小学奥数论:整除和余数知识点总结及经典例题

更新时间:2024-01-22 19:24:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1. 数论——数的整除和余数 2.1基本概念和基本性质

2.1.1定义

整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

2.1.2表达式和读法

b∣a,读着b能整除a;或a能被b整除;b a,不能整除;

2.1.3基本性质

① 传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯定是a的倍

数;

② 加减性:如果a|b、a|c,那么a|(b?c);

③ 因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能整除c; ④ 互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能整除c,

且ab互质,则ab的积能整除c;

⑤ a个连续自然数中必恰有一个数能被a整除。

2.2数的整除的判别法

2.2.1末位判别法

整除数 特 征 好朋友10,1个零,所以判断末1位; 2和5 2:末1位能被2整除;尾是0、2、4、6、8; 5:末1位能被5整除;尾是0、5; 好朋友100,2个零,所以判断末2位; 4和25 4或25:末2位数是4(或25)的倍数 好朋友1000,3个零,所以判断末3位; 8和125 8或125:末3位数是8(或125)的倍数 好朋友10000,4个零,所以判断末4位; 16和625 16或625:末4位数是16(或625)的倍数 2.2.2数字和判别法(用以判别能否被3或9整除)

各数位上数字的和是3或9的倍数,则能被3或9整除。 173652÷9:1+7+3+6+5+2的和除以3或9;

简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。

2.2.3奇偶数位判别法(用以判别能否被11整除)

从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位

上的数字的和与偶数位上的数字的和的两者之差是否能被11整除;

81729033÷11:奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。余数的判断法与整数位的判断法一致。

2.2.4三位一截判别法(用以判别能否被7/11/13整除)

2.2.4.1基本用法

从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除;

如,86372548,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。

2.2.4.2特殊用法 ① 一般求空格数

如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。注意,如果这个数加或减7后为1到9间的自然数,则加或减7后的这个数也为正确答案。

395864□82365,答案为5 463925□01234,答案为1和8 ② 特殊求空格数

根据整除的因数性,如果1个数能被1001整除,则这个数能被7、11、13、

77、91、143整除,因为:

7×11×13=1001; 77×13=1001; 99×11=1001; 7×143=1001;

根据 = ×1001; = ×1001;求能被7整除的空格数

abcabc

abc

aaaaaa

aaa

2.2.5有关9系列截判法(用以判别能否被9/99/999整除)

除数是几位数就可以从右往左几位一截,将截取的段位数相加再截取,直至不能再截取,看相应的数能否被相应的除数9/99/999整除。

除数是11时,也可以用两位一截判别法,因为根据整数的因数性,能被99整除的数,肯定能被11整除。

例如:

2.3余数的判别法

2.3.1余数的定义和性质

① 整除是余数为0的情况。a÷b=c…..0;

此时,a= b×c;b= a÷c

② 有余数的情况:a÷b=c…..d(0﹤d﹤b);

此时,a=b×c+d;b=(a-d)÷c; c=(a-d)÷b 记着:a≡d(modb)

2.3.2余数的判别法(与整除相同)

【注意】:当被除数是比除数小的非零自然数,则被除数为余数;当被除数比余数大,则减去除数的倍数所得比除数小的数即为余数。 序号 1 2和5 2 4和25 末2位判断法 看末1位能被5整除;尾是0、5能; 末2位数是4(或25)的倍数即能被4或25整除 除数 余数判别法 特别要点 末1位判断法; 看末1位能否被2整除;尾是0、2、4、6、8能;

3 4 5 8和125 末3位判断法; 末3位数是8(或125)的倍数 16和625 末4位判断法; 末4位数是16(或625)的倍数 数字和法; 各数位上数字的和是3或9的倍数,则能被3或9整除。 弃3(9)法; 利用整除的加减性,可以去掉1个或多个9(包括几个数3或9 的和是3或9的倍数的也可划掉),剩下数字的和x再除以3或9;如果x﹥9,则余数为x-9; 如x=0,则余数为0,能整除;如果x﹤9,则余数为x。 6 三位一截奇偶位求差判别法 7、11、13 (1001) 从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除; 如,86372548,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减; 7 11、99 两位一截求和再截判别法 两位一截,将截取的段位数相加再截取,直至不能再截取,看能否被11或99整除,注意,根据整数的因数性,能被99整除的数,肯定能被11整除。 8 奇偶数字和求差判别法 从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除; 81729033÷11:奇数位和11 为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。11可以无敌乱切,但还是常用奇偶位截断求差法; 9 999 三位一截求和再截法 从右往左三位一截,将截取的段位数相加再截取,直至不能再截取,看相应的数能否被999整除。 从右往左四位一截,将截取的段位数相加,看相应的数能否被11整除。 10 11 四位一截求和法 如:9876543223456768,除以2,5,4,25,8,125,3,9,11的余数为0,3,0,8,0,18 【例】将1,2,3,4,…,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?

奇数位数字和:(0+9+8+…+1)×2+0+9+7+5+3+1=115 偶数位数字和:3+2×10+1×10+8+6+4+2=53 115-53=62;62÷11,余7;

【例】求被13除余数是多少?

解:注意13|111111,即每连续6 个1 是13 的倍数,且2012 除以6 余2,所以答案为11.

