资阳市2014年高中阶段教育学校招生统一考试数学试题及参考答案(
更新时间:2024-03-26 22:05:01 阅读量: 综合文库 文档下载
- 资阳市高中排名推荐度:
- 相关推荐
资阳市2014年高中阶段教育学校招生统一考试
数 学
全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。全卷满分120分。考试时间共120分钟。
注意事项:
1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目的答案标号涂黑。如需改动,....用橡皮擦擦净后,再选涂其它答案。非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题 共30分)
一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
11.?的相反数是
21A.? B.?2
22.下列立体图形中,俯视图是正方形的是
C.
1 2 D.2
A B C D
3.下列运算正确的是 A.a3?a4?a7
B.2a3?a4?2a7
C.(2a4)3?8a7
D.a8?a2?a4
4.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易.舌尖上的浪费让人触目惊心,据统计,中国每年浪费食物总量折合成粮食约500亿千克,这个数据用科学计数法表示为
A.5×1010千克 A.第一象限
B.50×109千克 B.第二象限
C.5×109千克 C.第三象限
D.0.5×1011千克 D.第四象限
5.一次函数y??2x?1的图象不经过下列哪个象限 6.下列命题中,真命题是
A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线互相垂直的平行四边形是矩形
资阳市数学试卷第1页(共11页)
图1
C.对角线垂直的梯形是等腰梯形 D.对角线相等的菱形是正方形
7.如图1,在Rt△ABC中,∠BAC=90°,如果将该三角形绕点A按顺时针方向旋转到△AB1C1
的位置,点B1恰好落在边BC的中点处,那么旋转的角度等于
A.55°
甲 乙 下列说法不正确的是 A.甲得分的极差小于乙得分的极差 成绩稳定
AB的9.如图2,扇形AOB中,半径OA=2,∠AOB=120?,C是? B.60° 第1轮 10 12 C.65°
第4轮 18 14 第5轮 16 22 D.80° 第6轮 20 16 8.甲、乙两名学生进行了6轮投篮比赛,两人得分情况统计如下:
第2轮 14 11 第3轮 12 9 B.甲得分的中位数大于乙得分的中位数 D.乙的成绩比甲的
C.甲得分的平均数大于乙得分的平均数
中点,连结AC、BC,则图中阴影部分的面积是
4?2?A. B.?23 ?23 334?2?C. D.?3 ?3
3310.二次函数y?ax2?bx?c(a?0)的图象如图3所示,给出下列四个结论:①4ac?b2?0;②4a?c?2b;③3b?2c?0;④m(am?b)?b?a(m??1).其中正确结论的个数是
A.4个 C.2个
B.3个 D.1个
第Ⅱ卷(非选择题 共90分)
二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上。 11.计算:38?(2?1)0?___________.
12.某校男生、女生以及教师人数的扇形统计图如图4所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为________人.
13.函数y?1?x?3中自变量x的取值范围是 .
14.已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2?5x?5?0的两个根,则⊙O1
与⊙O2的位置关系是___________.
15.如图5,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线
资阳市数学试卷第2页(共11页)
AC上的动点,则△BEQ周长的最小值为________.
0),0(16.如图6,以OA(2,0)为顶点作正?OAP、以点P1和线段P1,1A的中点B为顶点作正?PBP12,
再以点P2和线段P2B的中点C为顶点作正?P2CP3,…,如此继续下去.则第六个正三角形中,不在第五个正三角形边上的顶点P6的坐标是____________.
三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。 17.(本小题满分7分)先化简,再求值:
13(a?)?(a?2?),其中,a满足a?2?0.
a?2a?2
18.(本小题满分8分)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道).在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图7所示的统计图.根据统计图解答以下问题:
(1)若该社区有居民900人,试估计对消防知识“特别熟悉”的居民人数;(3分)
(2)该社区的管理人员有男、女各2名,若从中选2名参加消
防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.(5分) 19.(本小题满分8分)如图8,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30?的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45?的方向上(其中A、B、C在同一个平面上).求这个标志性建筑物的底部A到岸边BC的最短距离.
资阳市数学试卷第3页(共11页)
图7
图8
20.(本小题满分8分)如图9,一次函数y?kx?b(k?0)的图
3m象过点P(?,0),且与反比例函数y?(m?0)的图象相交于点
2xA(?2,1)和点B.
