2018-2019宜昌市小升初数学模拟试题(共10套)附详细答案
更新时间:2024-06-22 10:09:01 阅读量: 综合文库 文档下载
小升初数学综合模拟试卷11
一、填空题:
2.下面三个数的平均数是170,则圆圈内的数字分别是: ○;○9;○26.
于3,至少要选______个数.
4.图中△AOB的面积为15cm,线段OB的长度为OD的3倍,则梯形ABCD的面积为______.
2
5.有一桶高级饮料,小华一人可饮14天,若和小芳同饮则可用10天,若小芳独自一人饮,可用______天.
6.在1至301的所有奇数中,数字3共出现_______次.
7.某工厂计划生产26500个零件,前5天平均每天生产2180个零件,由于技术革新每天比原来多生产420个零件,完成这批零件一共需要_______天.
8.铁路与公路平行.公路上有一个人在行走,速度是每小时4千米,一列火车追上并超过这个人用了6秒.公路上还有一辆汽车与火车同向行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度为______,长度为______.
9.A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次,得到下面4个数:23,26,30,33,A、B、C、D4个数的平均数是______.
10.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒,………(连续奇数),就调头爬行.那么,它们相遇时,已爬行的时间是______秒.
二、解答题:
1.小红见到一位白发苍苍的老爷爷,她问老爷爷有多大年岁?老爷爷说:把我的年龄加上10用4除,减去15后用10乘,结果正好是100岁.请问这位老爷爷有多大年龄?
3.下图中8个顶点处标注数字a,b,c,d,e,f,g,h,其
数最小是几?
f+g+h)的值.
4.底边长为6厘米,高为9厘米的等腰三角形20个,迭放如下图:
每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题: (1)两个三角形的间隔距离;
(2)三个三角形重迭(两次)部分的面积之和; (3)只有两个三角形重迭(一次)部分的面积之和; (4)迭到一起的总面积.
答案
一、填空题:
2.(5,7,4)
由总数量÷总份数=平均数,可知这三个数之和170×3=510. 这样,一位数是5.两位数的十位数是7.三位数的百位数是4.
3.(11个)
要使所选的个数尽可能的少,就要尽量选用大数,而所给的数是从大到
说明答案该是11.
2
2
而S△CDO=15cm,在△BCD中,因OB=3OD,S△BCO=S△CDO×3=3×15=45cm,所以梯形ABCD面积=15+5+15+45=80cm. 5.(35天)
2
6.(46)
①“3”在个位时,必定是奇数且每十个数中出现一个.1×〔(301-1)÷10〕=30(个); ②“3”在十位上时,个位数只能是1,3,5,7,9,这个数是奇数.每100个数共有五个.5×[(301-1)÷100]=15(个);
③“3”在百位上,只有300与301两个数,其中301是奇数. 因此,在1~301所有奇数中,数字“3”出现30+15+1=46(次). 7.(11天)
(26500-2180×5)÷(2180+420)+5=(26500-10900)÷2600+5=11(天) 8.(76千米/时,120米)
把火车与人的速度差分成8段,火车与汽车速度差也就是1段.可得每段表示的是(67-4)÷(8-1)=9(千米/时).火车的速度是67+9=76(千米/时),9×1000÷3600=2.5(米/秒),2.5×48=120(米). 9.(28)
10. (49)
由相向行程问题,若它们一直保持相向爬行,直至相遇所需时间是
间是1秒,第二轮有效前进时间是5-3=2(秒)…….由上表可知实际耗时为1+8+16+24=49(秒),相遇有效时间为1+2×3=7秒.因此,它们相遇时爬行的时间是49秒. 二、解答题: 1. (90岁)
2.
小公倍数;N是28,56,20的最大公约数.因此,符合条件的最小分数: 3.(0)
由已知条件得:3a=b+d+e,3b=a+c+f,3c=b+d+g,3d=a+c+h,把这四式相加得3(a+b+c+d)=2(a+b+c+d)+(e+f+g+h).所以(a+b+c+d)=e+f+g+h,即原式值为0. 4.(1)2厘米
从图中可看出,有(20-1=)19个间隔,每个间隔距离是(44-6)÷19=2(厘米).