【例】把自然数1到2011这2011个数依次写下来,得到一个很大的多位数:123456789101112….20102011,则这个数除以9余数是1. 无敌乱切,按1/2/3/4到2011的等差数列求和,看除以9的余数;

2.3.3同余定理

2.3.2.1同余定义和充要条件

定义: 用给定的正整数m分别除整数a、b,如果所得的余数相等,则称a、b关于模m同余或a同余于b模m,记作a≡b(mod m),如 56≡0 (mod 8),

式子称为同余式,m称为该同余式的模。

充要条件:整数a,b对模m同余的充要条件是 a-b能被m整除(即m|a-b);或 a≡b(mod m)的充要条件是a=mt+b(t为整数)。

2.3.2.2基本定理

同余关系具有自身性、对称性与传递性,即 1)自身性:a≡a (mod m);

2)对称性:若a≡b (mod m), 则b≡a (mod m);

3)传递性:若a≡b (mod m), b≡c (mod m),则a≡c (mod m).

2.3.2.3重要定理:一个同余式的加减乘及幂的运算

定理1 若a≡b(mod m),n为自然数,则an≡bn (mod m);即a、b关于关于模m同余,则a、b的同倍数也关于模m同余;

定理2 若ca≡cb(mod m), (c,m)=d(最大公约数), 且a,b为整数,则a≡b(mod m/d).

推论若ca=cb(mod m), (c,m)=1,且a,b为整数,则a≡b(mod m). 定理3 若a≡b (mod m),a≡b (mod n),则a≡b(mod [m,n]). 推论若a≡b(mod mi), i=1,2,…,n,则a≡b (mod [m1,m2,..,mn]). 【例】将1996加上一个整数,使和能被9和11整除,加的整数尽可能小,那么加的整数是多少?

1996≡16(mod 99);99-16=83

定理4若a≡b (mod m),则an≡bn(modm),其中n是自然数。

2.3.2.5同余定理的重要推论:两个同模同余式的加减乘运算

若a≡b(mod m), c≡d (mod m),则可以将这两个同余式左右两边分别相加、相减或相乘:

1)a+c≡b+d (mod m);即和的余数等于余数的和 2)a-c≡b-d (mod m);即差的余数等于余数的差; 3)ac≡bd (mod m);即积的余数等于余数的积; 【例】316×419×813除以13所得的余数

2.3.4只知被除数和余数,求除数或求商 2.3.4.1余数确定(注意余数比除数小)

有余数的情况:a÷b=c…..d(0﹤d﹤b); b=(a-d) ÷c;或c=(a-d) ÷b 如果,只知a和d,求b或c 【例】1111 ÷某2位数=()…..66

2.3.4.2余数不确定

① 余数不确定——余数的和 【例1】63=m×()+a

90=m×()+b

130=m×()+c,余数和为25;

(63+90+130)=m×()+(a+b+c)=m×()+25

(63+90+130-25)=m×() 258=m×() 258的约数有8个: 1/258 2/129 3/86 6/43

因为余数要小于除数,判断9﹤m﹤63;所以m=43

② 余数不确定——余数相同 【例2】300=m×(商)+a

262=m×()+a 205=m×()+a, 根据同余定理:

m∣(300-262)= m∣(38); m∣(262-205)= m∣(57); m∣(300-205)= m∣(95);

满足两个即可,选数小的算,求同时满足能整除38和57,即求这

两个数的公约数,分别有1和19,答案为19。

③ 余数不确定——余数的差 【例3】97=m×(商)+a+3

29=m×()+a 变为94=m×()+a,

根据同余定理:

m∣(94-29)= m∣(65);

65的约数有1/65,5/13,除数大于余数,排除1和65,5和13都

满足;

④ 余数不确定——余数的倍数 【例4】61=m×(商)+2a

90=m×()+a 变为180=m×()+2a, 根据同余定理:

m∣(180-61)= m∣(119);

119的约数有1/119,7/17,除数大于余数,排除1和119,仅17

满足;

2.3.5幂和连乘积的余数——余数的周期性

周期性的用法:可用以求某个数的若干次方的个位数: 【例】32015的个位数:

3的若干次方的个位数,依次枚举,找出循环规律,4个一个周期,2015除以4,余几为周期内第几个。

幂的余数的求法:先求底数的余数,再算底数的幂的余数的周期性,再根据指数相应的周期来确定最终的余数;

【例】2015100除以7的余数: 2015100≡6100≡1(mod7)

6,36,196,1176…除以7的余数分别为6,1,6,1,2个为1周期,100÷2=50余0,故余数为1。

特殊情况:

① 【例】32014除以8的余数: 32014≡91007≡1(mod8)

9除8的余数为1,所以无论指数多少,余数皆为1。

【例】31625除以9的余数: 【例】14389除以7的余数:

【例】33335555+55553333除以7的余数:

② 作业5,2的3次方以上模8的余数皆为0

2.3.6中国剩余定理——物不知数 (韩信点兵) 2.3.6.1传统题目和传统解法

【题目】今物知其数三三数剩二(数除三余数二意思),五五数剩三,七七数剩二,问物几何(韩信点兵算所谓剩余定理)

【解法】

三人同行七十稀;把除以3所得的余数用70乘 五树梅花廿一枝;把除以5所得的余数用21乘; 七子团圆正半月;把除以7所得的余数用15乘

除百零五便得知;把上述三个积加起来,除以105的余数即为得数;

本文来源:https://www.bwwdw.com/article/78go.html

Top