受体激酶介导的油菜素内酯信号转导途径 - 图文

更新时间:2024-03-25 01:24:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第23卷 第11期2011年11月生命科学

Chinese Bulletin of Life Sciences

Vol. 23, No. 11

Nov., 2011

文章编号:1004-0374(2011)11-1106-08

受体激 酶介导的油菜素内酯信号转导途径

卫卓赟,黎 家*

(兰州大学生命科学学院,兰州 730000)

摘 要:油菜素内酯(brassinosteroids, BRs)是一类重要的类固醇激素,参与调控植物生长发育的许多过程。结合应用遗传学、生物化学以及蛋白质组学等研究手段现已基本阐明了BR信号转导的主要过程。BRI1作为受体在细胞表面感知BR,BRI1抑制子BKI1从质膜上解离下来,使BRI1与其共受体BAK1结合。BRI1和BAK1通过顺序磷酸化将BR信号完全激活。活化的BRI1将BSK磷酸化激活,BSK活化BSU1,BSU1将BIN2去磷酸化使其失活,解除BIN2对BES1/BZR1的抑制功能。PP2A可以将BES1/BZR1去磷酸化激活,

BR信号的传递最终使去磷酸化状态的BES1/BZR1在细胞内累积,又可以将受体BRI1去磷酸化促使其降解。激活BR信号通路下游的转录调控。

BRI1;BAK1关键词:油菜素内酯;受体激酶;信号转导;

Q946.48 文献标志码:中图分类号:A

Receptor kinases mediated brassinosteroid signal transduction in plants

WEI Zhuo-Yun, LI Jia*

(School of Life Sciences, Lanzhou University, Lanzhou 730000, China)

Abstract: Brassinosteroids (BRs) are a class of steroidal hormones, playing essential roles in a wide range of processes during plant growth and development. The combined genetics, biochemistry and proteomics approaches have been employed to elucidate the major events in BR signaling pathway, mainly via a series of reversible phosphorylation and dephosphorylation processes. Perception of BR by the BR receptor BRI1 at cell surface leads to the dissociation of BRI1 kinase inhibitor BKI1 from the plasma membrane and association of BRI1 with its co-receptor BAK1. Sequential transphosphorylation of the paired BRI1/BAK1 receptor kinases completely activates the BR signaling cascade. BRI1 phosphorylation of the BSK kinases leads to the activation of the BSU1 phosphatases, which can function to dephosphorylate and inactivate the BIN2 kinase. PP2A phosphatases play dual roles in mediating BR signaling pathway including dephosphorylating BES1/BZR1 transcription factors to promote their functions and dephosphorylating BRI1 to make it less stable. These events result in the accumulation of unphosphorylated BES1/BZR1 transcription factors in the nucleus and subsequent activation of the downstream transcriptional network.

Key words: brassinosteroids; receptor kinase; signal transduction; BRI1; BAK1

1970年,Mitchell等[1]从油菜花粉中提取出了一种生物活性极高的物质,将其命名为油菜素

(brassins)。1979年,Grove等[2]经X光衍射和超微量分析确定了油菜素内酯生物合成途径的最终产物,也是油菜素内酯成员中生物活性最强的一种分子——油菜素内酯(brassinolide, BL)的分子结构,认为是一种甾醇类化合物。随后,科学家们陆续从不同的植物中提取到了几十种与BL类似的化

合物,并将它们统一命名为油菜素甾醇类化合物

[3]

(brassinosteroids, BRs)。早期科学家们对油菜素内酯的研究,主要是以拟南芥为材料,通过EMS诱变和T-DNA插入方法筛选对BRs不敏感的突变体。

收稿日期:2011-08-07

基金项目:国家自然科学基金项目(90917019)*通信作者:E-mail: lijia@lzu.edu.cn

第11期卫卓赟,等:受体激酶介导的油菜素内酯信号转导途径

1107

他们得到的这些突变体表现出植株极端矮化、叶片卷曲、暗下生长呈去黄化形态、开花及衰老推迟、雄性不育等各种缺陷表型[4-6]。由于有强有力的遗传学证据支持,现在大家普遍认为BRs的确是一类重要的植物激素,参与调控细胞分裂和伸长、木质部分化、开花、衰老以及光形态建成等各种植物生长发育过程

[4-6]