(2)观察三个三角形的迭合.画横行的两个三角形重迭,画井线是三个三角形重迭部分,它是与原来的三角形一般模样,但底边是原来三角形底
×2=3(cm).每三个连着的三角形重迭产生这样的一个小三角形,每增加一个大三角形,就多产生个一个三次重迭的三角形,而且与前一个不重迭.因此这样的小三角形共有20-2=18(个),面积之和是3×18=54(cm).
22
(3)(120cm)
每两个连着的三角形重迭部分,也是原来的三角形一般模样的三角形,
2
2
每增加一个大三角形就产生一个小三角形.共产生20-1=19(个),面积19×12=228(cm). 所求面积228-54×2=120(cm) (4)(312cm)
20个三角形面积之和,减去重迭部分,其中120cm重迭一次,54cm重迭两次.
2
2
2
2
按如下方法分组,使每组中的币值和为1元:(0,100),(1,99),(2,98),(3,97),…(49,51),(50,50)
因为0,2,4,6,…,50这26个数能用所给硬币构成,所以对应的100,98,96,94,…50也能用所给硬币构成.
下面讨论奇数:1,3,5,7,…,99.
因为4,6,8,10,…,50均可由贰分硬币构成,所以将其中两个贰分币换成一个伍分币,得到5,7,9,11,…,51,可用所给硬币构成.
只有1、3不能构成,对应的99、97也不能构成,所以共有4种不能构成的币值. 4.每分750米.
(1)7分时慢车与快车相距多少米?(800-600)×7=1400(米)
(2)骑车人的速度是每分多少米?600-1400÷(14-7)=400(米)(2)快车出发时与骑车人相距多少米?(800-400)×7=2800(米) (4)中速车每分行多少米? 400+2800÷8=750(米)
小升初数学综合模拟试卷14
一、填空题:
2.某单位举办迎春会,买来5箱同样重的苹果,从每箱取出24千克苹果后,结果各箱所剩的苹果重量的和恰好等于原来一箱的重量,那么原来每箱苹果重_______千克.
3.有5分、1角、5角、1元的硬币各一枚,一共可以组成______种不同的币值.
4.有500人报考的入学考试,录取了100人,录取者的平均成绩与未录取者的平均成绩相差42分,全体考生的平均成绩是51分,录取分数线比录取者的平均分少14.6分,那么录取分数线为______. 5.A、B、C、D分别代表四个不同的数字,依下列除式代入计算:
结果余数都是4,如果B=7,C=1,那么A×D=_______.
6.某校师生为贫困地区捐款1995元,这个学校共有35名教师,14个教学班,各班学生人数相同且多于30人,不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款______元. 7.数一数,图中包含小红旗的长方形有______个.
8.在3时与4时之间,时针与分针在______分处重合.一昼夜24小时,时针与分针重合______次. 9.如图,大长方形的面积是小于200的整数,它的内部有三个边长是
10.将自然数按如下顺序排列:
在这样的排列下,9排在第三行第二列,那么1997排在第______行第______列. 二、解答题: 1.计算:
2.5个工人加工735个零件,2天加工了135个,已知2天中有1人因事请假1天,照这样的工作效率,如果以后几天无人请假,还要多少天才能完成任务?
3.老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,
4.甲、乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈.跑第一圈时,乙的速度是甲
条椭圆形跑道长多少米?
答案
一、填空题:
2.30.
根据题设可知,5箱苹果中共取出(24×5=)120千克,相当于原来4箱苹果的重量,所以每箱苹果重(120÷4=)30千克. 3.15.
分类计算:从4枚硬币中任取一枚,有4种取法;从4枚硬币中任取二枚,有6种取法;从4枚硬币中任取三枚,有4种取法;从4枚硬币中取4枚,有1种取法,所以共有(4+6+4+1=)15种取法. 4.70分.
(1)录取者总成绩比未录取者总成绩多多少分? 42×100=4200(分)
(2)未录取者平均分是多少分? 51-4200÷500=42.6(分) (3)录取分数线是多少分? (42.6+42)-14.6=70(分) 5.45.
验证其余四个算式均满足条件,所以A×D=45. 6.3
因为1995=3×5×7×19.平均每人捐款钱数定是1995的一个约数.
经试验可知,只有3满足条件,此时每个教学班人数为(1995÷3-35)÷14=45(人). 7.48.
