Kinetics and Mass Transfer of Free Fatty Acids Esterification with Methanol in a
更新时间:2023-06-04 13:32:01 阅读量: 实用文档 文档下载
- kinetics推荐度:
- 相关推荐
Ind.Eng.Chem.Res.2007,46,5113-51215113
KINETICS,CATALYSIS,ANDREACTIONENGINEERING
KineticsandMassTransferofFreeFattyAcidsEsterificationwithMethanolinaTubularPackedBedReactor:AKeyPretreatmentinBiodieselProduction
E.Santacesaria,*, R.Tesser, M.DiSerio, M.Guida, D.Gaetano, andA.GarciaAgreda DipartimentodiChimica,UniVersita`diNapoliFedericoII,ViaCintia80126Napoli,Italy,andASERS.r.L.,S.S.11PadanaSuperiore2/b,20063CernuscoS.N.,Milano,Italy
Biodieselcanbeeasilyobtainedstartingfromhigh-qualityorrefinedvegetableoilsandperformingonthesefeedstocksatransesterificationreactionusuallypromotedbyalkalinecatalystsinthehomogeneousphase.Inthisproductionschemetheemploymentoflow-qualityorwasterawmaterials,ascheapaspossible,mustbecarefullyconsideredtostronglyimprovetheeconomiccompetitivenessofthisbiofuelwithrespecttothepetroleum-deriveddiesel.Inthecaseofrawmaterialscharacterizedbyahighcontentoffreefattyacids(FFAs),apreliminaryesterificationtreatmentwithmethanolorethanolisnecessaryfortheabatementoftheFFAconcentrationbelowthethresholdlimitvalueof0.5-1.0%byweightthatistolerablebythesubsequentprocessstepofalkalinetransesterification.Inthepresentworktheesterificationreactionintubularpackedbedreactors,operatingunderpressureandusingasulfonicacidresinascatalyst,hasbeenextensivelystudied.Asitiswell-known,sulfonicexchangeresinsaresubjectedtoanimpressiveswellingphenomenon,anditisdifficulttoobtain,inthiscase,adimensionallystablepackedbedreactor.Aparticularsolutiontothisproblemhasbeenproposedbytheauthorsusingspringsofsuitablesizeandshapeascatalystdiluent.Theinfluenceofoperativeconditionslikeoverallfeedflowrate,reactantsfeedmolarratio,reactoraspectratioL/DR,andmixtureviscosityinthedescribedreactorshasbeeninvestigated.Thecollectedexperimentaldatahavebeeninterpretedbymeansofamono-dimensionalpackedbedreactormodelinwhichtheexternalmass-transferlimitation(fluid-to-particle)hasbeenaccountedfor.
Introduction
Biodieselproductionrepresentsoneofthemostattractivealternativestothetraditionaldieselfuelderivedfromapetroleumrefinery,especiallybyconsideringtherecentsteepincreaseinthepetroleumcost.
Thestandardbiodieselproductionprocessisbasedonatransesterificationreaction,normallycatalyzedbyalkalinehomogeneouscatalyst(suchNaOH,KOH,andrelatedalkox-ides),performedonhighqualityrefinedvegetableoilsfromwhichamixtureoffattyacidmethylesters(FAME)canbeobtained.1
Thenecessitytoimprovetheeconomiccompetitivenessofthisprocesswithrespecttopetroleum-deriveddieselfuelandtheincreasingglobalmarketdemandofbiodieselresultsinagrowinginteresttowardtheutilizationofwasterawmaterialsofbothvegetalandanimalorigin.Themainprobleminvolvedintheutilizationoftheselow-costrawmaterialsisrepresentedbythehighcontentoffreeacidity(freefattyacids,FFAs)thatmustbereducedbelowthethresholdlimitvalueof0.5-1.0%byweighttoensurethefeasibilityofthesubsequenttranses-terificationstep.AninterestingwayfortheabatementofFFAconcentrationisrepresentedbyanesterificationreactionusingmethanolorethanolforconvertingtheorganicacidstothecorrespondingmethylorethylesters.Theadvantageofusing
*Towhomthecorrespondenceshouldbeaddressed.E-mail:santacesaria@chemistry.unina.it. Universita`diNapoliFedericoII. ASERS.r.L..
theseshort-chainalcohols,besidestheirlowcostandeaseofrecovery,residesinthefactthattheyareusedalsoforthetransesterificationandarealreadyavailableintheplantsites.Inourpreviouswork2wehaveinvestigatedtheesterificationreactionofoleicacidwithmethanolonanacidionicexchangesulfonicresinascatalyst.WehaveconsideredoleicacidasamodelmoleculeassumedasrepresentativeofFFAmixtureactuallypresentinlow-costrawmaterials.Thereactionwasstudiedinawellmixedbatchreactoroperatedunderpressurewithcatalystdispersedintheliquidphase.
Oppositetotherelativelyhighavailabilityintheliteratureofbatchexperimentaldata,noinformationhasbeenreportedconcerningthepossibilitytoperformtheesterificationreactionoflongchainfattyacidswithmethanolinatubularpacked-bedreactorusingacidresinsascatalyst.
Acidresincatalystscanbeadvantageouslyusedinfixedbedreactorsforequilibriumreactionslike,forexample,theesteri-ficationofaceticacidandamylalcoholasreportedbyLeeetal.3Manyotherauthorshaveemployedapackedbedofresinparticlesaschromatographicoradsorptivereactorslike,asexamples,inthepaperofSilvaandRodriguez4forthesynthesisofdiethylacetalandofGelosaetal.5fortheesterificationofglycerolwithaceticacid.Themaindifficultyinusingresinpackedbedsascatalystarisesfromthehighswellingratiocommonlypresentedbyionicexchangeresinsthat,inatubularreactorconfiguration,givesplacetoreactorpluggingortoaveryhighpressuredrop.Thecontactoftheresinwithsolventslikemethanolandwatercanresultinavolumeincreaseofafactorof2-3,ifafreeexpansionisallowed.Inarecentpaper
10.1021/ie061642jCCC:$37.00©2007AmericanChemicalSociety
PublishedonWeb06/23/2007
5114Ind.Eng.Chem.Res.,Vol.46,No.15,2007
Figure1.Schemeoftheexperimentalapparatus.1,Tubularpackedbedreactor(TR1,TR2,orTR3);2,3,feedtemperaturemeasurements;4,outlettemperaturemeasurement;5,pressuremeasurement;6,liquid-phasetemperaturemeasurement;7,accumulationtank;8,bottomvalve;9,samplingvalve;10,nitrogenreservoir;P1,oilfeedpump;P2,methanolfeedpump;T1,T2,recirculationthermostaticbaths.
ofSteinigewegandGmehling6areactivedistillationapproachwasproposedforthesynthesisofdodecanoicacidmethylestersstartingfromdodecanoicacidandmethanol.ThecolumnwaspackedwithastructuredpackingKatapak-SPinwhichthecatalystwasAmberlyst15.Thehighvoidagedegreeofthereactivesectionallowsalow-pressuredropoperation,butarelativelyhighunitisnecessary(4mofreactivesectionplus2mforseparation),andamaximumconversionofdodecanoicacidof56%hasbeenobtained.