目前,BR信号从细胞表面信号的感知到细胞核内的转录激活已经基本清楚,本文集中阐述了这一信号传递过程。

1 BR受体BRI1及共受体BAK1在细胞表面感知BR信号

BRI1是一个定位于细胞膜上的富含亮氨酸重复序列的类受体激酶,它的胞外区域含有25个LRRs,在第21个和第22个LRR之间有一个由70个氨基酸组成的“岛屿(island)”结构,还有一个单跨膜区域、一个近膜区域、一个丝氨酸/苏氨酸胞

[9]

内激酶区域、一个C端调控区域。BRI1的25个LRRs串联形成一个高度弯曲的螺旋管状结构,围

近30多年来,科学家们通过遗传学、生物化学以及分子生物学等各种技术手段发现并鉴定了一系列BR信号转导通路的关键因子。早期的正向遗传学鉴定到两个对BR不敏感的突变体——bri1 (brassinosteroid insensitive 1)[4,7]和bin2 (brassinosteroid insensitive 2)[8]。BRI1编码一个富含亮氨酸重复序列(leucine-rich repeats, LRRs)的单次跨膜受体蛋白激酶[9]。作为BR受体,BRI1胞外区内位于第21及22个LRR中间的岛屿结构与其他LRRs组成的一个疏水结构域可以诱导结合并感知BR[10-14]。BIN2是Shaggy/GSK3 (glycogen synthase kinase 3)的同源物,作为BR信号通路负调控因子抑制下游转录因子的活性[8]。通过激活标签法筛选BRI1 弱突变体bri1-5的遗传抑制子及利用酵母双杂交筛选与BRI1胞内激酶区相互作用的蛋白过程中,两个不同的研究团队同时发现了BAK1[15-16]。BAK1也编码一个含LRR的类受体激酶,与BRI1不同的是,BAK1的LRR重复序列只有5个[15],而BRI1是25个[9]。研究发现BAK1与BRI1相互作用,作为

BSU1 (bri1 BRI1的共受体参与BR信号的传递[15-16]。

suppressor 1)也是通过激活标签法筛选bri1~5的遗传抑制子克隆到的,它编码一种核定位的丝氨酸/苏氨酸蛋白激酶[17]。BKI1 (BRI1 kinase inhibitor 1)是通过酵母双杂交筛选到的与BRI1相互作用并抑制BRI1活性的蛋白[18]。BSKs (BR signaling kinases)是通过蛋白组学研究鉴定到的与BRI1相互作用受BRI1调控的RLCK (receptor-like cytoplasmic kinase)蛋白激酶[19]。bes1-D (bri1-EMS-suppressor 1 D)是以bri1-119为背景通过EMS诱变筛选到的一个遗bzr1-1D是一个对BR合成抑制剂传抑制子[20];

BES1BRZ (brassinozole)具有抗性的突变体[21-22];和BZR1编码两个氨基酸序列同源性高达88%的

转录因子,参与BR信号下游响应基因的转录调。PP2A (protein phosphatase 2A)是在BR信号通路中发挥双重功能的磷酸酶,一方面与BZR1控

相互作用将其去磷酸化激活BR信号通路;另一方面将活化的BRI1去磷酸化抑制BR信号通路[23-25]。

[20,22]

绕中心轴旋转360度,相对于第一个基序,最后一个基序通过右手螺旋围绕中心轴上升60?[14]。其近膜区域对BRI1的功能有促进作用,而C端区域则抑制BRI1的激酶活性[26]。BRI1作为BR受体发挥功能已通过多种实验被证明,如针对BRI1的胞外区域和跨膜区域与水稻病害抗性受体XA21激酶区域人为合成的嵌合蛋白在BL处理的情况下,可以引发植物防御反应,说明BRI1的胞外区域可以感

[10]

2001年,知BL,而胞内区决定特定的信号途径;

Wang等[11]证明免疫沉淀得到的BRI1-GFP与同位

BPCS、[3H]-BL素标记的[3H]-BL位于同一复合物中;

与BRI1的结合实验则证明与BRs直接结合的是BRI1的胞外岛屿结构和第22个LRR[12]。近期的蛋白晶体结构研究表明,岛屿结构向LRRs超螺旋结构内部折叠形成一个可以容纳配体的疏水小坑,使受体与配体形状与电荷互补,通过疏水相互作用结[13]