(1)求一次函数和反比例函数的解析式;(4分)
(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?(4分) 21.(本小题满分9分)如图10,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连结OC交⊙O于点D,BD的延长线交AC于E,连结AD.
(1)求证:△CDE∽△CAD;(5分)
(2)若AB?2,AC?22,求AE的长.(4分)
图10 图9
资阳市数学试卷第4页(共11页)
22.(本小题满分9分)某商家计划从厂家采购空调和冰箱两种产品共20台.空调的采购单价y1(元/台)与采购数量x1(台)满足y1??20x1?1500(0?x1?20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2??10x2?1300(0?x2?20,x2为整数).
11(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200
9元.问该商家共有几种进货方案?(4分)
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.(5分)
23.(本小题满分11分)如图11-1,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连结AP、CE.
(1)求证:△ABP≌△CBE;(3分)
(2)连结AD、BD,BD与AP相交于点F,如图11-2,
BC①当(3分) ?2时,求证:AP⊥BD;
BPSBC②当(5分) ?n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求1的值.
SBP2
图11-1 图11-2
资阳市数学试卷第5页(共11页)
24.(本小题满分12分)如图12,已知抛物线y?ax2?bx?c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x?1.
(1)求抛物线的解析式;(2分)
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(4分) (3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形
图12
与△ABC重叠部分的面积记为S,用m的代数式表示S.(6分)
12-1
资阳市数学试卷第6页(共11页)
资阳市2014年高中阶段教育学校招生统一考试 数学试题参考答案及评分意见
说 明:
1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数。
2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分。
3. 考生的解答可以根据具体问题合理省略非关键步骤。
4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分。
5. 给分和扣分都以1分为基本单位。
6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同。
一、选择题(每小题3分,共10个小题,满分30分)
1-5. CABAC;6-10. DBDAB.
二、填空题(每小题3分,共6个小题,满分18分)
632111. 3;12. 120 ;13.x??3;14. 外离;15. 6;16. (,3).
3232三、解答题(共8个小题,满分72分)
a2?2a?1a2?117.原式? ············································································ 2分 ?a?2a?2(a?1)2a?2?? ···················································································· 4分 a?2(a?1)(a?1)a?1. ······································································································· 5分 ?a?1由a?2?0,得a?2, ···················································································· 6分
所以原式=3. ······························································································· 7分 18.(1)在调查的居民中,对消防知识特别熟悉的居民所占百分比为
25?100%?25%,
25?55?20资阳市数学试卷第7页(共11页)
则该社区对消防知识特别熟悉的居民人数的估计值为900?25%?225. ····················· 3分 (2)记A1,A2表示两个男性管理人员;B1,B2表示两个女性管理人员.列表或树状图如下: A1 A2 B1 B2 A1 (A1, A2) (A1, B1) (A1, B2) A2 (A2, A1) (A2, B1) (A2, B2) B1 (B1, A1) (B1, A2) (B1, B2) B2 (B2, A1) (B2, A2) (B2, B1) ··················································································································· 7分
82故恰好选中一男一女的概率P??.······························································ 8分
12319.过A作AD⊥BC于D,则AD的长度即是A到岸边BC的最短距离. ··················· 1分 在Rt△ACD中,∠ACD=45?,设AD=x,则CD=AD=x, ······································ 2分 在Rt△ABD中,∠ABD=60?,
ADx由tan?ABD?,即tan60??, ····················· 3分
BDBDx3?x, ·所以BD?··································· 4分 tan60?33x?x?4, ·又BC=4,即BD+CD=4,所以······· 5分 3解得x?6?23. ··························································································· 7分 所以小岛上标志性建筑物的底部A到岸边BC的最短距离为(6?23)公里. ··············· 8分
320.(1)因为函数y?kx?b图象过点P(?,0)和A(?2,1),
2?3??k?b?0,所以?2 ··············································· 1分
???2k?b?1,?k??2,解得?所以一次函数的解析式为y??2x?3. ··· 3分
?b??3,又反比例函数的图象过点A(?2,1),所以
m?1,所以m??2, ?22故反比例函数的解析式为y??. ····································································· 4分
x1??y??2x?3,?x1??2,?x2?,1?(2)联立?解得?或?·························· 6分 2所以点B(,?4). ·2y?1,2y??,?1??x??y2??4.由图可知,当?2?x?0或x?