Veryrecentlywehaveproposedaninnovativesystemformitigatingtheswellingeffectoftheresin,7consistingintheuseofmetallicspringsofaparticularshapeandsizeascatalystdilutingtheinertmedium.Thespringsusedinthepresentworkweremadeofstainlesssteelhavingadistancebetweenthecoilwiressmallerthanthecatalyticresinparticlesdiameter.Byincreasingtheparticlediameter,asaconsequenceofswelling,thespringsarecompressed.Therefore,byopportunelychoosingthecatalyst/diluentratiowewereabletoobtainadimensionallystablecatalyticbedthatcanbeusedforalongtime-on-streamwithoutraisingtheproblemsofpressuredropincreasingorofreactorplugging.Theweightratiobetweenspringsusedasdiluentsandcatalystshouldbeintherange0.5-5ormore.Inourworktheadoptedweightratioofspring/catalystwas1.8.Inthepresentpaperthesameresincatalystusedinourpreviousworkonabatchreactor2(ReliteCFS)hasbeenusedforinvestigatingadifferentreactorconfiguration,tubularpackedbed,moresuitableforcontinuousindustrialoperation.Thefeasibilityoftheoperationinthetubularreactorshasbeenmadepossiblebytheuseoftheabove-mentionedcatalystdilutionapproach.Anextensiveexperimentalactivityhasbeencarriedoutwiththeaimofevaluatingtheinfluenceofdifferentoperativeconditions(totalfeedflowrate,methanol/oleicacidmolarratio)onthesystemperformancesintermsoffreeacidityreduction.Thecollectedexperimentaldatahavebeeninterpreted
bymeansofaplug-flowreactormodelinwhichapreviouslydeterminedkineticexpressionandtherelatedparameters2havebeenintroduced.Thekineticmodelconsistsinapseudo-homogeneoussecond-orderreversiblerateequationinwhichthecatalystconcentrationhasbeenexplicitlyconsidered.Coupledwithkinetics,alsotheexternalmass-transferlimita-tionhasbeenfoundrelevantforthisparticularsystemandhasbeenaccountedforinthemodel,8allowingasatisfactorysimulationoftheexperimentsperformedonthreedifferenttubularreactorsintheexploredrangeofoperativeconditions.Theexperimentallyevaluatedliquid-solidmass-transfercoefficientshavebeencomparedwiththevaluesobtainedfromliteraturecorrelations,andasatisfactoryagreementhasbeenfoundbyusinganeffectivediffusivityapproachbasedonbedporosityandtortuosity.Anattempttocorrelatetheexternalmass-transfercoefficientwiththeotheroperativeparameters,likebedinterstitialvelocity,mixtureviscosity,andreactoraspectratio,willconcludethepaper.ExperimentalSection
Apparatus,Reagents,andMethods.Aschematicrepre-sentationoftheexperimentalapparatusisreportedinFigure1.Continuousexperimentalrunshavebeenperformedattwodifferentreactorscales:(i)laboratorypackedbedmicroreactorindicatedwiththeacronymTR1and(ii)mini-pilotscalepackedbedtubularreactorswithtwodifferentL/DRgeometricratiosnamedTR2andTR3.ThegeometriccharacteristicsofthethreedifferentemployedreactorsarereportedinTable1.Inallthethreecasesavalueof1.8wasadoptedforthediluent/catalystweightratio.Moredetailsaboutthesizeandgeometryofthediluentcanbefoundelsewhere.7
Tubularfixedbedreactorswithdifferentsizeandaspectratio(L/DR)caneasilybeinterchanged,intheschemeofFigure
1,
Table1.GeometricCharacteristicsofCatalyticPackedBedsabedlengthbeddiameterL/DRcatalystinertdiluentreactorL(cm)D(cm)
ratioload(g)weight(g)
TR118.01.018.059TR270.02.528.0196356TR3
6.0
8.4
0.71
196
356
a
Note:forallthereactorsthebedporosityhasbeenestimatedas B)0.21.
Table2.PropertiesoftheCatalyst
commercialnameandproducerReliteCFSbyResindionmatrix
porouscopolymerstyrene-DVBfunctionalgroupssulfonicsacidity
3.6mequiv/gparticlesmeandiameter0.7mm
particlessizerange0.3-1.18mmtotalexchangecapacity
2.0equiv/Lmaximumoperatingtemperature140°C
bulkdensity0.840g/cm3pelletporosity
0.4
leavingpracticallyunalteredtherestoftheexperimentalapparatus.Allthereactorsusedhavebeenoperatedcontinuouslybyfeedingamixtureofacidifiedsoybeanoil(witholeicacid)andmethanolindifferentproportionsandwithadifferentoverallflowrate.OleicacidandmethanolarefurnishedbyCarloErba,bothatapuritylevelof99.9%byweight,whilesoybeanoilisacommerciallyavailableacidity-freeproduct.
Thetemperatureofthereactorhasbeenkeptconstantatapredefinedvaluebymeansofacirculationthermostat(HaakeS/F3,precision(0.1°C),andathermaloilflowedintothereactorjacket.Twothermocouples,placedatthereactorinletandoutlet,respectively,allowtheverificationofthesystemisothermalcondition.Theobservedtemperaturedifferencebetweentheinletandtheoutletwasofabout2°Cforalltherunsperformed.
Thereactoroutletstreamwascollectedinareservoirtank(totalvolume1liter)keptatthesametemperatureofthereactor.Thesystempressurehasalsobeenkeptconstantataprefixedvalue(usually6atmfortherunsat100°C)byusingasupplementarynitrogenstreamforadjustingmethanolvaporpressure.Thisarrangementensurethatmethanolismaintainedintheliquidstateavoidingflashphenomenathatcouldseriouslyaltertheflowpatternontocatalyticparticles(gas-liquidmixedflow,bypass,etc.).