合。此外,BRI1的同源物BRL1和BRL3也可以与BL结合参与调控BR信号通路,但BRI1是BR的主要受体[27-28]。

在动物体内,TGF-β (transforming growth factor β)的感知会引起I型TGF-β受体和II型TGF-β受体的同源二聚化以及两种受体之间的异源结合[29]。在植物体内,BR信号的传递也需要BRI1与其共受体BAK1的共同作用。BAK1属于SERK家族成员。因此,也被命名为SERK3,由N端信号肽、亮氨酸拉链结构、5个LRRs、富含脯氨酸区域、跨膜区域以及胞内的丝氨酸/苏氨酸蛋白激酶结构域构受体BRI1可以形成同源二聚体,成[15]。研究表明,

也可以与BAK1异源结合[30-32]。2004年,Russinova等[30]通过荧光共振能量转移(fluorescence resonance energy transfer, FRET)首次证明BRI1在豇豆(cowpea)

1108

生命科学第23卷

原生质体中可以形成同源二聚体,并可与BAK1形成异源二聚体,但是,他们没有得到BAK1形成同源二聚体的证据。BRI1-FLAG和BRI1-CFP的免疫共沉淀(co-immunoprecipitation, CoIP)证明了BRI1在植物体内的同源结合,而且BRI1的同源二聚化并不依赖于BL的存在,但是,BL可以使BRI1的同源二聚体结构更加稳定等

[32]

[31]

BRI1/BAK1顺序磷酸化(sequential transphosphorylation)BR与BRI1的结合使BRI1通过自身磷酸化模型:

激活,活化的BRI1与BAK1结合,将其S290/T312(激酶区域)、T446/T449/T450/T455 (活化环内)等位点磷酸化,从而将BAK1激活,活化的BAK1又可以将BRI1的近膜区域(S838、T846、S858)和C端区域(S1166、T1180)的一些位点磷酸化,使BRI1被完全激活,同时,BRI1被BAK1磷酸化也为下游的调控因子提供了作用位点,将信号传递下去。

在哺乳动物和酵母中,激活的受体可以通过内吞作用离开质膜进入细胞体内,将信号传递给下游信号分子,或者通过内吞作用将受体从质膜上清除

[53][30]

首以终止信号传递。2004年,Russinova等次观察到了BRI1和BAK1的内吞现象,而且BRI1

和BAK1在原生质体中的共表达会加速内吞。2007年,Geldnerden等[54]观察到BRI1除定位于质膜上外,还可以定位于胞内体(endosome)中,而且BRI1胞内体定位的增加会使BES1/BZR1去磷酸化,将BR信号激活,使受负反馈调控的BR合成基因DWF4表达量降低。而最近的研究认为,经BL活化的BRI1是甲基化的PP2A的作用底物,PP2A将质膜上的BRI1和/或通过内吞作用定位于内膜上的BRI1去磷酸化,然后去磷酸化的BRI1或被降解,

[24-25]

,但目前BRI1内吞或循环回到质膜上(图1)

的具体功能还有待于进一步的研究。

。2008年,Hink

通过PCH(photon counting histogram)和FCCS

(fluorescence cross correlation spectroscopy)证明在原生质膜上有20%的BRI1以二聚体形式存在,但是没有多聚体形式;BAK1的同源蛋白SERK1有15%形成同源二聚体,但是没有观察到BAK1的同源二聚体形式。最新的晶体结构研究则认为BRI1似乎难以形成同源二聚体,因为LRRs的结构过于庞大,而且在晶体结构或溶液中也没有看到同源二聚体的迹象[14],而BRI1与BAK1异源二聚体的形式从空间结构来看似乎是最合理的,而真正要阐明这些疑问还需要更深入的结构生物学及生物化学研究。研究表明,BAK1的同源蛋白SERK1和BKK1 (SERK4)也可以参与调控BR信号通路[33-35]。最近对BAK1的研究已成为植物学研究的一大热点,原因是多个实验室先后发现BAK1具有多重生物学功能。BAK1除了作为BRI1的共受体介导BR信号转导通路以外,还可以与Flagellin的受体FLS2相与BKK1 (SERK4)互作用介导植物先天免疫反应[36],

一起参与细胞死亡调控[35,37],SERKs家族成员还与BIR1相互作用介导调控细胞死亡[38],与EFR以及PEPR1/2相互作用介导免疫反应

[39-42]

,可能与

2 BRI1/BAK1介导的BR信号转导

在没有BRs的情况下,BRI1激酶活性除了受

自身C端区域的抑制之外,还受BKI1的负调控。在没有BRs的情况下,BKI1定位于质膜上,与BRI1相互作用,抑制BRI1激酶活性[18];在BRsBR与BRI1的结合使其磷酸化激活,存在的情况下,

