2006广东梅州市初中毕业生学业考试数学试题(含答案) - 试题 -

更新时间:2024-05-15 23:21:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

通达教学资源网 http://www.nyq.cn/

2006年广东省梅州市初中毕业生学业考试

数学试卷

说明:全卷共8页,考试时间90分钟,满分120分. 题号 得分 一 二 三 16 17 18 19 20 21 22 23 24 25 总分 一、选择题:每小题3分,共15分;每小题给出四个答案,其中有一个是正确的,把所选答案的编号填写在题目后面的括号内. 1.?1等于( ) 2

B.?2

C.?A.2

1 2 D.

1 22.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )

A. B. C. D.

3.我市大部分地区今年5月中、下旬的天气情况是:前5天小雨,后5天暴雨.那么能反映我市主要河流水位变化情况的图象大致是( )

水位 水位 水位 水位 (天) (天) (天) (天) 0 0 0 0 5 10 5 10 5 10 5 10 D. A. B. C. 4.如图1,把矩形ABCD沿EF对折,若?1?50,则?AEF等于( ) A.115 C.120

5.在同一平面直角坐标系中,直线y?x?3与双曲线y??

B.130 D.65

A B

E D 1 F

图1

C

1的交点个数为( ) xA.0个 B.1个 C.2个 D.无法确定 二、填空题:每小题3分,共30分;答案填写在该题的横线上.

6.我市约有495万人口,用科学记数法表示为 人.

第1页 / 共10页

通达教学资源网 http://www.nyq.cn/

7.如果一个几何体的主视图是等腰三角形,那么这个几何体可以是 .(填上满足条件的一个几何体即可)

8.一个袋中装有6个红球、4个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出 球的可能性最大.

?1?9.计算:(sin60?1)????? .

?2?0?110.计算:(a2b3?a2b2)?(ab)2? .

11.将抛物y??(x?1)2向左平移1个单位后,得到的抛物线的解析式是 .

x2?2x?312.当x? 时,分式的值为零.

x?313.能使平行四边形ABCD为正方形的条件是 .(填上一个符合题目要求的条件即可)

B 14.如图2,两个半圆中,小圆的圆心O?在大O的直径CD上, A 长为4的弦AB与直径CD平行且与小半圆相切,那么圆中阴影部

C 分面积等于 .

15.如图3,已知△ABC的周长为m,分别连接AB,BC,CA 的中点A1,B1,C1得△A1B1C1,再连接A,B1C1,C1A1的中点 1B1O? O

图2

A D A2,B2,C2得△A2B2C2,再连接A2B2,B2C2,C2A2的中点

A3,B3,C3得△A3B3C3,这样延续下去,最后得△AnBnCn. B A1 C B A2 A3 2B1 3C2 B3 C1 C

图3 , △AnBnCn

设△A1B1C1的周长为l1,△A2B2C2的周长为l2,△A3B3C3的周长为l3的周长为ln,则ln? . 三、解答题:本大题有10小题,共75分. 16.本小题满分6分.

因式分解:x(y?1)?2x(y?1)?(y?1).

第2页 / 共10页

2222通达教学资源网 http://www.nyq.cn/

17.本小题满分6分. 解不等式组:??5?3(x?4)?2,

?2x?3≥1.

18.本小题满分6分.

如图4是某文具店在2005年卖出供学生使用的甲、乙、丙三种品牌科学计算器个数的条形统计图,试解答下面问题:

(1)求卖出甲、乙、丙三种科学计算器的个数的频率;

(2)根据以上统计结果,请你为该文具店进货提出一条合理化建议.

个数 90 90 72 54 54 36 36

18 0 品牌

甲 乙 丙

19.本小题满分6分.

图4

,B,C的坐标分别是A(?1,?1),B(?4,?3),C(?4,?1). 如图5,已知△ABC的顶点A(1)作出△ABC关于原点O中心对称的图形;

(2)将△ABC绕原点O按顺时针方向旋转90后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.

第3页 / 共10页

y C B A O x 图5

通达教学资源网 http://www.nyq.cn/

20.本小题满分7分.