Twopumpsareusedforfeedingseparatelyacidifiedsoybeanoilandmethanol.Anelectricalresistanceisusedforpre-heatingtheoilyphasetoavaluenearthereactiontemperaturewhilethemethanolphaseisfedatroomtemperature.Abedofglassspheres(bedheight10cm,spheresdiameter4mm)islocatedatthebottomofthetubularreactor,immediatelyabovethefeedingpoint,withthescopeofhomogenizingthetwoenteringphasesandheatingthematthereactiontemperature.Boththehotoilyphaseandthepre-heatingbedaresufficienttoheattheenteringmixturemethanol/oilatthedesiredtemperature.ThecatalyticbedislocatedjustabovethelayerofglassspheresandismadeofReliteCFSion-exchangeresin,forwhichthepropertiesarereportedinTable2,andbymetallicstainlesssteelspringsinaweightratioofabout1.8(diluent/catalyst).Forthebedvoidfraction B,avalueof0.21hasbeenestimatedbythefollowingprocedure:knownamountsofdiluentandcatalyst(inaratioof1.8byweight)havebeenmixedtogetherandintroducedinagraduatedcylinder,equippedwithastopperonthebottom.Methanolwasthenaddeduntilthebedwascompletelyfilled.Successively,methanolwasdrainedbythebottomofthecylinderandmeasured.Thevolumeof
Ind.Eng.Chem.Res.,Vol.46,No.15,20075115
collectedmethanolwasusedasanestimationofthebedbulkvoidfractionforthebedsofthethreereactorsTR1,TR2,andTR3,becausethethreereactorsarepackedinthesameway:aweighedamountofthemixturecatalyst/diluent,wettedwithasmallamountofneutralsoybeanoil,wasintroducedfromthetopofthereactor.Thepackingproceduresbeingthesame,weassumedthesamevalueofthebulkvoidfraction,0.21,foralltheusedreactors.Theobtainedestimationofthevoidfractionresultedasthemeanbyrepeatingthreetimesthepreviouslydescribedprocedurewithagoodreproducibility:0.20,0.21,and0.21.
Asamplelineequippedwithastoppingvalveislocatedattheexitofthereactorwiththepurposeofsampleswithdrawing.Theinstantaneousconversionofthesystemcanbeevaluatedbymeasuringtheacidityoftheoutletstreambyconventionalacid-basetitrationanalysis.2Foradirectevaluationoftheresidualacidity,incomparisontothatoftheinletoil,theunreactedmethanolisfirstevaporatedfromthecollectedsampleinawaythatthesuccessivetitrationfurnishesanacidityvaluereferencedtotheoilyphaseonly.Thefractionalconversionofoleicacidisthencalculatedas
X)
Ain-Aout
OAAin
(1)
Incorrespondencetoeachexperimentalrun,differentsamplesarecollectedandanalyzedattimeintervalsofabout0.5h.Thestationaryconditionforthereactorisassumedtobereachedwhentherelativedifferenceinaciditybetweenthreeconsecutivewithdrawnsamplesiswithin(2%.Theaverageacidityofthesethreelastsamples,collectedwhenthereactorhasreachedthesteady-stateconditions,representstheresultoftheexperimentalrun.Eachsetofexperimentalrunshasbeenperformedwiththesamecatalyst,andtheoperationofreactorpackinghasbeenmadeonlyonetimeatthestartoftheseriesofexperiments.Table3summarizestheoperativeconditionsadoptedforthetubularfixedbedmicroreactorTR1andtherelatedexperimentalresultsintermsofoleicacidconversion.ThesamekindofinformationisreportedinTable4forwhatconcernstherunsrelatedtopilot-scalereactorsTR2andTR3.ResultsandDiscussion
InternalDiffusion.Inourpreviouswork2wehaveproventhattheinternaldiffusionresistanceofresinparticles,intheconditionsadoptedforbatchruns,canbeneglected.Acom-parisonbetweenrunswithgranularandpowderedcatalystfurnishedavalueoftheeffectivenessfactorofmorethan0.96thatcanbeassumedsufficientlyclosetounitytoneglectthecontributionofinternaldiffusiontothereactionrate.Forthisreasonwehaveassumedavalueoftheeffectivenessfactorequalto1.
Ontheotherhand,relatedtothesameresinbutforadifferentreactivesystem,XuandChuang9havereportedaverydetailedanalysisontheevaluationoftheeffectivenessfactorandinternaldiffusionforapolymericresin(Amberlyst15)verysimilartothatusedinthepresentworkbutusedforaceticacidesterifi-cation.Thecitedauthors9havefoundthatforparticleswithanaveragesizebelow0.6mmtheeffectivenessfactorηisabove0.92.
Asafurtherconfirmationthatinourexperimentstheinternaldiffusiondoesnotrepresentalimitationonthereactionrate,theWeiszcriterion10hasbeencalculatedforsomerepresentativeexperimentalruns.Thiscriterionconsistsofthefollowingexpressionvalidforthesphericalisothermalcatalyticparticle:
5116Ind.Eng.Chem.Res.,Vol.46,No.15,2007
Table3.SummaryoftheExperimentalRunsPerformedwiththeLaboratoryPackedBedMicroreactor(TR1)ano.ofQtotWoilTPXOAksexptlruns(cm3/min)(g/min)(°C)(atm)(%)(cm/min)ReR12.71.48100628.20.004850.356R23.21.75100623.40.00460.422R33.82.08100619.30.004370.501R44.92.68100613.30.003750.646R58.14.44100610.50.00481.068R610.85.9210069.70.00591.424R713.57.4010067.70.00581.780R82.71.4885221.50.00360.004R93.21.7585221.90.00430.278R103.82.0885220.70.00480.331R114.92.6885216.90.00490.426R128.14.448528.90.00410.705R1310.85.928525.80.00350.940R1413.57.408522.20.00161.174R152.71.4865114.50.002350.124R163.21.7565111.70.00220.147R173.82.08651100.00220.175R184.92.686516.50.00180.225R198.14.446517.20.00340.373R2010.85.926514.30.00270.497R2113.57.406514.30.00330.621R222.71.485019.90.00160.071R233.21.755018.90.00170.084R243.82.085018.80.0020.100R254.92.685017.20.00210.129R268.14.445017.50.00280.213R2710.85.925014.90.00310.284R28
13.5
7.40
50
1
6
0.0031
0.355
a
TR1:beddiameter)1cm;bedheight)18cm;catalystweight)5g.Roil/MeOHIN)1.7(byvolume).Feedmixtureacidity)51%byweightofoleicacid.
Table4.SummaryoftheExperimentalRunsPerformedwithMini-PilotScalePackedBedTubularReactors(TR2andTR3)aQtotinitialWoilno.of(cm3/acidity(g/Roil/MeOHINXOAksexptlrunsmin)(%bywt)min)(byvol)(%)(cm/min)ReR29b43.841.023.71.6463.40.00560.895R30b21.441.011.71.6875.20.003890.437R31b43.847.023.71.6472.50.007420.895R32b71.147.039.41.7549.50.006171.453R33b21.441.511.71.6873.00.003640.437R34b21.414.911.71.6890.20.006250.437R35b6.448.63.51.6783.30.00160.131R36b2.748.61.51.791.00.001050.055R37b2.748.61.51.791.00.001050.055R38b14.448.611.713.423.40.000780.294R39b21.448.611.61.6770.50.003430.437R40b16.446.411.74.46750.40.001680.335R41b16.442.811.74.4750.20.001640.335R42b18.442.811.72.6854.70.001930.376R43b14.146.17.71.7183.70.003560.288R44b16.842.99.21.7176.70.003230.343R45b14.148.87.71.7180.20.003130.288R46b16.848.89.21.780.80.003810.343R47b18.349.1101.6978.30.00380.374R48b21.148.211.61.7175.90.004020.431R49b1844.07.70.9683.30.00410.920R50b1842.6101.7774.60.003250.736R51b1840.811.62.8366.50.002690.613R52b1839.014.61419.10.000690.368R53c1838.810.01.7756.80.001920.067R54c1838.413.1533.30.001020.041R55c
18
38.5
14.6
14
7.8
0.00026
0.034
a
Temperature)100°C,pressure)6bar.bTR2:beddiameter)2.54
cm;bedheight)70cm;catalystweight)196g.cTR3:beddiameter)8.4cm;bedheight)6cm;catalystweight)196g.