活化的BRI1将BKI1酪氨酸Y211磷酸化[55],使BKI1解离到细胞质中,BKI1的解离使得BRI1与BAK1相互作用并顺序磷酸化,将BR信号传递下去[18,55]。除了BAK1和BKI1之外,还有其他的与BRI1相互作用的蛋白被发现,包括TTL、TRIP-1、BSKs、P-ATPase等[19,56-58]。其中,TTL、TRIP-1和P-ATPase参与BR信号通路的具体机制还有待于进一步的研究[56-58]。BSKs属于RLCK第12亚家族,N端有一个激酶结构域,C端有一个TPR (tetratricopeptide repeat)结构域[19]。BRI1和BSK1相互作用将BSK1的丝氨酸S230磷酸化,从而将

EMS1/EXS相互作用调控花粉发育[43-44],也就是说,SERKs家族成员与多个LRR-RLKs相互作用介导不同的信号通路[45]。

可逆的磷酸化与去磷酸化反应是BR信号转导的主要调控方式。科学家们通过体外和体内实验鉴定了一系列BRI1和BAK1的磷酸化位点,也发现BRI1 与BAK1具有催化丝氨酸/苏氨酸和酪氨酸磷

[46-52]

。BRI1的磷酸化位点包酸化的双重激酶活性

括近膜区域内的Y831、S838、T842、T846、S858、

T872、T880,激酶区域内的S887、Y956、T982,活化环内的S1044、T1045、T1049、Y1052、Y1057及活化环外的Y1072,C端区域的S1162、S1166、S1168、T1180等[46-50]。已鉴定的BAK1的磷酸化位点有激酶区域的S286、S290、T312,活化环内的T446、T449、T450、T455以及C端的S604、Y610、S612[49-52]。2008年,Wang等[50]提出了一个

第11期卫卓赟,等:受体激酶介导的油菜素内酯信号转导途径

1109

BSK1激活[19]。分子遗传学研究证明BSKs是位于BRI1和BIN2之间的BR信号通路的正向调节因子。BIN2也被命名为DWF12或UCU1,是哺乳动物Shaggy/GSK3的同源物,与GSK3氨基酸序列同

[8,59-60]

。研究证明,BIN2通过磷酸化抑源性达70%

制BES1/BZR1,在BR信号通路中发挥负向调节

早期BR信号的传递,但是其具体分子机制尚不清楚[66-67]。最近的BRI1晶体结构研究提出了有可能在BR与BRI1相互作用过程中有小分子的蛋白质起协同作用[14],而这些小分子蛋白如果存在,会不会就是BRS1的产物,有待于进一步去证实。目前的研究结果支持如下关于BR信号早期转导的模型:BR与BRI1的结合将BRI1激活,此过程需要BAK1的参与,激活的BRI1将BSK1磷酸化,BSK1将BSU1激活,BSU1将负调因子BIN2去磷酸化,使其失活,将信号传递下去(图1)。

PP2A是一个由结构亚基A、可变调节亚基B和催化亚基C组成的异源三聚体形式的丝氨酸/苏

[23]

氨酸磷酸酶。研究证明,PP2A与BZR1具有相互作用,可以在体外将BZR1去磷酸化,将BZR1激活,实现对BR信号通路的正向调节作用[23]。而最近的研究表明,PP2A还可以负向调控BR信号。BRs与BRI1的结合使BRI1磷酸化激活,从而诱发BR信号的传递,包括SBI1 (suppressor of bri1)的表达。SBI1编码一个LCMT (leucine carboxylmethy-ltransferase),可以将PP2A的C亚基甲基化,甲基化的PP2A与活化的BRI1结合将其去磷酸化,促

[24-25]

。也就是说,使其降解,从而终止BR信号(图1)

功能[61-64]。最近的研究表明,BIN2受BSU1的直

接调控,这与之前BSU1通过去磷酸化调控BES1/BZR1的说法相悖[17,65]。之前的研究认为,BSU1与BIN2作用相反,是将BIN2磷酸化的BES1/BZR1去磷酸化,提高去磷酸化状态BES1/BZR1的水平[17]。Kim等[65]的研究则证明,BSU1在BIN2的上游发挥功能,BIN2在其酪氨酸Y200位点自身磷酸化而保持活性,进而磷酸化BES1/BZR1,而BSU1可以与BIN2相互作用将其酪氨酸Y200位点去磷酸化使其失活,解除BIN2对BES1/BZR1的抑制作用。此外,他们还通过免疫共沉淀证明BSU1与BSK1具有相互作用,BRI1对BSK1的磷酸化对BSK1与BSU1的相互作用具有促进作用[65]。除了BAK1和BSU1之外,BRS1 (bri1 suppressor 1)也是通过激活标签法筛选bri1-5遗传抑制子克隆到的,BRS1编码一个分泌性的丝氨酸羧肽酶,参与调控

