高考高中复习数学第二章平面向量2.3平面向量的基本定理及坐标表示2.3.2_2.3.4平面向量共线的坐标表示

更新时间:2023-09-01 05:14:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

小初高K12学习教材

小初高K12学习教材 2.3.2-2.3.4 平面向量共线的坐标表示

[课时作业]

[A 组 基础巩固]

1.若AB →=(3,4),A 点的坐标为(-2,-1),则B 点的坐标为( )

A .(1,3)

B .(5,5)

C .(1,5)

D .(5,4)

解析:设B (x ,y ),则有AB →=(x -(-2),y -(-1))=(x +2,y +1)=(3,4),所以?????

x +2=3,y +1=4,解得????? x =1,

y =3,所以B (1,3).

答案:A

2.下列各组向量中,可以作为基底的是( )

A .e 1=(0,0),e 2=(-2,1)

B .e 1=(4,6),e 2=(6,9)

C .e 1=(2,-5),e 2=(-6,4)

D .e 1=(2,-3),e 2=? ????12

,-34 解析:因为零向量与任意向量共线,故A 错误.对于B ,e 1=2(2,3),e 2=3(2,3),所以e 1

=23e 2,即e 1与e 2共线.对于D ,e 1=4? ????12

,-34=4e 2,所以e 1与e 2共线. 答案:C

3.已知A ,B ,C 三点在一条直线上,且A (3,-6),B (-5,2),若C 点的横坐标为6,则C 点的纵坐标为( )

A .-13

B .9

C .-9

D .13

解析:设C 点坐标为(6,y ),则AB →=(-8,8),AC →=(3,y +6),因为A ,B ,C 三点共线,所

以3-8=y +68

,所以y =-9. 答案:C

4.设向量a =(1,-3),b =(-2,4),若表示向量4a,3b -2a ,c 的有向线段首尾相接能构成三角形,则向量c 为( )

A .(1,-1)

B . (-1,1)

C .(-4,6)

D .(4,-6) 解析:由题知4a =(4,-12),

小初高K12学习教材

小初高K12学习教材 3b -2a =3(-2,4)-2(1,-3)=(-8,18),

4a +(3b -2a )=-c ,

所以(4,-12)+(-8,18)=-c ,

所以c =(4,-6).

答案:D

5.已知两点A (2,-1),B (3,1),与AB →平行且方向相反的向量a 可能是( )

A .a =(1,-2)

B .a =(9,3)

C .a =(-1,2)

D .a = (-4,-8)

解析:∵AB →=(1,2),∴a =(-4,-8)=-4(1,2)=-4AB →,∴D 正确.

答案:D

6.已知四边形ABCD 为平行四边形,其中A (5,-1),B (-1,7),C (1,2),则顶点D 的坐标为________.

解析:设D (x ,y ),由AD →=BC →,

所以(x -5,y +1)=(2,-5),

所以x =7,y =-6.

答案:(7,-6)

7.已知A (1,2),B (4,5),若AP →=2 PB →,则点P 的坐标为________.

解析:设P (x ,y ),所以AP →=(x -1,y -2),PB →=(4-x,5-y ),

又AP →=2 PB →,所以(x -1,y -2)=2(4-x,5-y ),

即????? x -1=-x ,y -2=-y ,所以????? x =3,y =4.

答案:(3,4)

8.已知a =(1,1),b =(x,1),u =a +2b ,v =2a -b ,若u ∥v ,则x =________. 解析:∵a =(1,1),b =(x,1),∴u =(2x +1,3),v =(2-x,1).

u ∥v ?(2x +1)·1-3·(2-x )=0?x =1.

答案:1

9.已知OA →=(1,1),OB →=(3,-1),OC →=(a ,b ).

(1)若A ,B ,C 三点共线,求a ,b 的关系;

(2)若AC →=2AB →,求点C 的坐标.

解析:(1)由题意知,AB →=OB →-OA →=(2,-2),AC →=OC →-OA →=(a -1,b -1),若 A ,B ,C 三

点共线,则AB →∥AC →,即2(b -1)-(-2) (a -1)=0,故a +b =2.

小初高K12学习教材

小初高K12学习教材 (2)∵AC →=2AB →,∴(a -1,b -1)=(4,-4),

∴????? a -1=4b -1=-4,∴????? a =5b =-3,即C (5,-3).

10.已知向量AB →=(4,3),AD →=(-3,-1),点A (-1,-2).

(1)求线段BD 的中点M 的坐标.

(2)若点P (2,y )满足PB →=λBD →(λ∈R ),求y 和λ的值.