(1)在小红旗所在的竖行中,按照由1个、2个、3个、4个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有
1+2+2+1=6(个)
(2)在小红旗所在的横行中,按照由1个、2个、3个、4个、5个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有 1+2+2+2+1=8(个)
所以包含小红旗的长方形共有
从3时开始计算,时针与分针重合需要
24小时重合次数:
9.53.
因为三个正方形的边长是整数,所以长方形的长和宽也是整数.因此长方形的长是16的倍数,长方形的宽是4的倍数.
当长是16时,正方形②的边长为16-7=9,所以长方形的宽是大于9且是4的倍数.故宽至少是12. 因为长×宽<200,且6×12=192,所以只能是长为16,宽为12. S阴=192-9×9-7×7-3×3=53. 10.44;20.
先将原图形变形成下图:
观察新旧图形发现,新图形中每行从右往左数,第i个位于原图形的第i行.新图形中每行从左往右数,第j个位于原图形的第j列,且第n行左数第1个是(1+n)×n÷2. 下面找出1997所在的行数.
1+2+2+1=6(个)
(2)在小红旗所在的横行中,按照由1个、2个、3个、4个、5个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有 1+2+2+2+1=8(个)
所以包含小红旗的长方形共有
从3时开始计算,时针与分针重合需要
24小时重合次数:
9.53.
因为三个正方形的边长是整数,所以长方形的长和宽也是整数.因此长方形的长是16的倍数,长方形的宽是4的倍数.
当长是16时,正方形②的边长为16-7=9,所以长方形的宽是大于9且是4的倍数.故宽至少是12. 因为长×宽<200,且6×12=192,所以只能是长为16,宽为12. S阴=192-9×9-7×7-3×3=53. 10.44;20.
先将原图形变形成下图:
观察新旧图形发现,新图形中每行从右往左数,第i个位于原图形的第i行.新图形中每行从左往右数,第j个位于原图形的第j列,且第n行左数第1个是(1+n)×n÷2. 下面找出1997所在的行数.
因为63×62÷2=1953,所以1997在第63行.第62行左数第一个数是1953,第63行左数第一个数是(1953+63=)2016.
根据1997-1953=44和2016-1997+1=20,可知1997在第44行第20列. 二、解答题:
2.8天.
(1)1个工人每天可加工多少零件? 135÷(5×2-1)=15(个) (2)还需要几天完成? (735-135)÷5÷15=8(天) 3.22.
+13+14=105,178-105=73>14,不符合条件. 所以378-356=22为擦掉的数字. 4.400米.
设跑道的长为1,甲跑第一圈时的速度为1. (1)甲、乙第一次相遇时,甲跑离起点多远?
(2)当甲回到起点时,乙离起点还有多远?
(3)当乙回到起点时,甲又跑离起点多远?
(4)当乙又跑离起点时,何时与甲相遇?
(5)第二次相遇时,乙跑离起点多远?
(6)跑道的长度是多少米?
小升初数学综合模拟试卷16
一、填空题:
1.10÷[9÷8÷(7÷6÷5÷4)÷3÷2]=______.
2.在铁路一侧,每隔50米有电线杆一根.一名旅客在行进的火车中观察,从经过第1根电线杆起,到经过第56根电线杆止,恰好过了2分30秒,这列火车每小时行驶______千米.
4.甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件共花3.15元;如果购买甲4件、乙10件、丙1件共花4.20元.现有人购得甲、乙、丙各1件,他共花______元.
6.A、B、C三人参加一次考试,A、B两人平均分比三人平均分多2.5分,B、C两人平均分比三人平均分少1.5分.已知B得了93分,那么C得了______分.
7.某旅游团租一辆车外出,租车费由乘车人平均负担,结果乘车人数与每人应付车费的元数恰好相等.后来又增加了10个人,这样每人应付车费比原来减少了6元.这辆车的租车费是______元. 8.大、小两个正方形(如图所示),已知大、小两个正方形的边长之和为20厘米,大、小两个正方形的面积之差为40平方厘米,小正方形面积是______平方厘米.
的最大值与最小值差是______.
10.蓄水池每分钟流入的水量都相同,如打开5个水龙头,2.5小时把水放尽,如打开8个水龙头,1.5小时把水放尽,现打开13个水龙头,_______个小时把水放尽. 二、解答题:
1.一串数有11个数,中间一个数最大.从中间的数往前数,一个数比一个数小2;从中间的数往后数,一个数比一个数小3,这11个数的总和是200,那么中间的数是多少?