r*R2
pCD<0.6(2)
0eff
Table5.ResultsoftheApplicationofWeiszCriterionforthePresenceofInternalDiffusionaresultofWeiszresultofWeiszrunnumbercriterion
runnumber
criterion
R290.642R410.190R300.372R420.233R310.734R430.273R320.814R440.298R330.361R450.261R340.446R460.314R350.123R470.331R360.057R480.370R370.057R490.347R380.078R500.310R390.349R510.277R40
0.191
R52
0.079
a
Otherparametersforthecalculation:D)3.19×10-4cm2/min; p)0.4;σ)0.8;τP)3;Deff)3.4×10-5cm2/min;andRp)0.045cm.
wherer*istheobservedreactionrateperunitofparticlesvolume,Rpistheaverageparticleradius,C0isthereactantsurfaceconcentration,andDeffistheeffectivediffusivity.ThemainprobleminapplyingthiscriteriontoourspecificsystemistheevaluationofDefffromthefollowingexpression:8
DD pσeff)
τ(3)
P
whereDisthemoleculardiffusioncoefficient, pispelletporosity,σisthepelletconstrictionfactor,andτPistheintraparticletortuosityofthecatalyticparticle.Whiletheparameters p,σ,andτPcanbetakenfromliteratureasapproximatedvalues,8therigorousestimationofDinamulticomponentmixtureisratherdifficultandtheresultcanbeaffectedbyarelevantuncertainty.Asanexample,ageneralizedWilke-Changcorrelationcanbeemployedfortheevaluationofliquid-phasediffusioncoefficientofsoluteAinamixture:4
NC
0.5DjφjMwj)TA,M)7.4×10-8
∑(x(4)
j)1
j*A
µ(VA)
0.6
Inthisexpression,xjaretheliquid-phasemolefractions,φjaretheassociationfactors,Mwjarethemolecularweights,Tistheabsolutetemperature,µisthemixtureviscosity,andVAisthemolarvolumeofthesolute.Thediffusioncoefficientofoleicacid,inamixturewithanaveragecomposition,hasbeenestimatedbyusingrelation4andhasbeenconsideredconstantalongthecatalyticbed.
TheresultsobtainedarereportedinTable5andarereferencedtothesetofrunsperformedinthepilot-scalereactorTR2.Thecalculationsarerelatedtoabedofparticleswithauniformsizeof0.9mmofdiameter.Thisassumptionisconservativeforwhatconcernsparticlesize,therealsizesdistributionbeingmoreshiftedtowardsmallerparticlesforwhomthediffusionlimitationisoflessimportance.Theapproximatedvalueof3fortheparticletortuosityhasbeenassumedinagreementwiththevaluereportedbyFogler.8Practicallyinalltheexaminedcases,despitetheintroducedapproximations,thecriterionisfulfilled(valuesarelessthan0.6)orisattheborderlineforafewruns,andthis,consideringtheapproximationsintroduced,confirmsthenegligibilityofparticlesinternaldiffusionaspreviouslyevi-denced.2
StandardTubularReactorModel.Afirstapproachinmodelingtheexperimentalresultscollectedforvariousreactors
Table6.KineticEquationandParametersfromReference2a
KineticEquation
reaction:oleicacid+methanolTmethyloleate+waterr)kcxAxM{1-(1/ke)[(xExW)/(xAxM)]}Ccat
activationpre-exponentialenergyheatofreactionparameter
factor(k0)(Ea;kcal/mol)( Hr;kcal/mol)
kc12.93(2.8714.00(0.99
ke
4.17(0.04
2.68(0.05a
Subscripts:A,oleicacid;M,methanol;E,methyloleate;andW,water.Units:kc(moldm3)/(gcat2min);Ccat(gcat/dm3);r(mol/(gcatmin)).
hasbeenmadebyusingasimplifiedreactormodelinwhichthekineticspreviouslydetermined2hasbeenintroduced.InTables3and4arereportedtheaverageReynoldsnumberscalculatedforeachexperimentalrun.Asitcanbeobservedthesevaluesareverylow,andintheseconditionstheflowthroughtheporousmediumisveryprobablyinthecreepingflowregime.12Inthisconditiontheplugflowmodelisnotrigorous;onthecontrary,anaxialdispersionmodelcouldbemoresuitable.Nevertheless,theroughapproximationoftheplugflowreactorhasbeenadoptedforafirsttestingofthepreviouslydeterminedkineticsinthedescriptionofthepresentexperimentaldatacollectedfortubularreactors.Ontheotherhand,Seguinetal.12haveshownamaximumrelativedeviationof10%betweenthepurelyplugflowandtheaxialdispersionmodelsincreepingflowconditions.Theuseofasimplerapproachis,therefore,justifiedasapreliminaryone,consideringboththescatteringofexperimentaldataandtheintroducedapproxima-tions.Moreover,thefluiddynamicbehaviorofacomplexsystemliketheoneusedinthisworkcontainingamixtureofspheresandspringsinthepackedbedisneverdescribedintheliterature.
