2018年山东科技大学数学与系统科学学院849概率论与数理统计考研冲刺狂背五套题

更新时间:2023-04-27 16:12:02 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

专注考研专业课13年,提供海量考研优质文档!

第 1 页,共 27 页

目录

2018年山东科技大学数学与系统科学学院849概率论与数理统计考研冲刺狂背五套题(一) 2 2018年山东科技大学数学与系统科学学院849概率论与数理统计考研冲刺狂背五套题(二) 7 2018年山东科技大学数学与系统科学学院849概率论与数理统计考研冲刺狂背五套题(三)

.............................................................................................................................................. 12 2018年山东科技大学数学与系统科学学院849概率论与数理统计考研冲刺狂背五套题(四)

.............................................................................................................................................. 18 2018年山东科技大学数学与系统科学学院849概率论与数理统计考研冲刺狂背五套题(五)

(23)

专注考研专业课13年,提供海量考研优质文档!

第 2 页,共 27 页

2018年山东科技大学数学与系统科学学院849概率论与数理统计考研冲刺狂背五套

题(一)

说明:本套狂背五套题按照考研侧重点和出题难度,严格筛选提取了历年考试高频核心试题及重点题型,更突出针对性和实战性,适用于考研冲刺最后狂背。

——————————————————————————————————————————

一、计算题

1. 设随机变量X 服从双参数韦布尔分布,其分布函数为

其中

.试写出该分布的p

分位数的表达式,

且求出当

时的

的值.

【答案】因为p 分位数

满足

解之得

代入上式,可得

2. 设总体X 的3阶矩存在,若是取自该总体的简单随机样本,

为样本均值,

为样本方差,试证:

其中

【答案】注意到

.而

由此,

3. 设二维随机变量服从区域G 上的均匀分布,其中G 是由与所围

成的三角形区域.

(1)求X 的概率密度

专注考研专业课13年,提供海量考研优质文档!

第 3 页,共 27 页

(2)求条件概率密度.

【答案】 (1)

的概率密度为

X 的概率密度为

①当或

时,

②当时,

③当时,

综上所述

(2)Y 的概率密度为

时,X 的条件概率密度为

4. 设是参数的无偏估计,且有

试证不是的无偏估计. 【答案】由方差的定义可知,

由于是参数的无偏估计,即因而

所以不是

的无偏估计.

5. 设

为来自的样本,试求假设的似然比检验.

【答案】记

,样本的联合密度函数为

两个参数空间分别为

利用微分法可求出在上

分别为

的MLE ,而在上为u

专注考研专业课13年,提供海量考研优质文档!

第 4 页,共 27 页 的MLE ,于是似然比统计量为

通过简单的求导计算可知,函数在(0,1)区间内单调递增,在

上单调递减,于是

从而似然比检验等价于采用

做检验统计量,也就是说,似然比检验与传统的双侧卡方检验是等价的.

6. 设是来自正态总体的一个样本.是样本方差,试求满足

的最小n 值. 【答案】由于所以有 要使上述概率等价于要使分布的分位数不大于 即满足上述不等式的最小n 可用搜索法获得,如下表: 表

由此可见,当就可使上述不等式成立.

7. 在区间(0,1)中随机地取两个数,求事件“两数之和小于7/5”的概率.

【答案】这个概率可用几何方法确定,在区间(0,1)中随机地取两个数分别记为x 和y ,则(x ,y )的可能取值形成如下单位正方形其面积为,而事件A “两数之和小于7/5”可表示为,其区域为图1中的阴影部分.

本文来源:https://www.bwwdw.com/article/7bpq.html

Top