
学 科 课 题 课 时 数学 年 级 八 主备人 16.1二次根式 李宝林 编 号 1 第 1 课时(总 2 课时) 课 型 新授 知识 1、了解二次根式的概念,能判断一个式子是不是二次根式。 2、掌握二次根式有意义的条件。 教 学 目 标 目标 3、掌握二次根式的基本性质:a?0(a?0)和(a)2?a(a?0) 能力 目标 发展观察、归纳、概括等能力,发展有条理的思考能力以及语言表达能力。 情感 目标 培养积极地探索数学规律的兴趣,提高利用数学知识解决问题的能力。 教学重点 二次根式有意义的条件;二次根式的性质.X k B 1 . c o m 教学难点 综合运用性质a?0(a?0)和(a)2?a(a?0)。 16.1 二次根式 板书 设计 a?0(a?0) (a)2?a(a?0) 1
教学环节 自学导航(课前预习) 合作交流(小组互助) 2教 学 过 程 设 计 (1)已知x?a,那么a是x的______;x是a的______, 记为_____,a一定是____数。 4(2)4的算术平方根为2,用式子表示为 =__________;正数a的算术平方根为_______,0的算术平方根为_______;式子a?0(a?0)的意义是 。 (1)16的平方根是 ; (2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h?5t。如果用含h的式子表示t,则 2二次备课 t = ; (3)圆的面积为S,则圆的半径是 ; (4)正方形的面积为b?3,则边长为 。 思考:16,征. 定义: 一般地我们把形如_____________。sh ,,b?3等式子的实际意义.说一说他们的共同特?5a(a?0)叫做二次根式,a叫做 。 1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么? 3,?16,34,?5,a(a?0),x2?1 32、当a为正数时a指a的 ,而0的算术平方根是 ,负数 ,只有非负数a才有算术平方根。所以,在二次根式a中,字母a必须满足 , a才有意义。 3、根据算术平方根意义计算 : (1) (4)2 (2) (3)(0.5)2 (4)(根据计算结果,你能得出结论: (a)2?________,其中a?0, 4、由公式(a)2?a(a?0),我们可以得到公式a=(a)2 ,利用此公式可以把任意一个非负数写成一个数的平方的形式。 如(5)=5;也可以把一个非负数写成一个数的平方形式,如5=(5). 22(3)212) 3练习:(1)把下列非负数写成一个数的平方的形式: 6 0.35 2
(三)展示提升(质疑点拨) (2)在实数范围内因式分解 x2?7 4a2-11 例:当x是怎样的实数时,x?2在实数范围内有意义? 练习:1、x取何值时,下列各二次根式有意义? ①3x?4 ②2?12 x ③ ?2?x3 达标检测 2、(1)若a?3?3?a有意义,则a的值为___________. (2)若 ?x在实数范围内有意义,则x为( )。 A.正数 B.负数 C.非负数 D.非正数 3、(1)在式子21?2x1?x中,x的取值范围是____________. (2)已知x?4+2x?y=0,则x?y?_____________. x?3?2,则yx= _____________。 (3)已知y?3?x?(一)填空题: ?3??1、? ?5?? 2、若2x?1?y?1?0,那么x= ,y= 。??3、当x= 时,代数式4x?5有最小值,其最小值是 。 4、在实数范围内因式分解: 2x2?9?x2?( )2=(x+ )(y- ) (二)选择题: 1、一个数的算术平方根是a,比这个数大3的数为( ) A、a?3 B、a?3 C、a?3 D、a?3 2、二次根式a?1中,字母a的取值范围是( ) A、 a<l B、a≤1 C、a≥1 D、a>1 2教学 反思 3
大西沟中心学校教案
学 科 课 题 课 时 知识 教 学 目 标 能力 目标 情感 目标 教学重点 数学 年 级 八 主备人 李宝林 编 号 2 16.1二次根式2 第 2 课时(总 2 课时) 1、掌握二次根式的基本性质:a?a 2课 型 新授 目标 2、能利用上述性质对二次根式进行化简. 会用二次根式的性质进行化简与计算 培养积极地探索数学规律的兴趣,提高利用数学知识解决问题的能力。 二次根式的性质a?a. 2教学难点 综合运用性质a?a进行化简和计算 2教学准备 多媒体课件w W w . x K b 1.c o M 16.1二次根式2 a2?a 化简 板书 设计 例题 4