小明与小华在玩一个掷飞镖游戏,如图6?甲是一个把两个同心圆平均分成8份的靶,当飞镖掷中阴影部分时,小明胜,否则小华胜(没有掷中靶或掷到边界线时重掷). (1)不考虑其他因素,你认为这个游戏公平吗?说明理由.

(2)请你在图6?乙中,设计一个不同于图6?甲的方案,使游戏双方公平.

图6?乙 图6 ?甲

21.本小题满分7分.

梅华中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图7,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地

C处,测得影长CE?2m,DE?4m,BD?20m,DE与地面的夹角??30.在同一时

刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:2?1.414,3?1.732,结果保留两个有效数字)

第4页 / 共10页

A B E C D ? 图7

通达教学资源网 http://www.nyq.cn/

22.本小题满分8分.

某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天比甲工厂多加工20件.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?

23.本小题满分8分.

用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转. (1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图8?甲,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论. (2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如

8?图乙),你在图8?甲中得到的结论还成立吗?简要说明理由.

H

A B

D F H A B

D F E

G

G C 图8?甲

E C

图8?乙

第5页 / 共10页

通达教学资源网 http://www.nyq.cn/

24.本小题满分10分. 如图9,直线l的解析式为y?4x?4,l与x轴,y轴分别交于点A,B. 3(1)求原点O到直线l的距离;

(2)有一个半径为1的C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒).当C与直线l相切时,求t的值.

25.本小题满分11分. 如图10,点A在抛物线y?y l B x A C O 图9

12x上,过点A作与x轴平行的直线交抛物线于点B,延长41AO,BO分别与抛物线y??x2相交于点C,D,连接AD,BC,设点A的横坐标为m,

8且m?0.

,B,D的坐标; (1)当m?1时,求点A(2)当m为何值时,四边形ABCD的两条对角线互相垂直; (3)猜想线段AB与CD之间的数量关系,并证明你的结论.

第6页 / 共10页

y B O C 图10

D A x 通达教学资源网 http://www.nyq.cn/

2006年广东省梅州市初中毕业生学业考试

数学试卷参考答案及评分意见

一、选择题:每小题3分,共15分 1.D 2.B 3.B 二、填空题:每小题3分,共30分

64.A 5.C

6.4.95?10; 7.圆锥或正三棱锥或正四棱锥;

8.红; 9.3

10.b?1;

11.y??x2; 12.x??1; 13.AC?BD且AC⊥BD或AB?BC且AB⊥BC等;

14.2?;

?1?15.??m.

?2?n三、解答下列各题:共75分

16.解:原式?(y2?1)(x2?2x?1) ···················································································· 2分 ?(y2?1)(x?1)2 ····························································································· 4分 ?(y?1)(y?1)(x?1)2 ···················································································· 6分 17.解:由5?3(x?4)?2,得x?5, ·············································································· 2分 由2x?3≥1,得x≥2, ····················································································· 4分 ?原不等式组的解集是:2≤x?5. ·································································· 6分

36?0.2 ············································ 2分

36?54?9054?0.3· 卖出乙计算器个数的频率:············································ 3分

36?54?9090?0.5. · 卖出丙计算器个数的频率:········································ 4分

36?54?90 (2)0.2:0.3:0.5?2:3:5, ····················································································· 5分 ?该文具店进甲、乙、丙三种科学计算器时,按2:3:5的比例进货. ·············· 6分

18.解:(1)卖出甲计算器个数的频率:

(或该文具店进货时,丙科学计算器进多一些,而甲、乙科学计算器进少一些.类

y 似这样的合理答案5分)

19.(1)正确画出图形 ················································································ 3分 B1 C1 B2 (2)正确画出图形 ················································································ 5分

A1 A2 C2 x A ······························································································· 6分 C ,1)1(?1A O 20.解:(1)这个游戏公平. ···································································· 2分 B 根据图6?甲的对称性,阴影部分的面积等于圆面积的一半, ?这个游戏公平. ··········································································································· 4分 (2)把图6?乙中的同心圆平均分成偶数等分,再把其中的一半作为阴影部分即可.(图略) ········································································································································· 7分

