Low velocity impact behavior of composite sandwich panels
更新时间:2023-05-16 02:12:01 阅读量: 实用文档 文档下载
- low是什么意思推荐度:
- 相关推荐
夹心板的低速冲击
Composites:PartA36(2005)1389–1396
/locate/compositesa
Lowvelocityimpactbehaviorofcompositesandwichpanels
PatrickM.Schubel*,Jyi-JiinLuo,IsaacM.Daniel
RobertR.McCormickSchoolofEngineeringandAppliedScience,CenterforIntelligentProcessingofComposites,
NorthwesternUniversity,2137TechDrive,Evanston,IL60208,USA
Received24June2004;revised23October2004;accepted22November2004
ThispaperissubmittedinhonorofProfessorJackR.VinsonoftheUniversityofDelaware.ThisisatributerecognizingProf.Vinson’soutstandingandenduringcontributionstothe eldofcompositematerialsingeneralandmorespeci callytostructuralapplicationsofcompositesandcompositesandwich
structures.Inaddition,oneoftheauthors(Daniel)feelsprivilegedandthankfultoProfessorVinsonforhispersonalfriendship.
Abstract
Compositesandwichstructuresaresusceptibletolowvelocityimpactdamageandthoroughcharacterizationoftheloadinganddamageprocessduringimpactisimportant.Theobjectiveofthisworkistostudyexperimentallythelowvelocityimpactbehaviorofsandwichpanelsconsistingofwovencarbon/epoxyfacesheetsandaPVCfoamcore.Instrumentedpanelswereimpactedwithadropmasssetupandtheload,strain,andde ectionhistorieswererecorded.Damagewascharacterizedandquanti edafterthetest.Resultswerecomparedwiththoseofanequivalentstaticloadingandshowedthatlowvelocityimpactwasgenerallyquasi-staticinnatureexceptforlocalizeddamage.Astraightforwardpeakimpactloadestimationmethodgavegoodagreementwithexperimentalresults.Acontactforce–indentationrelationshipwasalsoinvestigatedforthestaticloadingcase.Experimentalresultswerecomparedwithanalyticaland niteelementmodelanalysistodeterminetheireffectivenessinpredictingtheindentationbehaviorofthesandwichpanel.q2005ElsevierLtd.Allrightsreserved.
Keywords:A.Carbon bercomposite;B.Impactbehavior;D.MechanicalTesting;Sandwichpanels
1.Introduction
Theuseofcompositesandwichstructuresisexpandingintheaerospaceandmarineindustries,aswellasinotherareaswherealightweightmaterialwithhighin-planeand exuralstiffnessisneeded[1].Theconceptbehindthesestructuresistheseparationofrelativelystiff,strongandthinfacesheetsbyalightweightandthicker exiblecore.Theproperdesignandapplicationofsandwichconstructiondependsonathoroughcharacterizationandunderstandingofnotonlythesandwichconstituentmaterials(facesheets,core,andadhesive),butalsoofthestructureasawholeunderquasi-staticanddynamicloadings.Sandwichstructuresareknowntobesusceptibletoimpactdamagebyforeignobjects[2,3].Thistypeofdamageandmorespeci cally,theresponseofcompositesandwichpanelsunderlowvelocity
*Correspondingauthor.Tel.:C18474917961.
E-mailaddress:p-schubel@northwestern.edu(P.M.Schubel).
1359-835X/$-seefrontmatterq2005ElsevierLtd.Allrightsreserved.doi:10.1016/positesa.2004.11.014
impact,isthefocusofthisstudy.Althoughtheinduceddamagemaynotbereadilyapparent,itseffectsonthestrengthandreliabilityofthestructurecanbequitedetrimental.Severalcommonfailuremodeshavebeenidenti ed,includingcoreindentation/cracking,facesheetbuckling,delaminationwithinthefacesheet,anddebondingbetweenthefacesheetandcore[4–6].