BR与其受体BRI1的胞外区域结合,使BRI1的抑制因子BKI1磷酸化解离,BRI1和BAK1相互作用并通过顺序磷酸化将BR信号完全激活。BSK被BRI1磷酸化,激活BSU1,使BIN2失活,PP2A将BES1/BZR1去磷酸化,激活BR靶基因的表达。经SBI1甲基化的PP2A还可以将BRI1去磷酸化促使其降解,从而终止BR信号通路。

图1 油菜素内酯信号转导模式图1110

生命科学第23卷

PP2A在BR信号通路中发挥双重功能,PP2A不同形式的B亚基决定了其底物的特异性,从而导致其不同的功能。

可以与BRRE和E box结合,而BRRE和E box在BR诱导或抑制的基因的启动子中都存在。因此,BES1/BZR1很可能通过与其他蛋白相互作用一起调控某些BR靶基因的表达,从而调控特定的生长发育过程。目前已知的与BES1相互作用的蛋白有MYB30、ELF6和REF6、IWS等,MYB30是BES1的靶基因,而MYB30又可以与BES1相互作用共

[75]

ELF6和REF6同调控其他BR靶基因的表达;

是两个含有Jumonji结构域的组氨酸脱甲基酶,参

IWS1与BES1相互作用参与与调控开花过程[76];

转录延伸调控,进而调控基因表达[77]。

目前已知的参与BR信号通路调控的转录因子还有BEE1/BEE2/BEE3、ATBS1/KIDARI1/PRE1、AtGRAS8、TCP1、CESTA等[78-83]。其中,tcp1-1D是以bri1-5为背景通过激活标签法筛选到的遗传抑TCP1直接调控BR合成基因DWF4的表达[80];制子,

CESTA被证明可以直接调控BR合成基因CPD的表达[81]。

3 BES1/BZR1及其参与的下游转录调控

BES1/BZR1是BR信号转导通路下游的两个关键转录因子,两者同源性高达88%,由DNA结合区域、BIN2磷酸化区域以及C端区域构成,其DNA结合区域通常形成一个bHLH (basic helix loop helix)结构

。2010年,Peng等证明BZR1的

C端区域含有一个由12个氨基酸组成的DM (docking motif)结构,可以与BIN2结合,从而被BIN2磷酸化;BES1也有与BZR1中一样的DM保守区域,说明BIN2可能通过一样的机制将BES1磷酸化。BIN2对BES1/BZR1的磷酸化使其失活,磷酸化的BES1/BZR1的DNA结合活性降低,或被14-3-3运输到细胞质中,或被降解[69-70]。而与BIN2功能相反,PP2A可以通过PEST结构域与BZR1相互作用,PP2A功能缺失突变体中有磷酸 PP2A的超表达会使得去磷化状态的BZR1累积,

酸化状态和磷酸化状态的BZR1都累积,说明PP2A既影响了BZR1的磷酸化,也影响了其蛋白降解,免疫沉淀得到的PP2A在体外可以将BZR1

[23]

去磷酸化。酵母双杂交实验也证明了PP2A与BES1的相互作用,说明PP2A可能也调控BES1[23]。去磷酸化状态的BES1/BZR1具有转录活性,或直接调控下游BR靶基因的表达,或与其他蛋白相互作用共同调控下游基因的表达,从而调控植物

[71]

证明的各种生长发育过程。2005年,He等BZR1作为转录抑制子调控BR靶基因的表达,也可以直接调控BR合成基因CPD、DWF4的表达,

使CPD、DWF4表达量降低,EMSA证明与BZR1结合的DNA序列是CGTGT/CG,这个序列被命名

[72]

为BRRE (BR-response element)。同年,Yin等证明BES1作为转录激活子,与BIM1相互作用一起激活BR诱导基因SAUR-AC1的表达,与BES1和BIM1结合的序列是CANNTG,被命名为E box。最近,两个研究组通过ChIP-chip分别鉴定了BES1和BZR1的靶基因,Yu等[73]鉴定的1 609个BES1靶基因中至少有250个是受BR调控的。Sun等[74]鉴定到了953个受BR调控的BZR1的靶基因,这些基因参与调控生长发育、细胞信号转导、环境胁迫响应以及与其他激素信号通路的cross-talk等过程。而且,元件序列分析证明BES1和BZR1都