资阳市数学试卷第8页(共11页)
1时,一次函数的值小于反比例函数的值. ··················· 8分 221.(1)因为AB是⊙O的直径,所以?ADB?90?. 所以?ABD??BAD?90?. ····································· 1分 又因为AC是⊙O的切线,则AB⊥AC,即?BAC?90?. 所以?CAD??BAD?90?, ··································· 2分 所以?ABD??CAD. ············································ 3分
因为?ABD??BDO??CDE,所以?CAD??CDE, ············································ 4分 又∠C=∠C,所以△CDE∽△CAD.································································ 5分 (2)在Rt△OAC中,∠OAC=90?,所以OA2?AC2?OC2,
即12?(22)2?OC2,所以OC?3,则CD?2, ··················································· 6分 222CDCA?,即,所以CE?2, ······················ 8分 ?CE2CECD所以AE?AC?CE?22?2?2. ································································· 9分
又由△CDE∽△CAD,得
22.设空调的采购数量为x台,则冰箱的采购数量为(20?x)台.
?11?x?(20?x),(1)根据题意可得? ······························································ 2分 9???20x?1500?1200,解得11?x?15, ···························································································· 3分 因为x为整数,所以x可取的值为11,12,13,14,15.
所以该商家共有5种进货方案. ········································································· 4分 (2)设总利润为W(元),
则W?(1760?y1)x1?(1700?y2)x2 ······································································· 5分 ?1760x?(?20x?1500)x?1700(20?x)?[?10(20?x)?1300](20?x) ?1760x?(?20x?1500)x?1700(20?x)?(10x?1100)(20?x)
?30x2?540x?12000?30(x?9)2?9570. ··························································· 7分
当x?9时,W随x的增大而增大,
因为11?x?15,所以当x?15时,W最大值?30(15?9)2?9570?10650(元),
所以采购空调15件时,获得总利润最大,最大利润值为10650元. ·························· 9分
?AB?CB,?23.(1)易知??ABP??CBE?90?,所以△ABP≌△CBE. ······································ 3分
?BP?BE,?(2)延长AP交CE于点H,
①因为△ABP≌△CBE,所以∠PAB=∠ECB, 则∠PAB+∠AEH=∠ECB+∠AEH=90?,
所以AP⊥CE, ················································ 4分
资阳市数学试卷第9页(共11页)
BC?2,即P是BC的中点, BP易得四边形BECD是平行四边形,······················· 5分 因为
则BD∥CE,所以AP⊥BD. ·············································································· 6分
BC②因为········································ 7分 ?n,即BC?n?BP,所以CP?(n?1)?BP, ·
BPPDPC因为CD∥BE,易得△CPD∽△BPE,所以····································· 8分 ??n?1, ·
PEPBSPC?n?1, 设△PBE的面积S?PBE?S,则△PCE的面积S?PCE满足?PCE?S?PBEPB即S2?(n?1)?S, ··························································································· 9分 又S?PAB?S?BCE?n?S,所以S?PAE?(n?1)?S,
SPD?n?1,所以S1?(n?1)?S?PAE,即S1?(n?1)(n?1)?S, ·又因为?PAD?················ 10分
S?PAEPES(n?1)(n?1)S?n?1. ·所以1?········································································ 11分
S2(n?1)S 24.(1)由题知抛物线与x轴另一个交点为(?1,0), ?9a?3b?c?0,?a??1,??由?a?b?c?0,解得?b?2,所以抛物线的解析式为y??x2?2x?3. ···················· 2分 ?c?3,?c?3,??(2)①当MA=MB时,得M(0,0); ②当AB=AM时,得M(0,?3);
③当BA=BM时,得M(0,3?32)或M(0,3?32).
所以点M的坐标为(0,0)、(0,?3)、(0,3?32)、(0,3?32). ································ 6分 (3)平移后的三角形记为△PEF,设直线AB的解析式为y?kx?b, ?3k?b?0,?k??1,所以?解得?所以直线AB的解析式为y??x?3.