2.有一批长度分别为1,2,3,4,5,6,7,8,9,10厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边,可围成一个三角形.如果规定底边是10厘米长,你能围出多少个不同的三角形?
3.五位棋手参赛,任意两人都赛过一局.胜一局得2分,败一局得0分.和一局得1分,按得分多少排名次,已知第一名没下过和棋;第二名没输过,第四名没赢过.问这五名棋手的得分分别是多少? 4.已知甲从A到B,乙从B到A,甲、乙二人行走速度之比是6∶5.如图所示M是AB的中点,离M点26千米处有一点C,离M点4千米处有一点
发,同时到达.求A与B之间的距离是多少千米?
答案
一、填空题:
2.66
(1)从第1根到第56根,全长多少米? 50×(56-1)=2750(米) (2)火车每小时行驶多少千米? 2750÷2.5×60÷1000=66(千米) 3.38
(1)原来女生占现在人数的几分之几?
(2)现在有多少人?
4.1.05无
根据题设可知,购买甲9件,乙21件、丙3件共花(3.15×3=)9.45元;购买甲8件,乙20件、丙2件共花(4.20×2=)8.40元.所以购买甲1件、乙1件、丙1件共花(9.45-8.40=)1.05元.
6.86
设三人平均分为x,则c的得分为x-2.5×2,因为B、C的平均分比三人平均分少1.5分,且B=93,所以
93+x-2.5×2=2×(x-1.5) x=93-5+3 x=91
因此c的得分为(91-5=)86分. 7.225
设现在人均车费x元.根据原乘车人数与原人均车费相等,可知原乘车人数为(x+6)人.所以增加的10人共付车费10x元,原(x+6)人共减少车费6×(x+6)元.即 10x=6(x+6)
4x=36 x=9
由此可知,原人均车费为(9+6=)15元,租车费为(15×15=)225元. 8.81
将大正方形分割四份,如图所示,其中M是与小正方形完全相同的部分,B与C两部分也完全相同,显然,A、B、C三部分的宽相等,长度之和是20厘米,所以宽为(40÷20=)2厘米,因此小正方形的边长为((20-2)÷2=)9厘米。小正方形的面积为81平方厘米.
9.521000
①若D+G=7,则C+F=9,B+E=9.但在2至9中找不到6个不同的数值,使上述三式成立. ②若D+G=17,则C+F=8,B+E=9.此时有两种情况满足条件:8+9=17,2+6=8,4+5=9和8+9=17,3+5=8,2+7=9.
10.0.9
设1个水龙头1小时放走的水量为1,则蓄水池1小时流入的水量为 (1×5×2.5-1×8×1.5)÷(2.5-1.5)=0.5 蓄水池原有的水量为 1×5×2.5-0.5×2.5=11.25 打开13个水龙头,把水放尽,需要 11.25÷(13-0.5)=0.9(小时)
二、解答题: 1.25
设中间的数是x,则这11个数依次是:x-10,x-8,x-6,x-4,x-2,x,x-3,x-6,x-9,x-12,x-15.于是
11x-(2+4+6+8+10)-(3+6+9+12+15)=200 11x=200+30+45 x=25 2.30
根据两边之和大于第三边的条件,可知底边长是10时,另两边可取: ①一边为10,另一边为1至10均可,共10种;
②一边为9,另一边为2至9均可,共8种(①中取过的不再取); ③一边为8,另一边为3至8均可,共6种(①、②中取过的不再取); ④边为7,另一边为4至7均可,共4种(①、②、③中取过的不再取); ⑤一边为6,另一边为5、6,共2种(①、②、③、④中取过的不再取). 所以共有(10+8+6+4+2=)30种. 3.五名棋手的得分分别是6、5、4、3、2.
根据题意可知,五位棋手共赛1+2+3+4=10(场),总分数为2×10=20(分).
因为第二名没有输过,所以第一名没有赢第二名.又因为第一名没下过和棋,所以第一名输给第二名.根据每人赛4场,可推出第一名至多得6分,由于第二名没输过,可推出第二名至少得5分,因此第一名得6分,第二名得5分.