[20,22]

[68]

4 讨论

在过去的30多年中,科学家们通过遗传学、生物化学以及蛋白质组学等技术手段,鉴定了一系列参与BR信号转导通路的关键因子,阐明了BR信号转导的主要过程。BR与细胞表面的受体BRI1结合,将其激活,使负调因子BKI1解离下来,活化的BRI1与BAK1相互作用,将BAK1磷酸化激活,活化的BAK1又可以反过来再次将BRI1磷酸化,使BR信号被完全激活。活化的BRI1与BSKs相互作用,将BSKs磷酸化激活,活化的BSKs将BSU1激活,BSU1将BIN2去磷酸化使其失活,从而解除BIN2对BES1/BZR1的抑制功能,PP2A可以将BES1/BZR1去磷酸化,去磷酸化状态的BES1/BZR1与其他转录因子一起调控BR靶基因的表达,进而调控各种生长发育过程(图1)。但是还有一些问题有待解决,如SERKs在BR信号途径中是不是必不可少的。到目前为止,尽管有很强的功能获得性(gain-of-function)遗传及生化证据,但是还缺乏功能缺失性(loss-of-function)的遗传证据表明BAK1及其同源物在激活BRI1介导的通路中起不可或缺的作用,其中的原因是SERK成员之间的功能冗余,此外SERKs还参与除BR信号外其他途径,给遗传分析带来了较大困难。另外,BSKs是

BRS1在早期的BR信如何调控BSU1的活性的;

BES1/BZR1如何号感知过程中发挥了怎样的功能;

第11期卫卓赟,等:受体激酶介导的油菜素内酯信号转导途径

1111

与其他蛋白相互协调以调控各种各样的生长发育过程;植物体内是否存在核定位的BR受体介导BR信号转导,即类似于动物中类固醇信号的核受体。尽管没有找到与动物中编码类固醇受体相似的基因,但这并不意味着别的蛋白就不能起核受体的功能。研究人员观察到了BRI1/BAK1的内吞现象,但是其具体分子机制仍属未知。目前发现BR与多种植物激素有cross-talk,但具体调控机理还不完全清楚。相信在后续的研究中,借助于新兴的研究手段,这些问题将逐步得到阐明。

[参 考 文 献]

[1] Mitchell JW, Mandava NB, Worley JF, et al. Brassins: A

new family of plant hormones from rape pollen. Nature, 1970, 225(5237): 1065-6

[2] Grove MD, Spencer GF, Rohwedder WK, et al.

Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 1979, 281: 216-7

[3] Clouse SD, Sasse JM. BRASSINOSTEROIDS: essential

regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 427-51

[4] Clouse SD, Langford M, McMorris TC. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol, 1996, 111(3): 671-8

[5] Li J, Nagpal P, Vitart V, et al. A role for brassinosteroids in

light-dependent development of Arabidopsis. Science, 1996, 272(5260): 398-401

[6] Szekeres M, Nemeth K, Koncz-Kalman Z, et al.

Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 1996, 85(2): 171-82

[7] Friedrichsen DM, Joazeiro CA, Li J, et al. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol, 2000, 123(4): 1247-56

[8] Li J, Nam KH, Vafeados D, et al. BIN2, a new brassino-steroid-insensitive locus in Arabidopsis. Plant Physiol, 2001, 127(1): 14-22

[9] Li J, Chory J. A putative leucine-rich repeat receptor

kinase involved in brassinosteroid signal transduction. Cell, 1997, 90(5): 929-38

[10] He Z, Wang ZY, Li J, et al. Perception of brassinosteroids

by the extracellular domain of the receptor kinase BRI1. Science, 2000, 288(5475): 2360-3

[11] Wang ZY, Seto H, Fujioka S, et al. BRI1 is a critical

component of a plasma membrane receptor for plant steroids. Nature, 2001, 410(6826): 380-3

[12] Kinoshita T, Cano-Delgado A, Seto H, et al. Binding of

brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 2005, 433(7022): 167-71[13] Hothorn M, Belkhadir Y, Dreux M, et al. Structural basis

of steroid hormone perception by the receptor kinase

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29] [30]

BRI1. Nature, 2011, 474(7352): 467-71

She J, Han ZF, Kim TW, et al. Structural insight into brassinosteroid perception by BRI1. Nature, 2011, 474(7352): 472-6