b?3,b?3,??△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,
易得直线EF的解析式为y??x?3?m, ····························································· 7分 设直线AC的解析式为y?k?x?b?, ?3k??b??0,?k???2,则?解得?所以直线AC的解析式为
???k?b?4,b?6,??y??2x?6,
*………………………………………………………………8分
资阳市数学试卷第10页(共11页)
3连结BE,直线BE交AC于G,则G(,3),
2在△AOB沿x轴向右平移的过程中,
3①当0?m?时,如图所示,设PE交AB于K,EF交AC于M,则BE=EK=m,PK=PA=3
2-m,
?y??2x?6,?x?3?m,联立?解得?即点M(3?m,2m),
y??x?3?m,y?2m,??所以S?S?PEF?S?PAK?S?AMF 1119113······················· 10分 ?PE2?PK2?AF?h???(3?m)2??m?2m??m2?3m. ·
22222223②当?m?3时,如图所示,设PE分别交AB、AC于点K、H,
2因为BE=m,所以KE=m,PK=PA=3-m,又因为直线AC解
析式为y??2x?6,所以当x=m时,得y?6?2m,所以点
11H(m,6?2m),所以S?S?PAH?S?PAK?PA?PH?PA2
221119?(3?m)?(6?2m)?(3?m)2?m2?3m?. 222233综上所述,当0?m?时,S??m2?3m;
22319当?m?3时,S?m2?3m?. ··································································· 12分 222
资阳市数学试卷第11页(共11页)
3连结BE,直线BE交AC于G,则G(,3),
2在△AOB沿x轴向右平移的过程中,
3①当0?m?时,如图所示,设PE交AB于K,EF交AC于M,则BE=EK=m,PK=PA=3
2-m,
?y??2x?6,?x?3?m,联立?解得?即点M(3?m,2m),
y??x?3?m,y?2m,??所以S?S?PEF?S?PAK?S?AMF 1119113······················· 10分 ?PE2?PK2?AF?h???(3?m)2??m?2m??m2?3m. ·
22222223②当?m?3时,如图所示,设PE分别交AB、AC于点K、H,
2因为BE=m,所以KE=m,PK=PA=3-m,又因为直线AC解
析式为y??2x?6,所以当x=m时,得y?6?2m,所以点
11H(m,6?2m),所以S?S?PAH?S?PAK?PA?PH?PA2
221119?(3?m)?(6?2m)?(3?m)2?m2?3m?. 222233综上所述,当0?m?时,S??m2?3m;
22319当?m?3时,S?m2?3m?. ··································································· 12分 222
资阳市数学试卷第11页(共11页)
正在阅读:
资阳市2014年高中阶段教育学校招生统一考试数学试题及参考答案(03-26
自然辩证法概论课程论文10-14
人教版小学四年级班主任工作计划10-02
除灰除渣讲义 - 图文10-13
党章党规党纪-填空题09-24
unit6 I&39;m watching TV导学案06-10
主管竞聘书02-15
安徽省宣城市2014-2015学年高一上学期期末物理试卷04-13
第四专题 社会发展战略07-06
分子作业题答案11-15
- 12012年凉山州高中阶段招生统一考试数学试题及答案
- 22007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案
- 32007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案
- 42018年山西省高中阶段教育学校招生统一考试化学试题(附答案)
- 52018年山西省高中阶段教育学校招生统一考试化学试题(附答案)
- 6达州市2018年高中阶段教育学校统一招生考试理科综合试题(物理部
- 7达州市2018年高中阶段教育学校统一招生考试理科综合试题(物理部
- 8攀枝花市2010年高中阶段教育学校招生统一考试历史试卷 - 图文
- 92012年漳州市初中毕业暨高中阶段招生考试数学试题(含参考答案)
- 10泸州市2018年高中阶段学校招生统一考试理科综合试题 精品
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 资阳市
- 数学试题
- 阶段
- 统一
- 答案
- 高中
- 参考
- 招生
- 学校
- 考试
- 教育
- 2014
- 2012-2013医院管理学复习重点
- 工程立项申请书
- 高级英语复习指导
- 县(区)发改局要求核准外商投资项目的请示文件参考格式
- 2010年普通话水平测试考试模拟测试试题
- 施工管理人员安全责任目标考核表高幸
- 全新版大学英语第二册第四册unit 6
- DH-ITC302-GVRB3A高清相机卡口系统施工方案(雷达检测、雷达视频
- Navisworks应用(一)
- 软件工程复习参考题
- 灌浆基础知识和计算公式
- 公司新员工入职培训计划
- 简爱形象分析
- 网上商城UML图
- 班级精神文化建设计划
- 如何写工作总结和计划
- 机械手毕业论文
- 2014继续教育高中政治教学设计模版 - 图文
- 12钻井队场地工岗位HSE应知应会试题库
- 青岛版 小学一年级数学下册第六单元检测题考试卷 - 图文