由于第三、四、五名的总分是20-(6+5)=9分,可知第三、四、五名的得分分别是4分、3 4.92千米
因为M为AB中点,所以在MB上取DE=22千米,则EB=AC.设EB=x.有
所以AB的长为(20+22+4)×2=92(千米).
小升初数学综合模拟试卷17
一、填空题:
2.有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11359,那么其中最小的四位数是______.
人数增加了______%.
4.20个鸭梨和16个苹果分放两堆,共重11千克,如果从两堆中分别取4个鸭梨和4个苹果相交换,两堆重量就相同了.每个苹果比鸭梨重______千克.
5.图中长方形内画了一些直线,已知边上有三块面积分别是15,34,47,那么图中阴影部分的面积是_______.
6.某一年中有53个星期二,并且当年的元旦不是星期二,那么下一年的最后一天是星期______. 7.有四个不同的自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数.为使这四个数的和尽可能地小,这四个数分别是_______.
8.一个正方形被4条平行于一组对边和5条平行于另一组对边的直线分割成30个小长方形(大小不一定相同),已知这些小长方形的周长和是33,那么原来正方形的面积是_______.
9.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空先后各拿出90个仙桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,那么米老鼠拿出互换的泡泡糖共______个.
10.某种表,在7月29日零点比标准时间慢4分半,它一直走到8月5日上午7时,比标准时间快3分,那么这只表时间正确的时刻是_______月______日______时.
二、解答题: 1.计算:
3.A、B、C、D、E是从小到大排列的五个不同的整数,把其中每两个数求和,分别得出下面8个和数(10个和数中有相同的和数):17,22,25,28,31,33,36,39,求这五个整数的平均数. 4.甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车.小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分遇到迎面开来的一辆电车;小张每隔5分遇到迎面开来的一辆电车;小王每隔6分遇到迎面开来的一辆电车.已知电车行驶全程是56分,那么小张与小王在途中相遇时他们已行走了多少分?
答案
一、填空题:
2.2039
根据题设可知,在四个不同的数字中,必有数字0,否则两个四位数之和不为11359.
可以看出,0在最大四位数的个位上,且9在最大四位数的千位上.于是可推出最小四位数的个位是9,百位是0,千位是2,最后推出十位是3.所以最小四位数是2039. 3.60%
4.0.125千克
根据题设可知,16个梨、4个苹果和4个梨、12个苹果重量相同.由此可推出12个梨与8个苹果重量相同.即24个梨与16个苹果重量相同.所以1个鸭梨重(11÷(20+24)=)0.25千克,1个苹果重(0.25×12÷8=)0.375千克.1个苹果比1个鸭梨重(0.375-0.25=)0.125千克. 5.96
因为三角形BCE的面积是长方形ABCD面积的一半,且三角形AFD与三角形BCF的面积和也是长方形ABCD面积的一半.所以阴影部分面积为(15+47+34=)96. 6.三
若一年有365天,则全年有52个星期零1天,若全年有53个星期二,且元旦不是星期二,则元旦必为星期一,该年为闰年,有366天,下一年有365天. (366+365)÷7=104…3 所以下一年最后一天是星期三. 7.1,7,13,19
因为四个数中任意两个数之和是2的倍数,所以这四个数同奇、同偶.
因为四个数中任意三个数之和是3的倍数,所以这四个数被3除余数相同. 由此可知,这四个数被6除余数相同,为使四个数尽量小,可取1,7,13,19.
正方形内分割线上的每个小线段都同时属于两个长方形,正方形边上的每个小线段只属于一个长方形.设正方形边长为a,则 [(4+5)×2+4]×a=33 22a=33
9.410
(1)按规则机器猫应给孙悟空多少个甜饼?
(2)按规则米老鼠应给机器猫多少个泡泡糖?
(3)按规则米老鼠应给孙悟空多少个泡泡糖?
(4)米老鼠共拿出多少个泡泡糖? 170+240=410(个) 10.8月2日9时
7月29日零点至8月5日上午7点共(24×7+7=)175小时.设标准时间的速度为1,则这种表的速度为
这种表与标准时间共同需要经过
因为105=24×4+9,所以此时是8月2日上午9时. 二、解答题: 1.1
2.1000袋
3.14.2
因为A+B最小,A+C次小;D+E最大,C+E次大.所以有 A+B=17D+E=39
由此可知:B=C-5,D=C+3.可以看出,B、D同奇同偶,所以B+D是偶数.在已知条件中,剩下的偶数只有28,于是B+D=28.由于B+D=C-5+C+3=28, 所以C=15.
