计量经济学序列相关性

更新时间:2024-07-06 00:33:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

P155

9. .中国 1980-2007 年全社会固定资产投资总额 X 与工业总产值 Y 的统计资料如下表所示。

年份 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 全社会固定资产投资(X) 910.9 961 1230.4 1430.1 1832.9 2543.2 3120.6 3791.7 4753.8 4410.4 4517 5594.5 8080.1 13072.3 工业增加值(Y) 1996.5 2048.4 2162.3 2375.6 2789.0 3448.7 3967.0 4585.8 5777.2 6484.0 6858.0 8087.1 10284.5 14188.0 年份 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 全社会固定资产投资(X) 17042.1 20019.3 22913.5 24941.1 28406.2 29854.7 32917.7 37213.5 43499.9 55566.6 70477.4 88773.6 109998.2 137323.9 工业增加值(Y) 19480.7 24950.6 29447.6 32921.4 34018.4 35861.5 40033.6 43580.6 47431.3 54945.5 65210.0 77230.8 91310.9 107367.2 (1)当设定模型为 ln Yt = β0 + β1 ln xt + μt 时,是否存在序列相关 。

(2)若按一介自相关假设μ t =ρμ t-1 + εt ,试用广义最小二乘法估计原模型 ?

(3) 采 用 差 分 形 式 xt = x t - xt -1与Yt = Yt - Yt -1 作 为 新 数 据 , 估 计 模 型 Yt* = a0 + a1 xt* + vt ,该模型是否存在序列相关? (1) 在工作文件窗口输入命令:

genr lny=log(y) genr lnx=log(x)

ls lny c lnx,得到结果:

Dependent Variable: LNY Method: Least Squares Date: 11/22/11 Time: 13:25 Sample: 1980 2007 Included observations: 28

1

Variable C LNX R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 1.588478 0.854415 Std. Error 0.134220 0.014219 t-Statistic 11.83492 60.09058 Prob. 0.0000 0.0000 0.992851 Mean dependent var 9.552256 0.992576 S.D. dependent var 0.112351 Akaike info criterion 0.328192 Schwarz criterion 22.51876 F-statistic 0.379323 Prob(F-statistic) 1.303948 -1.465625 -1.370468 3610.878 0.000000 模型为:LNY = 1.588478116 + 0.8544154373*LNX

由于DW值为0.379323,没有通过5%显著水平下的DW检验。即该模型存在序列相关性。

(2).在工作文件窗口输入命令: genr lny=log(y) genr lnx=log(x)

ls lny c lnx lnx(-1) lny(-1)

Dependent Variable: LNY Method: Least Squares Date: 11/22/11 Time: 19:56 Sample(adjusted): 1981 2007

Included observations: 27 after adjusting endpoints

Variable C LNX LNX(-1) LNY(-1)

R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient 0.533857 0.425651 -0.131465 0.664448

Std. Error 0.138957 0.078022 0.114789 0.079751

t-Statistic 3.841886 5.455545 -1.145271 8.331500

Prob. 0.0008 0.0000 0.2639 0.0000 1.270246 -3.294976 -3.103000 7373.686 0.000000

0.998961 Mean dependent var 9.624593 0.998826 S.D. dependent var 0.043526 Akaike info criterion 0.043573 Schwarz criterion 48.48218 F-statistic 0.695752 Prob(F-statistic)

得p=0.664448,

在工作文件窗口输入命令: genr lny=log(y) genr lnx=log(x)

genr y1=lny-0.664448*lny(-1) genr x1=lnx-0.664448*lnx(-1)

ls y1 c x1,得到广义最小二乘估计结果:

2

Dependent Variable: Y1 Method: Least Squares Date: 12/04/11 Time: 20:37 Sample(adjusted): 1981 2007

Included observations: 27 after adjusting endpoints

Variable C X1

R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient 0.512688 0.857642

Std. Error 0.085421 0.025739

t-Statistic 6.001885 33.32068

Prob. 0.0000 0.0000 0.434222 -2.535863 -2.439875 1110.267 0.000000

0.977979 Mean dependent var 3.327616 0.977098 S.D. dependent var 0.065713 Akaike info criterion 0.107954 Schwarz criterion 36.23415 F-statistic 1.053997 Prob(F-statistic)

得到回归方程:Y1 = 0.5126883387 + 0.8576421851*X1 原模型:LNY=

c+1??cx1*x1

即原模型:LNY=1.5278943353042+0.8576421851*LNX

(3).在工作文件窗口输入命令:

genr dy=d(y) genr dx=d(x)

ls dy c dx,得到差分法结果:

Dependent Variable: DY Method: Least Squares Date: 11/22/11 Time: 14:45 Sample(adjusted): 1981 2007

Included observations: 27 after adjusting endpoints Variable C DX R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 889.3388 0.596413 Std. Error 260.8836 0.029916 t-Statistic 3.408949 19.93641 Prob. 0.0022 0.0000 0.940823 Mean dependent var 3902.619 0.938456 S.D. dependent var 1104.907 Akaike info criterion 30520498 Schwarz criterion -226.4753 F-statistic 0.960842 Prob(F-statistic) 4453.815 16.92410 17.02009 397.4604 0.000000 3