Referringtoanisothermalplug-flowreactor,thedifferentialmaterialbalanceequationforeachcomponentinthesystem(excludingtriglyceridethatisaninertmedium)canbewrittenas
dFi
dW)Viri)A,M,E,W
(5)
cat
whereFiisthemolarfeedflowrateoftheithcomponent(lettersmeaningA,oleicacid;M,methanol;E,estermethyloleate;W,water),Wcatisthetotalweightofcatalystloadedinthereactor,Viisthestoichiometriccoefficientreferencedtotheithcomponent,andristhereactionrate(seeTable6forparameters,units,andotherdetails).Thenumericalintegrationofthedifferentialequationssystem5,inwhichtheexpressionforrtakenfromourpreviousworkhasbeenintroduced,2resultsincalculatedperformancesthataremuchhigherthanthoseexperimentallyobservedforthethreetubularreactors.Thismeans,inotherwords,thatthepackedbedreactorconfigurationfurnishesalowerconversionwithrespecttothatpredictedonthebasisofthekineticsexperimentallyevaluatedinabatchwellstirredslurryreactor(batchWSSR).ThisparticularbehaviorisreportedinFigure2whereacomparisonisshownbetweentheexperimentalconversionofoleicacidobtainedintherunswiththereactorTR2(squaressymbols)andtheconversionpredictedbythemodelrepresentedbyrelation5(opencirclesymbols).Theconversion,inbothcases,isreportedasafunctionoftheoverallvolumetricfeedflowrate,anditisevidentfromthediagraminFigure2thatthekinetic-basedmodelpredictsahighconversionthatispracticallyinsensitivetotheincreaseinfeedflowratetowhichcorrespondsadecrease
Ind.Eng.Chem.Res.,Vol.46,No.15,20075117
parisonbetweentheexperimentalconversionintubularreactorTR2andthepredictionofthetubularreactormodelbasedonapreviouslydevelopedkineticsfrombatchexperiments.2
inresidencetime.Theexperimentaldatareportedarerelativelyscattered,thevaluesreportedintheplotbeingtheonesobtainedinsteady-stateconditionsafteralongtimeoperation(somehours).Scatteringisduetothefluctuationoftheoperativeconditionssuchasflowrates,temperature,andanalyses.Theflowrateatwhichthemodelstartstopredictadecreaseoftheconversionofoleicacidwasestimatedatabout5000cm3/min.Inthekineticmodelthereactorperformancesarehighenoughthatthesystemreachestheequilibriumcompositionnearlyinalltherunssimulated.Excludinginthissystemtheinfluenceoftheinternaldiffusion,wehavefocusedourattentiontotheinterventionofexternalfluid-to-particlemass-transferlimita-tions.Thefollowingsectionsofthepaperarethendevotedtothefurtherdeepeningofthisaspect.
ExternalDiffusion.Withthepurelykineticmodel(eqs5)unabletocorrectlydescribetheexperimentallyobservedbehaviorofthetubularreactors,anevaluationoftheexternalliquid-soliddiffusionalresistancehasbeenmadebyadoptingthegeneralizedcriterionofMears.11Thiscriterion,referencedtoanisothermalcatalyticpelletandtoann-orderreactionrateequation,isexpressedbythefollowingrelation:
r*RpC<0.15
(6)
0ksn
whereksisthefluid-to-particlemass-transfercoefficient.This
lastparameterhasbeenestimatedinanapproximatedwaybymeansoftheCoeuretcorrelation12,13expressedbythefollowingrelation:
Sh)5.4Re1/3Sc1/4
0.04<Re<30(7)
Thisexpressionhasbeenchosen,amongthewidecorrelationsavailableintheliteratureasreportedinref12,becauseitismoresuitableintermsoflinearvelocity(seethevaluesofReynoldsnumbersreportedinthelastcolumnsofTables3and4)andparticlesizerangesofapplicability.12Thiscorrelationisveryprobablynotfullysuitableforthepackedbedsusedinourexperimentsbecauseitwasoriginallydevelopedforpackedbedsofspheres,while,asmentioned,ourpackinghasamorecomplicatedstructurebeingcomposedofbothparticlesofvarioussizeandofmetallicsprings.However,wehavedevelopedourcalculationalsowithothersimilarcorrelations
5118Ind.Eng.Chem.Res.,Vol.46,No.15,2007
Table7.ResultsoftheApplicationoftheMearsCriterionforthePresenceofExternalDiffusiona
runnumber
ksfromcorrelation
resultofMearscriterion
R290.003601.263R300.003610.730R310.003571.457R320.003601.602R330.003610.709R340.003750.842R350.003570.245R360.003580.112R370.003580.112R380.004900.113R390.003560.694R400.004150.326R410.004180.322R420.003850.428R430.003590.538R440.003610.585R450.003580.518R460.003580.621R470.003570.657R480.003580.732R490.003380.727R500.003630.606R510.003890.503R52
0.00512
0.210
a
Otherparametersforthecalculation: B)0.21;σ)0.8;τB)3;andRp)0.045cm.
reportedinthereviewofSeguinetal.12withoutsignificantdifferencesintheresults.
Intheexpression7anaveragediffusioncoefficientforthemixture(embeddedintotheSherwood’snumber)hasbeenevaluatedbymeansoftherelation4.Byvaryingtheconversionfromzerototheoutletexperimentalvalueacompositionprofilealongthereactorhasbeengeneratedand,incorrespondencewitheachcomposition,adiffusioncoefficientofoleicacidDA,Mixhasbeenevaluatedandaveraged.Thediffusioncoef-ficientinthemixturehasthenbeencorrectedbytakingintoaccounttheporosity,tortuosity,andconstrictionfactorrelatedtothewholebedasmadepreviouslyforthesingleparticle(seeeq3):
Deff,B)
DA,Mix Bσ
τ(8)
B
Thisapproximationcanbejustifiedbyconsideringthereductionindiffusivityoccasionedbythenondirectflowpathcharacteristicofthefixedbed,10particularlyinthecaseoflow-porositybeds(inourcaseexperimentallyevaluatedandresultingin B)0.21),probablyoriginatedfromaratherwideparticlesizedistributionandatverylowReynoldsnumbers12inconditionsofcreepingflowregimeofviscousfluid.Theunusuallylowbedporositymeasuredcanprobablybeduetothespatialcollocationofsmallresinparticlesinsidethespringsusedascatalystdiluentresultinginalow-voidagebedstructure.Despitethisbedcharacteristic,thefluidflowwasnothinderedandthereactorhasbeenoperatedforseveralweeks,includingstart-upandshut-down,withoutpressuredropincrease.
Theeffectivediffusivityapproach,relatedtothewholebed,canbefurtherjustifiedbyconsideringtheverythinchannelsspacingavailabletofluidflowacrossthebedandtotherelativelyhighviscosityandlowlinearvelocities.Intheseconditionsthethicknessofstagnantfilmsurroundingtheparticles,throughwhichdiffusionalresistancesareoperative,isprobablyofthesameorderofmagnitudeofthechannelsinwhichthecreepingflowregimeisestablished.InTable7arereportedtheresultsoftheapplicationoftheMearscriterion,forwhichalimitvalueforneglectingtheinterventionoffluid-solidmass-transferlimitationis0.15,togetherwiththevaluesofthekscoefficientasobtainedfromCoeuretcorrelation(eq7).Aswecanobservefromthementionedtable,theinfluenceofthistypeofresistancecannotbeexcludedandmustbeproperlytakenintoaccountinthereactorsimulationmodelforthedescriptionofourexperimentaldata.