Li J, Wen J, Lease KA, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell, 2002, 110(2): 213-22

Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002, 110(2): 203-12

Mora-Garcia S, Vert G, Yin Y, et al. Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev, 2004, 18(4): 448-60

Wang X, Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 2006, 313(5790): 1118-22Tang W, Kim TW, Oses-Prieto JA, et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 2008, 321(5888): 557-60

Yin Y, Wang ZY, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 2002, 109(2): 181-91

Sekimata K, Uzawa J, Han SY, et al. Brz220 a novel brassinosteroid biosynthesis inhibitor: stereochemical structure-activity relationship. Tetrahedron: Asymmetry, 2002, 13(17): 1875-8

Wang ZY, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002, 2(4): 505-13

Tang W, Yuan M, Wang R, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol, 2011, 13(2): 124-31

Wu G, Wang X, Li X, et al. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal, 2011, 4(172): ra29Di Rubbo S, Irani NG, Russinova E. PP2A phosphatases: The “on-off” regulatory switches of brassinosteroid signaling. Sci Signal, 2011, 4(172): pe25

Wang X, Li X, Meisenhelder J, et al. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell, 2005, 8(6): 855-65Zhou A, Wang H, Walker JC, et al. BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J, 2004, 40(3): 399-409Cano-Delgado A, Yin Y, Yu C, et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 2004, 131(21): 5341-51

Rahimi RA, Leof EB. TGF-β signaling: a tale of two responses. J Cell Biochem, 2007, 102(3): 593-608

Russinova E, Borst JW, Kwaaitaal M, et al. Heterodi-

1112

生命科学

merization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell, 2004, 16(12): 3216-29

Wang X, Li X, Meisenhelder J, et al. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell, 2005, 8(6): 855-65Hink MA, Shah K, Russinova E, et al. Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J, 2008, 94(3): 1052-62

Karlova R, Boeren S, Russinova E, et al. The Arabidopsis somatic embryogenesis receptor-like kinase1 protein complex includes brassino-steroid insensitive 1. Plant Cell, 2006, 18(3): 626-38

Albrecht C, Russinova E, Kemmerling B, et al. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol, 2008, 148(1): 611-9

He K, Gou X, Powell RA, et al. Receptor-like protein kinases, BAK1 and BKK1, regulate a light-dependent cell-death control pathway. Plant Signal Behav, 2008, 3(10): 813-5

Chinchilla D, Zipfel C, Robatzek S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature, 2007, 448(7152): 497-500

He K, Gou X, Yuan T, et al. BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol, 2007, 17(13): 1109-15

Gao M, Wang X, Wang D, et al. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe, 2009, 6(1): 34-44

Zipfel C, Kunze G, Chinchilla D, et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125(4): 749-60

Heese A, Hann DR, Gimenez-Ibanez S, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA, 2007, 104(29): 12217-22

Postel S, Kufner I, Beuter C, et al. The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur J Cell Biol, 2010, 89(2-3): 169-74

Roux M, Schwessinger B, Albrecht C, et al. The Arabidopsis leucine-rich repeat receptor–like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell, 2011, 23(6): 2440-55

Yang SL, Xie LF, Mao HZ, et al. Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell, 2003, 15(12): 2792-804

Jia G, Liu X, Owen HA, et al. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci USA, 2008, 105(6):

第23卷

2220-5

Li J. Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol, 2010, 13(5): 509-14Wang X, Goshe MB, Soderblom EJ, et al. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 receptor kinase. Plant Cell, 2005, 17(6): 1685-703

Karlova R, Boeren S, van Dongen W, et al. Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Proteomics, 2009, 9(2): 368-79

Oh MH, Wang X, Kota U, et al. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106(2): 658-63

Yun HS, Bae YH, Lee YJ, et al. Analysis of phosphoryla-tion of the BRI1/BAK1 complex in Arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol Cell, 2009, 27(2): 183-90Wang X, Kota U, He K, et al. Sequential transphosphoryla-tion of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell, 2008, 15(2): 220-35

Oh MH, Wang X, Wu X, et al. Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci USA, 2010, 107(41): 17827-32

Oh MH, Wu X, Clouse SD, et al. Functional importance of BAK1 tyrosine phosphorylation in vivo. Plant Signal Behav, 2011, 6(3): 400-5

Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol, 2004, 16(4): 400-6

Geldner N, Hyman DL,Wang X, et al. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev, 2007, 21(13): 1598-602