Becauseofitscomplexnature,positesandwichbeamshavebeenstudiedtocharac-terizefailureprocessesanddamage[7–11].Thistwo-dimensionalapproachsomewhatsimpli esanalysisandgivesacross-sectionalviewofthedamage.However,asandwichpanelcanprovideamorecompletedeformationanddamageresponse.Mostofthepreviousimpactresearchconductedonpanelshasfocusedontheanalysisofimpactdynamics,thecharacterizationofimpactdamage,andthedeterminationofthepost-impactmechanicalpropertiesofthecompositestructure[2].Awiderangeofmaterials,geometries,andfacesheetlayupshavebeenused[12–17]
.
夹心板的低速冲击
1390P.M.Schubeletal./Composites:PartA36(2005)1389–1396
Inthisstudy,simplysupportedsandwichpanelsconsistingofwoven-carbon/epoxyfacesheetsandPVCfoamcorewereloadedundercentralpointimpactinadropweightapparatus.Identicalsandwichpanelswerealsotestedundercentralpointquasi-staticloadingforcom-parison.Thelowvelocityimpactresponseofthecurrentsandwichpanelwasdeterminedbymeansofadetailedload–strainanalysisanddamagecharacterization.Becauseoftherelativelydensecoreandwovencarbonfacesheets,thecontactforces,alongwiththeimpactenergyrequiredtoproducedamage,arequitehighcomparedtothe ndingsinthereferencedworksabove.Althoughmuchresearchalreadyexistsonthestudyoflowvelocityimpactofcompositestructures,newcon gurationsarecontinuallybeingdevelopedandneedtobecharacterized.Thecontactforce–indentationrelationshipforsandwichpanelsisanareathatrequiresadditionalinvestigationaswell.Analyticalmodelsanda niteelementanalysiswerecomparedwithexperimentalresultsonindentationforthestaticloadingcase.
2.Experimental
2.1.Constituentmaterialsandfabrication
Thefacesheetsofthesandwichpanelwerewoven-carbonfabric/epoxylaminates(AGP370-5H/3501-6S).ThisAS4-basedcarbonfabricwasa ve-harnesssatinweavewiththesametowcountinthewarpand lldirections.Thematrixisanamine-curedepoxyresin.Thefacesheetswerelaminatesmadeoffourpliesofprepreg,resultinginacuredplatewithathicknessof1.37mmanda bervolumeratioof0.62.Table1listsmeasuredmechanicalpropertiesofthiswovencarboncomposite.
Thecoreusedforthesandwichpanelwasaclosed-cellPVCfoam(DivinycellH250obtainedfromDIAB).Thisfoamisrelativelydensecomparedtoothercommonlyusedfoamsforcorematerials.Thecorewas25.4mmthick.Table2listsselectedmechanicalpropertiesofDivinycellH250.
Table1
In-planemechanicalpropertiesofcarbonfabric/epoxycompositeusedforsandwichfacesheets[18]Property
ValueDensity,r(kg/m3)
1600
Fibervolumeratio,Vf(%)62Warpmodulus,E1t(GPa)77Fillmodulus,E2t(GPa)75MajorPoisson’sratio,n12
0.07In-planeshearmodulus,G12(GPa)6.5Out-of-planeshearmodulus,G31(GPa)5.1Out-of-planeshearmodulus,G32(GPa)4.1Warptensilestrength,F1t(MPa)963Ultimatewarp, lltensilestrain,3ult1t;2t(%)
1.3
Table2
Selectedmechanicalpropertiesofsandwichcorematerial:DivinycellH250Property
ValueDensity,r(kg/m3)
250In-planemodulus,E1(MPa)240Out-of-planemodulus,E3(MPa)
403Transverseshearmodulus,G13(MPa)115In-planecompressivestrength,F1c(MPa)4.6Transverseshearstrength,F13(MPa)
5
ThesandwichpanelwasfabricatedbybondingthecuredfacesheetstothecorematerialwithHysol9430adhesive,aroomtemperaturecuringepoxyresin.Thefacesheetsandcorewerebondedtogetherandcuredundervacuum.The nalsandwichpanelwasasquareplateof27.9!27.9cmdimensionswithanoverallthicknessof2.82cmandamassof0.83kg(Fig.1).Threeplateswerefabricatedforthisstudy,oneforquasi-statictestingandtwoforimpacttesting.2.2.Quasi-statictesting
Todeterminetheleveltowhichdynamicprocessesshouldbeconsideredinlowvelocityimpacttesting,asandwichpanelwas rsttestedunderaquasi-staticloadingforsubsequentcomparisonwiththeimpactloadingcase.Thecomparisoninvolvescorrelatingloadandstrainlevelsbetweenthetwotypesoftests.Inbothloadingsituations,thesandwichpanelwassimplysupportedonrollersalongtwoparalleledges.Thesupportsweresteelbarsof25.4mmdiameterandwere rgelocalstrainscausedbyindentationcaninduceearlyfailureofthesandwichfacesheet[19].