ModelConsideringtheExternalDiffusionLimitation.Withtheaimofintroducingthefluid-solidmass-transferresistance,eq5mustbemodifiedasfollows:8
-U
dCi
dz
+JS,iaS)0i)A,M,E,W(9)
whereUisthefluidlinearvelocity,zistheaxialreactorcoordinate,Ciisthebulkconcentrationofcomponenti,aSisthespecificsurfaceareaofcatalystperunitofbedvolume,andJS,iisthemass-transferrate.Thislastvariablerepresentstherateatwhicheachcomponentistransferredfrombulkliquidtothesolidsurfaceor,reversely,fromthecatalystsurfacetothebulkofliquid.AsuitableexpressionforJS,iisthefollowing:
-JS,i)ksi(Ci-CSi)
(10)
Inthisexpressionksiisthemass-transfercoefficientreferencedtoliquid-soliddiffusionaltransportresistanceandCiSistheconcentrationofcomponentievaluatedattheliquid-solidinterface.Accordingtotheseassumptionsrelation10canbesubstitutedintoeq9toyieldanordinarydifferentialequation(ODE)system:
-U
dCi
dz
)ksiaS(Ci-CSi)i)A,M,E,W(11)
Byassumingthatthepseudo-steady-stateconditionisfulfilledatthecatalyst-fluidinterface,theamountofeachcomponenttransferredbydiffusionmustbeequaltotheamountconsumedorformedbychemicalreaction.Inotherwords,thesurfaceaccumulationtermforeachcomponentisassumedasnegligibleandthefollowingexpressionsetcanbewritten:
ksiaS(Ci-CSi)-rFcat)0
i)A,M,E,W(12)
whereFcatisthecatalystconcentrationinthebed,expressedascatalystweightperunitofbedvolume.Theequationsinrelation12mustbesolvedsimultaneouslyateachintegrationstepintimeofODEsystem11togivethevaluesofsurfaceconcentra-tions,forallthecomponents.ThereactionrateexpressionisalsoreportedinTable6but,inthiscase,theconcentrationsaretakenatthecatalyst-liquidinterface.Moreover,fromageneralpointofview,eachcomponentischaracterizedbyitsownmass-transfercoefficientksi.
Themass-transfer-limitedreactormodel,representedbythedifferential-algebraicsystem(eqs11and12),hasbeenappliedtothedescriptionofthethreeexperimentaldatasetsrelatedtotheusedtubularreactors.Themodelhasbeensolvediteratively,andtheexternalmass-transfercoefficienthasbeenconsideredasanadjustableparameterthathasbeenvaried,ineachrun,toreproduceexactlytheexperimentalconversion.Inthisapproachtheksivaluescanbeconsideredasexperimentalvaluesforthemass-transfercoefficientwiththemainassumptionthattheentireeffectoflowerperformances,withrespecttoapurelykineticmodel,isattributedtotheexternalmass-transferresistance.Intherealsituationothereffectsareoperativeandsuperimposed
Figure3.ExperimentalksvaluesobtainedforthetubularreactorTR1asafunctionoftheoverallvolumetricfeedflowrate.(Valuesobtainedatafixedvolumetricflowrateratioofoil/methanolof1.7;T)100°
C.)totheconsideredexternalmass-transferphenomena,likeaxialandradialdispersion,flownonidealityandmaldistribution,bypass,andsoforth,butareconsideredasnegligible(alsobyconsideringtheuseofmetallicspringsasdiluent)andlumpedintotheonlykeyparameterks.Afurthercomplexityofourparticularsystemisrepresentedbythevariationinphysicalpropertiesofamixtureoccurringfromtheinletofthereactor,wheretheenteringmixtureisanemulsionoil/methanol,totheoutlet,wherethepresenceofahomogeneousphasewasobservedasaresultofoleicacidconversiontoitsmethylesterresultinginabettercompatibilitybetweenmethanolandtriglyceride.Aratherremarkabledecreaseofmixtureviscosityalongthereactorshouldalsobeexpectedbecause,foroleicacidandthecorrespondingmethylester,aratioofabout3hasbeenestimatedfortheirviscosityat100°C.Thementionedpeculiaritiesofthesystemunderinvestigationandthelackofliteraturedataonthemethanol/trigliceridesmixtureshinderarigorousmodelingapproachforwhichmanynewexperimentaldatashouldbenecessary.
Numerouscorrelationshavebeenproposedintheliteraturefortheevaluationofksforpackedbedreactorsandcolumnsoperatedinawiderangeofconditions.12-15Theapplicationofthesecorrelationsrequirestheknowledge,asseenbefore,ofmixturepropertieslikeviscosityanddiffusivitywhoseevalu-ationisfrequentlyaffectedbyasignificantuncertainty,espe-ciallyforacomplexmixtureofcomponentsforwhichphysicaldataarescarce.Inourparticularsystemthemixturechangesincompositionandphysicalpropertiesfrominlettooutletofthereactor,andarigorousmodelshouldaccountforthisvariation.Inthemodelrepresentedbyeqs11and12,aconstantvalueofksalongthereactoraxishasbeenintroducedwithafurtherroughapproximationthatthesamevalueisusedforthefourcomponents(oleicacid,methanol,water,andmethyloleate);thatis,ksi)ks.InTables3and4,inthelastcolumn,theseevaluatedvaluesofksarereported.InFigures3and4theexperimentalvaluesofksarereported,forthetwotubularreactorsofdifferentsizeTR1andTR2,asafunctionoftheoverallfeedflowrate.InthecaseofthesmalltubularreactorTR1thedataaremorescatteredprobablybecauseofthefluctuationsinmaintainingtheverylowflowrateadoptedforthissetofruns.Nevertheless,fromtheseplotsitisevidentthatageneralincreaseofmass-transfercoefficientisfound,andthismeansthatthesystembecomeslesslimitedfromtheexternaldiffusionastheflowrateisincreasedandthevelocitiesacrossthebedincreasedtoo.Thistrendisvalidatafixedvolumetric
Ind.Eng.Chem.Res.,Vol.46,No.15,20075119
Figure4.ExperimentalksvaluesobtainedforthetubularreactorTR2asafunctionoftheoverallvolumetricfeedflowrate.(Valuesobtainedatafixedvolumetricflowrateratioofoil/methanolof1.7;T)100°
C.)
Figure5.ExperimentalksvaluesobtainedforthetubularreactorsTR2andTR3asafunctionoftheoil/methanolvolumetricflow-rateratiointhefeed.(Valuesobtainedatafixedoverallflowrateof18cm3/min;T)100°C.)
ratioofacidicoil/methanol;otherwise,bychangingthisratioandmaintainingaconstantoverallflowrate,themixtureviscosityisaltered,andadifferenttrendforksisexpected.AnexampleofthisbehaviorisreportedinFigure5forthetworeactorsofcontainingthesameamountofcatalystTR2andTR3butdifferingonlyintheaspectratioL/DR.Thesetwodevicesshowsubstantiallythesametrendinwhichadecreaseofmass-transfercoefficientisfoundincorrespondencetoanincreaseintheacidicoil/methanolfeedflowrateatafixedoverallflowrate.Inthiscase,theincreaseofthementionedratiocorrespondstoanincreaseinthemixtureviscosityand,consequently,inalowerandmorelimitingvalueofks.Moreover,itisinterestingtoobservethebehaviorofthetworeactorsTR2andTR3incomparison.Inparticular,thereactorTR3ischaracterizedbyarelativelyhighcross-sectionalareaand,forthesamefeed,bylowerlinearflowvelocities.Thevaluesfoundforfluid-solidmass-transfercoefficientsarethenrelativelylower(seeFigure5),andlowerisconsequentlytheconversionobservedforthereactorTR3comparedtothatofreactorTR2operatinginthesameconditionsoftemperature,feedflowrate,andfeedcomposition.