Jaillais Y, Hothorn M, Beikhadir Y, et al. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev, 2011, 25(3): 232-7

Nam KH, Li J. The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROIDINSENSI-TIVE 1. Plant Cell, 2004, 16(9): 2406-17

Ehsan H, Ray WK, Phinney B, et al. Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-β receptor interacting protein. Plant J, 2005, 43(2): 251-61Caesar K, Elgass K, Chen Z, et al. A fast brassinolide regulated response pathway in the plasma membrane of Arabidopsis thaliana. Plant J, 2011, 66(3): 528-40

Choe S, Schmitz RJ, Fujioka S, et al. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semido-minant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol, 2002, 130(3): 1506-15

Perez-Perez JM, Ponce MR, Micol JL. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis.

[45] [46]

[31]

[32]

[47]

[33] [48]

[34] [49]

[50]

[35]

[51]

[36]

[37] [52]

[53]

[38]

[54]

[39]

[55]

[40]

[56]

[41]

[57]

[42]

[58]

[59]

[43]

[44] [60]

第11期卫卓赟,等:受体激酶介导的油菜素内酯信号转导途径

1113

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Dev Biol, 2002, 242(2): 161-73

Li J, Nam KH. Regulation of brassinosteroid signaling by a GSK3/SHAGGY like kinase. Science, 2002, 295(5558): 1299-301

Yan Z, Zhao J, Peng P, et al. BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol, 2009, 150(2): 710-21

De Rybel B, Audenaert D, Vert G, et al. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol, 2009, 16(6): 594-604

Zhao J, Peng P, Schmitz RJ, et al. Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol, 2002, 130(3): 1221-9

Kim T-W, Guan S, Sun Y, et al. Brassinosteroid signal transduction from cell surface receptor kinases to nuclear transcription factors. Nat Cell Biol, 2009, 11(10): 1254-60Li J, Lease KA, Tax FE, et al. BRS1, a serine carboxy-peptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2001, 98(10): 5916-21Zhou A, Li J. Arabidopsis BRS1 is a secreted and active serine carboxypeptidase. J Biol Chem, 2005, 280(42): 35554-61

Peng P, Zhao J, Zhu Y, et al. A direct docking mechanism for a plant GSK3-like kinase to phosphorylate its substrates. J Biol Chem, 2010, 285(32): 24646-53

Gampala SS, Kim TW, He JX, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell, 2007, 13(2): 177-89

Ryu H, Kim K, Cho H, et al. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell, 2007, 19(9): 2749-62

He JX, Gendron JM, Sun Y, et al. BZR1 is a transcrip-tional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005, 307(5715): 1634-8

Yin Y, Vafeados D, Tao Y, et al. A new class of transcrip-tion factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005, 120(2): 249-59[73] Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional

network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J, 2011, 65(4): 634-46

[74] Sun Y, Fan XY, Cao DM, et al. Integration of brassinos-teroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell, 2010, 19(5): 765-77

[75] Li L, Yu X, Thompson A, et al. Arabidopsis MYB30 is a

direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J, 2009, 58(2): 275-86

[76] Yu X, Li L, Guo M, et al. Modulation of brassinosteroid-regulated gene expression by Jumonji domain containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA, 2008, 105(21): 7618-23

[77] Li L, Ye H, Guo H, et al. Arabidopsis IWS1 interacts with

transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc Natl Acad Sci USA, 2010, 107(8): 3918-23

[78] Friedrichsen DM, Nemhauser J, Muramitsu T, et al. Three

redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 2002, 162(3): 1445-56

[79] Kang B, Wang H, Nam KH, et al. Activation-tagged

suppressors of a weak brassinosteroid receptor mutant. Mol Plant, 2010, 3(1): 260-8

[80] Tong H, Jin Y, Liu W, et al. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009, 58(5): 803-16

[81] Tian C, Wan P, Sun S, et al. Genome-wide analysis of the

GRAS gene family in rice and Arabidopsis. Plant Mol Biol, 2004, 54(4): 519-32

[82] Guo Z, Fujioka S, Blancaflor EB, et al. TCP1 modulates

brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell, 2010, 22(4): 1161-73

[83] Poppenberger B, Rozhon W, Khan M, et al. CESTA, a

positive regulator of brassinosteroid biosynthesis. EMBO J, 2011, 30(6): 1149-61

本文来源:https://www.bwwdw.com/article/7768.html

Top