教学环节 自学导航(课前预习) 合作交流(小组互助 展示提升(质疑点拨) 教 学 过 程 设 计 (1)什么是二次根式,它有哪些性质? (2)二次根式二次备课 2有意义,则x 。 x?5222(3)在实数范围内因式分解:x?6?x?( )=(x+ )(y- ) 1、计算:442? 0.22? ()2? 202? 5a2? 观察其结果与根号内幂底数的关系,归纳得到:当a?0时,2、计算:4(?4)2? (?0.2)2? (?)2? (?20)2? 5观察其结果与根号内幂底数的关系,归纳得到:当a?0时,a2? 3、计算:02? 当a?0时,a2? 1、归纳总结 将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质: a?0?a?a2?a??00 ??aa?0?2、化简下列各式: 22(1)、0.32? (2)、(?0.5)? (3)、(?6)? (4)、?2a?= 2(a?0) 3、请大家思考、讨论二次根式的性质(a)2?a(a?0)与a?a有什么区别与联系。 1、化简下列各式 (1)4x2(x?0) (2) 2、化简下列各式 (1)(a?3) 5 22x4 (a?3) (2)?2x?3?2(x<-2)
达标检测 A组 21、填空:(1)、(2x?1)-(2x?3)2(x?2)=_________.(2)、(??4)= 2新课 标 第 一 网 (3)a、b、c为三角形的三条边,则(a?b?c)?b?a?c?-________. 2、已知2<x<3,化简:(x?2)?x?3 B组 3、 已知0<x<1,化简:(x?)?4-(x? 4、把?2?x?22 1x212)?4 x1的根号外的?2?x?适当变形后移入根号内,得( ) x?2A、2?xB、x?2 C、?2?x D、? x?2 5、 若二次根式?2x?6有意义,化简│x-4│-│7-x│。 教学 反思 6
大西沟中心学校教案
学 科 课 题 课 时 数学 年 级 八 主备人 李宝林 编 号 3 16.2二次根式的乘除 第 1 课时(总 2 课时) 课 型 新授 知识 理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算目标 和化简 教 学 能力 能用二次根式的性质以及乘法法则进行根式的化简. 目 目标 标 情感 目标 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法 教学重点 掌握和应用二次根式的乘法法则和积的算术平方根的性质。 教学难点 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。 16.2二次根式的乘除1 板书 设计 7
,ab=a·b(a≥0,b≥0) a·b=ab(a≥0,b≥0)例题 教学环节 教 学 过 程 设 计 二次备课 自学导航(课前预1.填空:(1)4×9=____,4?9=____; 4×9__4?9 习) (2)16×25=____,16?25=___; 16× 25__16?25 (3)100×36=___,100?36=___. 100× 36__100?36 合作交流1、 学生交流活动总结规律. (小组互 2、一般地,对二次根式的乘法规定为 助) a·b=ab.(a≥0,b≥0 反过来: ab=a·b(a≥0, b≥0) 例1、计算 (1)5×7 (2)1 3×9 (3)36×210 (4)5a·15ay 例2、化简 (1)9?16 (2)16?81 (3)81?100 (4)9x2y2(5)54 (1)计算: ① 16×8 ②55×215 ③12a3·12 3ay (2)化简: 20; 18; 24; 54; 12a2b2 判断下列各式是否正确,不正确的请予以改正: 巩固练习 (1)(?4)?(?9)??4??9 (2)412 25×25=4×1225×25=41225×25=412=83 展示提升展示学习成果后,请大家讨论:对于9×27的运算中不必把它变成243 (质疑点后再进行计算,你有什么好办法? 拨) 注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即 系数之积作为积的系数,被开方数之积为被开方数。 2、化简二次根式达到的要求: (1)被开方数进行因数或因式分解。 (2)分解后把能开尽方的开出来。 8 达标检测 A组 1、选择题 (1)等式x?1?x?1?x2?1成立的条件是( ) A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 (2)下列各等式成立的是( ).A.45×25=85 B.53×42=205 C.43×32=75 D.53×42=206 2(3)二次根式(?2)?6的计算结果是( )A.26 B.-26 C.6 D.12 2、化简与计算: 432x(1)360; (2); (3)18?30; (4)3?2 75B组 1、选择题 若a?2?b?4b?4?c?c?221?0,则b2?a?c=( ) 4 A.4 B.2 C.-2 D.1 教学 反思 9
大西沟中心学校教案