InFigure6acomparisonisreportedbetweentheexperimentalconversiondata,forreactorTR1,andthemodel(eqs11and12)inwhichamass-transfercoefficientderivedfroma
literature
5120Ind.Eng.Chem.Res.,Vol.46,No.15,2007
parisonbetweenexperimentalandcalculatedconversionintubularreactorTR1at65and100°
C.
parisonbetweenexperimentalandcalculatedconversionintubularreactorTR2at100°C(runs:1,4,8,11,15,16,22).
correlationofCoeuret12,13isintroduced.Thecalculationofcoefficientksisbasedonamoleculardiffusivityevaluationthrougheq4andaglobalorbed-basedeffectivediffusivitywitheq9.Despitethelargeapproximationsintroduced,theagreementbetweentheexperimentalconversionandthemathematicalmodelseemssatisfactoryandasimilaragreementhasbeenfoundalsoforthereactorTR2,asreportedinFigure7.
InFigures6and7isreportedalsotheoleicacidconversioncalculatedwithamodifiedcorrelationbasedontheCoeuretexpressioninwhichthenumericalvaluesoftheconstantsandexponentshavebeenre-evaluatedbymathematicalregressiononalltheexperimentsperformedatT)100°Cforthethreedifferentreactors.Theobtainedexpressionisthefollowing:
Sh)0.256Re0.54Sc0.46
0.004<Re<1.78(13)
Thisexpression,obviously,hasonlyalimitedvaliditybeingdevelopedonlyforourparticularpackingstructure.Withinthisperspective,theexponentsappearingineq13cannotbeattributedtoaprecisefluid-dynamicsignificanceforthecomplexityofthesystemexaminedinwhichthesphericalparticlesaresurroundedbyspringcoils.Therangeofvalidity,intermsofReynoldnumber(0.004<Re<1.78),hasbeenevaluatedbytakingtheminimumandthemaximumofthecalculatedReasreportedinTables3and4.
Equation13forevaluatingtheexternalmass-transfercoef-ficienthasbeenusedforsimulatingtheexperimentsforthereactorsTR1andTR2,andthecorrespondingperformancesarereported,respectively,inFigures6and7asdashedlines.ForwhatconcernsthetubularreactorTR1,thediscrepancybetweenthemodifiedcorrelationandtheexperimentaldataintherangeofverylowflowratecanbeattributedtothedifficultyinmaintainingaconstantfeedinthisrangeofflowrates.However,ageneralimprovementinthedescriptionofourexperimentaldata,withrespecttotheoriginalcorrelationofCoeuret,hasbeenobtained,andthisrepresentsanencouragingfinding,mainlyintheperspectiveofusingthismass-transfercorrelationinafuturescale-uptowardapilotorindustrial-sizeoperationforthedescribedtubularreactorhavingspringsascatalystdiluent.Conclusions
Thefeasibilityofacontinuousesterificationpretreatmentwithmethanolofhigh-aciditywasteoils,usefulinthebiodieselproductionscheme,hasbeeninvestigatedbyusingthreedifferenttubularpackedbedreactorsoperatingunderpressureformaintainingtheoil/methanolmixtureintheliquidstate.Asubstantialimprovementinpackedbedstabilityanddurabilityhasbeenobtainedbyadoptingasuitablecatalystdiluentasrecentlyclaimedinaworldpatentbytheauthors.
Reactionrateparametersandkineticexpressions,previouslyevaluatedfrombatchexperiments,havebeenintroducedinatubularreactormodelinwhichtheexternalmass-transferresistancehasbeentakenintoaccount.Thevaluesofthefluid-to-particlemass-transfercoefficient,determinedfromexperi-mentalruns,havebeenfoundingoodagreementwiththevaluesobtainedfromaliteratureempiricalcorrelationinwhichanoverallreactoreffectivediffusivityhasbeenadopted.
Theeffectofoperativeconditionsliketemperature,overallvolumetricfeedflowrate,andreactantsfeedratiohasbeenstudied.Thetemperaturehastheobviouseffectofimprovingthereactionrate,butthiseffectiscoupledwiththatofloweringthemixtureviscositywiththeconsequentbenefitofloweringthemass-transferresistance.Forwhatconcernsfeedflowrateandcomposition,thefirstaffectstheconversionintwoways:anincreaseinfeedflowratelowerstheresidencetimeandthecorrespondingconversion,butinopposite,anincreaseofthisflowrateimprovesthefluid-particlemass-transfercharacter-isticsofthesystem.Thereactantratiointhefeedcanstronglyaffectthereactorperformances,notonlyforthemethanolmolarexcessbutalsomainlyforthestronglydecreasingviscosityofthemixture.
Asafinalremark,inalltheperformedexperimentalrunsandparticularlyforthereactorTR3,theadoptedlinearvelocitiesacrossthecatalyticbedareverylow,andacreepingflowregimeislikelyestablished.Intheseconditionsthethicknessofthestagnantlimitinglayer,throughwhichmass-transferoccurs,resultsincreased,andthecorrespondentlimitationwasmorepronounced.Byconsideringtheseaspectscharacterizingoursystem,are-parametrizationofaliteraturecorrelationfortheliquid-solidmass-transfercoefficienthasbeenmadewiththeaimtoprovidebasictools,evenoflimitedvalidity,forafuturereliablescale-upoperationofourparticularpackedbedtoanindustrialsize.Nomenclature
Fi)molarfeedflowratefortheithcomponent(mol/min)r)reactionrate(mol/(mingcat
))
r*)observedreactionrateperunitofparticlesvolume(mol/(mincm3))
Wcat)catalystweight(g)
XOA)fractionalconversionofoleicacid
Ain,Aout)acidity(%bywt)oftheinletandoutletstreams(wt%)
Qtot)overallvolumetricfeedflowrate(cm3/min)L)bedlength(cm)DR)beddiameter(cm)Rp)particleradius(cm)
xi)liquidphasemolefractionofcomponentiφi)associationfactorforcomponentiT)absolutetemperature(K)µ)viscosity(g/(cmmin))
Vi)molarvolumeofcomponenti(cm3/mol)W)weightofcatalystloadedinthereactor(g)η)catalysteffectivenessfactor
Vi)stoichiometriccoefficientofcomponentiMw)i)molecularweightofcomponenti(g/mol)C0concentrationattheparticlesurface(mol/cm3)
CiS)concentrationofcomponentiattheparticlesurface(mol/cm3)
Ci)concentrationofcomponenti(mol/cm3)z)reactoraxialcoordinate(cm)as)specificsurfacearea(cm2/cm3)JS,i)mass-transferrate(mol/(mincm2))U)linearvelocity(cm/min)
Deff)effectivediffusivity(cm2/min)Deff,B)effectivediffusivity(cm2/min)
D,DA,Mix)moleculardiffusivityofcomponentAinmixture(cm2/min)
p)particleporosity B)bedporosity
Fcat)catalystdensity(g/cm3)
σ)constrictionfactor(particleorbed)τP)intraparticletortuosityfactorτB)bedtortuosityfactor
ks,ksi)externalmass-transfercoefficient(cm/min)Sh)SherwooddimensionlessnumberSc)SchmidtdimensionlessnumberRe)Reynoldsdimensionlessnumber
Roil/MeOHIN)volumetricratioofacidicoiltomethanolinthefeed
xA)molefractionofoleicacidinthereactionmixturexM)molefractionofmethanolinthereactionmixturexE)molefractionofmethyloleateinthereactionmixturexW)molefractionofwaterinthereactionmixture
Ind.Eng.Chem.Res.,Vol.46,No.15,20075121
LiteratureCited
(1)Ma,F.;Hanna,M.A.BiodieselProduction:aReview.Bioresour.Technol.1999,70,1-15.