第7页 / 共10页

通达教学资源网 http://www.nyq.cn/

21.解:如图,过点C,E分别作CF⊥AB于点F,EH⊥BD的延长线于H. ········ 1分 在Rt△DEH中,

DE?4m,?EDH?30,E C D H A ?EH?2m, ········································································ 2分 F ·············································· 3分 B DH?DE?EH?23m· 又

22AF1? ··················································································································· 5分 CF411 ?AF?CF?(EF?CE)

441 ?(BD?DH?CE)?6.4. ··········································································· 6分

48.4(m) · ?AB?EH?AF?.····················································································· 7分

22.解:设甲工厂每天能加工x件新产品, ········································································· 1分 则乙工厂每天能加工(x?20)件新产品. ····································································· 2分

12001200??10. ··········································································· 4分 xx?20 解得x?40或x??60(不合题意舍去), ··································································· 6分 经检验x?40是所列方程的解, ?x?20?60. ·············································································································· 7分

依题意得方程

答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品. ··················· 8分 23.解:(1)BG?EH. ···································································································· 2分 四边形ABCD和CDFE都是正方形,

?DC?DF,?DCG??DFH??FDC?90,

?CDG??CDH??CDH??FDH?90,??CDG??FDH, ···················· 3分

△CDG≌△FD,H ? ?CG?FH, ················································································································ 4分

F?BG?EH BC?E,. ·························································································· 5分

(2)结论BG?EH仍然成立. ·························································································· 6分

同理可证△CDG≌△FDH,

,BC?,EF?B?G.E ?CG?FH ···································································· 8分

y 424.解:(1)在y?x?4中,令x?0,得y?4,得BO?4.

3l C? D? 令y?0,得x??3,得AO?3,

B ?AB?························································ 2分 AO2?BO2?5. ·

D C A 第8页 / 共10页

设点O到直线AB的距离为h,

O x

通达教学资源网 http://www.nyq.cn/

11AOBO?ABh, 22AOBO?2.4 ?h?. ·································································································· 4分 AB

S△AOB? (其它解法参照给分)

(2)如图,设C与直线l相切于点D,连CD,则CD⊥AB, ·································· 5分

AO⊥BO,??BDC??BOA?90,

?ABO??CB DBCCD?, ·············································································· 6分 ABAO,BO?4,AB?5, 由(1)得AO?3BC1557?,?BC?,?OC?4??, ?533337 ?t?CO?(秒). ···································································································· 8分

35 根据对称性得BC??BC?,

351717?t?O?C?(秒) ?OC??4??,. ······························································ 9分

333717 ?当C与直线l相切时,t?秒或秒. ···························································· 10分

33∽△CB,D? ?△ABO25.解:(1)

点A在抛物线y?12?1?x上,且x?m?1,?A?1························ 1分 ,?, ·4?4?

点B与点A关于y轴对称,?B??1····························································· 2分 ,?.·

??1?4? 设直线BD的解析式为y?kx,

?y?? ?k??,141x. ······························································································· 3分 41?y??x?1???4 解方程组?,得D?2,····································································· 4分 ??. ·

2???y??1x2?8?(2)当四边形ABCD的两对角线互相垂直时,由对称性得直线AO与x轴的夹角等于45所以点A的纵、横坐标相等, ····················································································· 5分

12x,得a?4,?A(4,,4)?m?4. 4 即当m?4时,四边形ABCD的两条对角线互相垂直.············································· 7分 (3)线段CD?2AB. ········································································································ 8分

这时,设A(a,a),代入y?第9页 / 共10页

通达教学资源网 http://www.nyq.cn/

点A在抛物线y?12?1?x,且x?m,?A?m,m2?, 4?4?mx, 4 得直线AO的解析式为y?m?y?x?1???4 解方程组?,得点C??2m··························································· 9分 ,?m2? ·

12???y??x2?8? 由对称性得点B??m,m2?,D?2m,???14????12?···················································· 10分 m?, ·

2?,CD?4m, ?AB?2m ?CD?2AB. ············································································································ 11分

第10页 / 共10页

本文来源:https://www.bwwdw.com/article/79k7.html

Top