学 科 课 题 课 时 数学 年 级 八 主备人 李宝林 编 号 4 16.2二次根式的乘除2 第 2 课时(总 2 课时) 1、掌握二次根式的除法法则和商的算术平方根的性质。 2、能熟练进行二次根式的除法运算及化简。 3.会判断二次根式是否为最简二次根式。w W w .X k b 1. c O m 能用二次根式的性质以及乘除法法则进行根式的化简. 课 型 新授 知识 目标 教 学 目 标 情感 目标 能力 目标 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法 教学重点 掌握和应用二次根式的除法法则和商的算术平方根的性质。 教学难点 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简 16.2二次根式的乘除2 aaaa=(a≥0,b>0)反过来,=(a≥0,b>0) bbbb板书 设计 例题 最简二次根式 10
教学环节 自学导航(课前预习) 合作交流(小组互助) 展示提升(质疑点拨) 教 学 过 程 设 计 1、计算: (1)38×(-46) (2)12ab?6ab3 2、填空: (1)二次备课 9999=____,=____; 规律: ______; 1616161616161616=____,=____; ______; 36363636(2)(3)4444=____,=____; _______; 1616161636363636=____,=___. _______. 81818181(4) 一般地,对二次根式的除法规定: aaaa=(a≥0,b>0)反过来,=(a≥0,b>0) bbbb1、计算:(1)31111264 (2) (3) (4) ??2841683 新- 课-标-第 -一 - 网 2、化简: 364b25x9x (1) (2) (3) (4) 649a2169y264y2 注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。 2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。 阅读下列运算过程: 13322525, ????3533?355?5数学上将这种把分母的根号去掉的过程称作“分母有理化”。 利用上述方法化简: (1)211=________(2)=_________(3) =_____ ___ (4) 3212 610=___ ___ 25 11 达标检测 A组 1、选择题 (1)计算1?21312. ?1的结果是( )35 A.2722 5 B. C.2 D.77(2)化简?32的结果是( ) 27 A.-262 B.- C.- D.-2 3332、计算: (1) (3)248 (2) 2x38x 119x (4) ?241664y B组X k B 1 . c o m 用两种方法计算: (1)646(2) 8 43 教学 反思 12
大西沟中心学校教案
学 科 课 题 课 时 数学 年 级 八 主备人 李宝林 编 号 5 16.3二次根式的加减 第 1 课时(总 2 课时) 课 型 新授 知识 目标 教 学 目 标 能力 目标 1、理解同类二次根式,并能判定哪些是同类二次根式 2、理解和掌握二次根式加减的方法. 3、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简. 经历整式加减运算与二次根式加减运算的比较体会类比思想,探究二次根式加减的方法,培养学生观察、探索、归纳的能力。 情感 目标 通过类比学习,培养学生分析问题解决问题的能力和团队合作精神。 教学重点 教学难点 二次根式的加减运算.w W w . x K b 1.c o M 探索二次根式加减运算的方法和准确地进行二次根式加减运算。 16.3二次根式的加减 同类二次根式 板书 设计 二次根式加减时,可以先将二次根式化成最简二次根式,? 再将同类二次根式进行合并 13
教学环节 自学导航(课前预习) 教 学 过 程 设 计 计算.(1)2x?3x;(2)2x?3x?5x; (3)x?2x?3y;(4)3a?2a?a222 222二次备课 合作交流 (小组互助) 学生活动:计算下列各式. 展示运用 (1)22+32 = (2)28-38+58 = (3)7+27+39?7 = (4)33-23+2= 由此可见,二次根式的被开方数相同也是可以合并的,如22与8表面上看是不相同的,但它们可以合并吗?也可以.(与整数中同类项的意义相类似我们把33与?23,3a、?2a与4a这样的几个二次根式,称为同类二次根式) 32+8=32+22=52 33+27=33+33=63 所以,二次根式加减时,可以先将二次根式化成最简二次根式,?再将同类二次根式进行合并. 例1.计算 (1)8+18 (2)16x+64x 例2.计算 (1)348-9 1+312 (2)(48+20)+(12-5) 3 归纳: 第一步,将不是最简二次根式的项化为最简二次根式; 第二步,将相同的最简二次根式进行合并. (三)展示提升(质疑点拨) (1) 12?(11?) (2) (48?20)?(12?5) 327(3) x21x1x12 (4)x9x?(x?6x) ?4y??y3x4x2y22例3.已知4x+y-4x-6y+10=0,求(的值. 2x9x+y23y1x2)-(x-5x)xxy314