对模型进行LM检验:

Breusch-Godfrey Serial Correlation LM Test: F-statistic Obs*R-squared

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 11/22/11 Time: 16:27 Variable C DX RESID(-1) RESID(-2) R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient 33.11519 -0.010847 0.644436 -0.238793 Std. Error 229.3418 0.026516 0.213523 0.212786 t-Statistic 0.144392 -0.409097 3.018112 -1.122221 Prob. 0.8864 0.6863 0.0061 0.2733 1083.451 16.72891 16.92089 3.140534 0.044781

4.710801 Probability 7.846104 Probability

0.019287 0.019781

0.290596 Mean dependent var -8.42E-14 0.198066 S.D. dependent var 970.2386 Akaike info criterion 21651350 Schwarz criterion -221.8403 F-statistic 1.860676 Prob(F-statistic)

2由于LM?7.846104??0.05?5.99 ,则模型存在序列相关性。

10.

编号 1 2 3 4 5 Y 700 650 900 950 1100 X1 800 1000 1200 1400 1600 X2 8100 10090 12730 14250 16930 编号 6 7 8 9 10 Y 1150 1200 1400 1550 1500 X1 1800 2000 2200 2400 2600 X2 18760 20520 22010 24350 26860 (1)回归模型:Y = 245.5157901 + 0.5684245399*X1 - 0.005832617866*X2

Dependent Variable: Y Method: Least Squares Date: 11/22/11 Time: 15:40 Sample: 1 10

4

Included observations: 10 Variable C X1 X2 R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 245.5158 0.568425 -0.005833 Std. Error 69.52348 0.716098 0.070294 t-Statistic 3.531408 0.793781 -0.082975 Prob. 0.0096 0.4534 0.9362 314.2893 11.56037 11.65115 88.84545 0.000011 0.962099 Mean dependent var 1110.000 0.951270 S.D. dependent var 69.37901 Akaike info criterion 33694.13 Schwarz criterion -54.80185 F-statistic 2.708154 Prob(F-statistic) (2).判定系数检验:

在工作文件窗口输入命令:

ls x1 c x2,得到检验结果:

Dependent Variable: X1 Method: Least Squares Date: 11/23/11 Time: 12:38 Sample: 1901 1910 Included observations: 10 Variable C X2

R-squared

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat

Coefficient -11.47181 0.098022

Std. Error 34.08484 0.001851

t-Statistic -0.336566 52.95750

Prob. 0.7451 0.0000

0.997156 Mean dependent var 1700.000 0.996800 S.D. dependent var 34.25397 Akaike info criterion 9386.678 Schwarz criterion -48.41169 F-statistic 1.820122 Prob(F-statistic)

605.5301 10.08234 10.14286 2804.497 0.000000

说明x1 x2之间存在线性关系。

(3)相关系数检验:

在工作文件窗口输入命令:

cor x1 x2,得到检验结果:

X1 X2

5

X1 X2

1

0.998576763268

0.998576763268

1

由表可知解释变量之间高度相关。

(4)方差膨胀因子检验:

VIF1=26.3587959302019 VIF2=24.2054559097621 明显大于10,说明模型存在共线性。 (5)逐步回归检验:

建立y分别关于x1、 x2模型:

① Y = 244.5454545 + 0.5090909091*X1

t=( 3.812791) (14.24317) R2= 0.962062 DW= 2.680127

② Y = 238.9949327 + 0.04988574268*X2

t=( 3.544790) (13.62516) R2= 0.958687 DW= 2.394519

可见x1对y影响更大,所以选择①为初始的回归模型。

再建立y关于x1和x2的模型:

Y = 245.5157901 + 0.5684245399*X1 - 0.005832617866*X2

t=(3.531408) (0.793781) (-0.082975) R2= 0.962099 DW= 2.708154

6

X1 X2

1

0.998576763268

0.998576763268

1

由表可知解释变量之间高度相关。

(4)方差膨胀因子检验:

VIF1=26.3587959302019 VIF2=24.2054559097621 明显大于10,说明模型存在共线性。 (5)逐步回归检验:

建立y分别关于x1、 x2模型:

① Y = 244.5454545 + 0.5090909091*X1

t=( 3.812791) (14.24317) R2= 0.962062 DW= 2.680127

② Y = 238.9949327 + 0.04988574268*X2

t=( 3.544790) (13.62516) R2= 0.958687 DW= 2.394519

可见x1对y影响更大,所以选择①为初始的回归模型。

再建立y关于x1和x2的模型:

Y = 245.5157901 + 0.5684245399*X1 - 0.005832617866*X2

t=(3.531408) (0.793781) (-0.082975) R2= 0.962099 DW= 2.708154

6

本文来源:https://www.bwwdw.com/article/7f4.html

Top