于是A=7,B=10,D=18,E=21. 五个数的平均数为
(7+10+15+18+21)÷5=14.2 4.60分
设甲、乙两地距离为1,则电车之间的车距为
小张的速度为
小王的速度为
小张与小王相遇所需时间为
小升初数学综合模拟试卷18
一、填空题:
2.将1997加上一个整数,使和能被23与31整除,加的整数要尽可能小,那么所加的整数是______.
看过的还多48页,这本书共有______页.
4.如图,每一横行、每一竖行和对角线上三个数之和均相等,则x=______.
5.下面的字母算式中,每一个字母代表一个数字,不同的字母代表不同的数字.如果CHINA代表的五位数能被24整除,那么这个五位数是______.
6.有四个数,每次选取其中两个数,算出它们的和,再减去另外两个数的平均数,用这种方法计算了六次,分别得到以下六个数:43、51、57、63、69、78.那么原来四个数的平均数是_______. 7.有一枚棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步,跳到2号位置;第二次跳两步,跳到4号位置;第三次跳三步,又跳到1号位置;……,这样一直进行下去,______号位置永远跳不到.
这样的分数中最小的一个是______.
9.如图,等边三角形ABC的边长为100米,甲自A点,乙自B点同时出发,按顺时针方向沿着三角形的边行进.甲每分钟走60米,乙每分钟走90米,在过每个顶点时各人都因转弯而耽误10秒钟,那么乙在出发______秒之后追上甲.
正在阅读:
2018-2019宜昌市小升初数学模拟试题(共10套)附详细答案06-22
办公室综合协调职能的充分发挥对提升机关管理工作水平的作用探究09-15
五年级语文上册第五单元复习资料04-25
金工实习总结报告【优秀3篇】03-27
?党支部组织生活会个人发言提纲03-27
“浸入”音乐世界,享受音乐生活03-08
二年级暑假拓展练习-灯谜会答案03-08
高考化学 专题二 物质的组成、分类和性质(名师解析) - 图文05-21
辅导班合作协议范本新-(优质文档)04-06
- 12018-2019年合肥市小升初数学模拟试题(共10套)附详细答案
- 22018-2019年绥化市小升初数学模拟试题(共10套)附详细答案
- 32018-2019宜昌市考小学毕业小升初模拟数学试题(共6套)附详细答
- 42018-2019淮安市小升初数学模拟试卷(共10套)附详细答案附答案
- 52018-2019株洲市小升初数学模拟试题(共10套)附详细答案
- 62018-2019年咸阳市小升初数学模拟试卷(共10套)附详细答案附答案
- 72018-2019年邢台市小升初数学模拟试卷(共10套)附详细答案附答案
- 82018-2019年宜春市小升初数学模拟试卷(共10套)附详细答案附答案
- 92018-2019年贵阳市小升初数学模拟试卷(共10套)附详细答案附答案
- 102018-2019年遵义市小升初数学模拟试卷(共10套)附详细答案附答案
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 小升
- 宜昌市
- 模拟试题
- 答案
- 数学
- 详细
- 2018
- 2019
- 1、文秘单选汇总
- 立井外壁作业规程
- 听衡水中学物理讲座的体会
- 如何编制有色金属铸坯项目商业计划书(包括可行性研究报告+融资
- 初中数学教学如何做到生活化-教育文档
- 可燃气体检测探头使用说明书
- 女人如何应对老公的出轨,要怎样做才能挽回他?
- 技工院校创新型教师团队建设研究
- 调剂经验
- 江苏省公务员04至16年资料分析
- 四年级语文上册 11田园诗情教案 苏教版
- 艾叶的作用与功效
- 关于“厂务公开民主管理理论与实践征文”
- 《行政管理学》完整复习资料(00277) - 图文
- 论文研究方法有哪些
- 安徽省蚌埠三中11-12年学年高二下学期第一次月考(物理)缺答案
- 基于单片机的火灾预警系统设计 - 图文
- XX单位资产清查工作报告模板
- 电视新闻文编
- 2017“全国城市公共交通宣传周”倡议书