达标检测 (一)、选择题 1.以下二次根式:①12;②22;③ 2;④27中,与3是同3类二次根式的是( ).A.①和② B.②和③ C.①和④ D.③和④ 2.下列各式:①33+3=63;②177=1;③2+6=8=22;④24=22,其中错误的有( ).A.3个 B.2个 C.1个 D.03个 3.在下列各组根式中,是同类二次根式的是( ) (A)3和18(B)3和二、填空题 1.在8、1(C)a2b和ab2(D)a?1和a?1 3122175a、9a、125、3a3、30.2、-2中,33a8与3a是同类二次根式的有________. 2.若最简二次根式32x?1与3x?1是同类二次根式,则x=______. 3.若最简二次根式3a?b与a?b2b是同类二次根式,则a=______,b=______ 4..计算: (1)13aa27a3?a2?3a?108a 3a3411?2?75?0.5 83(232? 教学 反思 15
大西沟中心学校教案
学 科 课 题 课 时 知识 目标 教 学 目 标 情感 目标 能力 目标 数学 年 级 八 主备人 李宝林 编 号 6 16.3二次根式的加减 第 2 课时(总 2课时) 课 型 新授 熟练应用二次根式的加减乘除法法则及乘法公式进行二次根式的混合运算。 培养学生较熟练的运算能力 帮助学生正确对待学习,养成良好的学习习惯,寻找有效的学习方法 教学重点 熟练进行二次根式的混合运算。 教学难点 混合运算的顺序、乘法公式的综合运用。 16.3二次根式的加减2 板书 设计 二次根式的混合运算X|k | B| 1 . c|O |m 例: 16
教学环节 自学导航(课前预习) (二)合作交流(小组互助) 展示提升(质疑点拨) 计算: 教 学 过 程 设 计 二次备课 (1)6·3a·(3)23?8? 1、探究计算: 111 b (2)?34161112?50 25(1)(8?3)×6 (2)(42?36)?22 2、探究计算: (1)(2?3)(2?5) (2)(23?2)2 计算: (1)( (3)(32?23)2 (4)(10-7)(-10-7) 同学们,我们以前学过完全平方公式(a?b)?a?2ab?b,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=(3),5=(5),下面221227?24?3)?12 (2)(23?5)(2?3) 33 222我们观察: (2?1)2?(2)2?2?1?2?12?2?22?1?3?22 反之,3?22?2?22?1?(2?1)2∴ 3?22?(2?1)2 ∴ 3?22=2-1 仿上例,求:(1);4?23 (2)你会算4?12吗? 17 达标检测 A组 1、计算: (1)(80?90)?5 (2)24?3?6?23 (3)(a3b?3ab?ab3)?(ab)(a>0,b>0) (4)(26-52)(-26-52) 2、已知a? B组 1、计算:(1)(3?2?1)(3?2?1) 12?1,b?12?1,求a?b?10的值。 22 (2)(3?10)2009(3?10)2009 教学 反思 18
19
正在阅读:
八年级数学下册第16章教案表格式04-14
户外高清ph0全彩显示屏方案设计08-18
我最不爱听的一句话作文400字06-15
我爱学游泳作文400字06-17
精校可打印浙江省语文高考必背课文03-11
基础工程施工方案10-14
企业疫情期间闭环生产管理制度03-31
戴眼镜作文600字06-21
乙二胺扩链剂对水性聚氨酯性能的影响04-20
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 下册
- 教案
- 年级
- 数学
- 格式
- 地下室情况说明
- 2017-2018新人教版初中初三九年级英语第八单元unit8复习课教学设
- 广东省物价局关于取消和降低涉及住房建设收费的通知(粤价
- 第五章第4节 能量之源导学案
- 2019届高考历史秦汉时期试题汇编(解析版)
- 《剑桥PET官方模考题精讲精练》下载 - 图文
- 2013丹东半程成绩名册
- 面向计算机科学的数理逻辑
- 第8讲 气象数据的准备
- 护理伦理与法规护考题
- 吉大15秋学期《公共政策学》在线作业二100分答案
- 各学校功能室及其建设要求 确定
- 大连盛大集团全盛玉米开发有限公司年处理30万吨玉米深加工工程环
- 全县xxx年度首批重大项目集中开工
- 江苏省镇江市2019届九年级上学期期末考试物理试题
- 关于大学生就业调研报告
- 特种设备网上告知流程解析 - 图文
- 采薇教学设计
- SQL-SERVER上机考试题
- 学前游戏论简答题答案