(2)Tesser,R.;DiSerio,M.;Guida,M.;Nastasi,M.;Santacesaria,E.KineticsofOleicAcidEsterificationwithMethanolinthePresenceofTriglycerides.Ind.Eng.Chem.Res.2005,44,7978-7982.
(3)Lee,M.J.;Wu,H.T.;Lin,H.KineticsofcatalyticesterificationofaceticacidandamylalcoholoverDowex.Ind.Eng.Chem.Res.2000,39,4094-4099.
(4)Silva,V.M.T.M.;Rodriguez,A.E.Dynamicsoffixedbedadsorptivereactorforsynthesisofdiethylacetal.AIChEJ.2002,48(3),625-634.
(5)Gelosa,D.;Ramaioli,M.;Valente,G.;Morbidelli,M.Chromato-graphicreactor:esterificationofglycerolwithaceticacidusingacidicpolymericresins.Ind.Eng.Chem.Res.2003,42,6536-6544.
(6)Steinigeweg,S.;Gmehling,J.EsterificationofaFattyAcidbyReactiveDistillation.Ind.Eng.Chem.Res.2003,42,3612-3619.(7)Siano,D.;Nastasi,M.;Santacesaria,E.;DiSerio,M.;Tesser,R.;Guida,M.Methodforformingapackingforresincatalyticpackedbeds,andsoformedpacking.WorldPatentWO2006046138,2006.
(8)Fogler,H.S.ElementofChemicalReactionEngineering,2nded.;PrenticeHall:EnglewoodCliffs,NJ,1992.
(9)Xu,Z.P.;Chuang,K.T.Effectofinternaldiffusiononheterogeneouscatalyticesterificationofaceticacid.Chem.Eng.Sci.1997,52(17)3011-3017.
(10)Butt,J.B.Reactionkineticsandreactordesign,2nded.;MarcelDekker:NewYork,2000;p495.
(11)Mears,D.E.Testsfortransportlimitationsinexperimentalcatalyticreactors.Ind.Eng.Chem.Proc.Des.DeV.1971,10(4),541-547.(12)Seguin,D.;Montillet,A.;Brunjail,D.;Comiti,J.Liquid-solidmasstransferinpackedbedsofvariouslyshapedparticlesatlowReynoldsnumbers:experimentsandmodel.Chem.Eng.J.1996,63,1-9.(13)Coeuret,F.Thepercolatingporouselectrode.I-Masstransferinfixedbeds.Electrochim.Acta1976,21(3),185-193.
(14)Chhabra,R.P.;Comiti,J.;Machac,I.Flowofnon-Newtonianfluidsinfixedandfluidisedbeds.Chem.Eng.Sci.2001,56,1-27.
(15)Wang,G.Q.;Yuan,X.G.;Yu,K.T.ReviewofMass-TransfercorrelationsforPackedColumns.Ind.Eng.Chem.Res.2005,44,8715-8729.
ReceiVedforreViewDecember20,2006ReVisedmanuscriptreceiVedMay7,2007
AcceptedMay15,2007
IE061642J
正在阅读:
Kinetics and Mass Transfer of Free Fatty Acids Esterification with Methanol in a06-04
长大后我就成了你作文800字3篇02-04
人教版(新课程标准)二年级下册(2017部编)期末模拟卷(含答案03-13
板框滤油机的说明书 206-07
OSPF学习笔记10-26
上海市杨浦区2019届九年级上学期期末(一模)质量调研物理试题及03-11
东财《国际法》在线作业(随机)全及答案03-20
幼儿游戏与玩具简答、论述、案例分析题04-07
器械分类目录(更新至201408)06-09
初三英语模拟试卷附答案(七)06-08
- 1Keys for free in description logics
- 2Correspondence Transfer for the Registration of Multimodal Images
- 3Correspondence Transfer for the Registration of Multimodal Images
- 4On the Mass Eigenstate Purity of B^8 Solar Neutrinos
- 5fp01free pascal教程
- 6Testing Mass Varying Neutrino With Short Gamma Ray Burst
- 7Mass-transport-deposits-and-gas-hydrate-occurrences-in-the-U
- 8Analysis of 360 free antivirus software advertising marketin
- 9Effects and kinetics of a novel temperature cycling treatment on the N-deacetylation of chitin
- 10Large-Scale Mass Power Spectrum from Peculiar Velocities
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Esterification
- Kinetics
- Transfer
- Methanol
- Fatty
- Acids
- Mass
- Free
- with
- 因研究生考试的辞职信
- 新概念英语第一册教学大纲及教学计划
- 幼儿园小、中 、大班成语接龙
- 静态存储区、堆和栈的区别
- 从福比尼《西方音乐美学史》看中西音乐美学观的差异
- 雅马哈 KB-280.KB281音色中文对照表
- 以宗教智慧解_红楼梦_悟历史意蕴_李平民
- 第7章 热力设备的腐蚀及处理
- 甘肃省临夏河州中学2012-2013学年高一下学期期中考试英语试题(无答案)
- 周工作计划考核表学习手册
- 【2020实用】医院制度-影像科放射工作人员培训体检及保健制度
- 2010高考化学试题分类汇编
- 晓印:顾问式销售(SPIN)解码2
- 基于移动控制的新型数控系统中的蓝牙通信技术及其实现方法
- 提高高中学生英语写作能力的途径
- 沟亭小学学科教学渗透法制教育自查自评报告
- 调味剂在食品中有重要的作用
- 科研项目管理办法(试行)
- 名师一号&183;新课标化学必修2 1-3-1
- 肝细胞肝癌血清标志物的研究进展