解析:(1)设点B 的坐标为(x 1,y 1),因为AB →=(4,3),A (-1,-2),所以(x 1+1,y 1+2)=

(4,3).

所以????? x 1+1=4,y 1+2=3,解得????? x 1=3,y 1=1,

所以点B (3,1),同理可得D (-4,-3).

设线段BD 的中点M 的坐标为(x 2,y 2),x 2=3-42=-12,y 2=1-32=-1,所以M ? ??

??-12,-1. (2)PB →=(3,1)-(2,y )=(1,1-y ),

BD →=(-4,-3)-(3,1)=(-7,-4),

因为PB →=λBD →,所以(1,1-y )=λ(-7,-4).

即????? 1=-7λ,1-y =-4λ,得????? λ=-17,y =37.

[B 组 能力提升]

1.向量PA →=(k,12),PB →=(4,5),PC →=(10,k ),若A ,B ,C 三点共线,则k 的值为( )

A .-2

B .11

C .-2或11

D .2或-11

解析:BA →=PA →-PB →=(k,12)-(4,5)=(k -4,7),CA →=PA →-PC →=(k,12)-(10,k )=(k -10,12-k ),

因为A ,B ,C 三点共线,所以BA →∥CA →,

所以(k -4)(12-k )-7(k -10)=0,

整理得k 2

-9k -22=0,

解得k =-2或11.

答案:C

小初高K12学习教材

小初高K12学习教材 2.已知向量集M ={a |a =(1,2)+λ(3,4),λ∈R },N ={a |a =(-2,-2)+λ(4,5),λ∈R },则M ∩N =( )

A .{(1,1)}

B .{(1,1),(-2,2)}

C .{(-2,-2)}

D .?

解析:由集合M ∩N ={a |a =(x ,y ),x ,y ∈R },对于M 有

x -13=y -24,对于N 有x +24=y +25,

解得x =-2,y =-2.

答案:C 3.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在坐标轴上,则点B 的坐标为________.

解析:由b ∥a ,可设b =λa =(-2λ,3λ).

设B (x ,y ), 则AB →=(x -1,y -2)=b.

由????? -2λ=x -13λ=y -2?????? x =1-2λ,y =3λ+2.①

又B 点在坐标轴上,则1-2λ=0或3λ+2=0,

∴λ=12或λ=-23

,代入①式得 B 点坐标为(0,72)或(73,0).

答案:(0,72)或(73

,0) 4.设向量OA →绕点O 逆时针旋转π2

得向量OB →,且2OA →+OB →=(7,9),则向量OB →=________. 解析:设OA →=(m ,n ),则OB →=(-n ,m ),所以2OA →+OB →=(2m -n,2n +m )=(7,9),即????? 2m -n =7,m +2n =9.解得????? m =235n =115.因此,OB →=? ??

??-115,235. 答案:? ??

??-115,235 5.已知点O (0,0),A (1,2),B (4,5),且OP →=OA →+tAB →,试问:

(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?

(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.

解析:OA →=(1,2),AB →=(3,3),

小初高K12学习教材

小初高K12学习教材 OP →=(1,2)+t (3,3)=(1+3t,2+3t ).

(1)若P 在x 轴上,则有2+3t =0,t =-23

; 若P 在y 轴上,则有1+3t =0,t =-13

; 若P 在第二象限,则有????? 1+3t <0,2+3t >0,

解得-23<t <-13

. (2)不能.理由:PB →=OB →-OP →=(3-3t,3-3t ),若四边形OABP 是平行四边形,则有OA →=PB →,

即有3-3t =1,且3-3t =2,这显然是不可能的,因此,四边形OABP 不能成为平行四边形.

6.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →=a ,OB →=b ,OC →=c ,且|a |

=2,|b |=1,|c |=3,试用a ,b 表示c .

解析:根据题设,画出图形,如图所示,以O 为原点,

OA 所在直线为x 轴建立直角坐标系.

由三角函数的定义,得A (2,0),

B (cos 150°,sin 150°),

即B ? ?

?

??-32,12,C (3cos 240°,3sin 240°), 即C ? ????-32

,-332. 故a =(2,0),b =? ?

???-32,12,c =? ????-32

,-332. 设c =λa +μb (λ,μ∈R ),

即? ????-32,-332=λ(2,0)+μ? ????-32,12=?

????2λ-32μ,12μ.∴????? -32=2λ-32μ,-332=12μ, 解得??? λ=-3,μ=-33

,∴c =-3a -33b.

本文来源:https://www.bwwdw.com/article/7aoi.html

Top