Thepanelwasinstrumentedwith16straingagesatvariouslocationsonthetopandbottomfacesheets.SelectedstraingagelocationsareshowninFig.2.Thede ectionofthesandwichplateattheloadpointwasrecordedbythestrokeoftheInstronservo-hydraulicmachine,whichalso
Fig.1.Photographof nishedcompositesandwichpanel.
夹心板的低速冲击
P.M.Schubeletal./Composites:PartA36(2005)1389–13961391
Fig.2.Diagramshowingpaneldimensionsandselectedstraingagelocations.
recordedtheloadlevelsduringthetest.Thedisplacementofthebottomfacesheetdirectlybelowtheloadpointwasrecordedwithanextensometersetup.Theplatewasloadedslowlyuntilthe rstindicationofdamageinitiationandthencarefullyunloaded.2.3.Impacttesting
Adroptowerapparatuswithafree-fallingmasswasusedtoimpactthesandwichplates.Theimpactor(tup)surfacewassphericalwitharadiusof12.7cmandthetotalmassofthedroppedcarriagewas6.22kg.Thesupportconditionswereidenticaltothoseofthestatictestingcase.Thepanelsweresubjectedtoimpactwithincreasingheightsofmassdropuntildamagewasinduced.Thiscorrespondstoanimpactenergyrangeof7.8–108J.Impactvelocitiesrangedfrom1.6to5m/s.Aftertheinitialcontact,thedropmasswasheldmanuallytopreventrepeatedimpacts.
Impactloadswereacquiredwithapiezoelectricforcetransducerlocatedbetweentheimpactorandthecarriage.Thepositionofthemasswasrecordedduringtheimpacteventwithanon-contactlineardisplacementsensorthatdetectsametaltargetthroughinductivetechnology.Bydifferentiatingthedisplacement–timecurve,thevelocityofthedropmasswasdeterminedjustbefore,during,andjustafterimpact.Theplatewasinstrumentedwithstraingagesonitsupperandlowerfacesheets,atidenticallocationsasinthequasi-statictest.Thedynamicload,positionandstrainhistoriesoftheimpacteventwerecapturedwithdigitizingoscilloscopes.
3.Resultsanddiscussion3.1.Quasi-staticloading
Loadvs.displacementcurvesforthestaticloadingtestareshowninFig.3.Thedisplacementsofboththetopandbottomfacesheetsatthepanelcenteraregiven.Thedifferencebetweenthetopandbottomfacesheetde ectionsisduetoindentationofthefacesheetwithcorecrushing.Thetopde ectionincreasesatanearlylinearrateandaportionisrecovereduponunloading.Theportionthatisnotrecoveredisduetopermanentindentation.Facesheetdamagewasinitiatedataloadof17.3kN.Thetotalindentationcanbeobtainedbysubtractingthebottomfacesheetde ectionfromtheupperde ection,andwillbediscussedinafollowingsection.
Eightstrainreadingsweretakenontheupperfacesheetandeightonthelowerone.Asthesandwichpanelunderwentdeformation,thesestrainscouldbemonitoredto ndwherethehigheststrainsoccurred.Ingeneral,thereadingswereclassi edastwotypes,near-andfar- eld.Thenear- eldstrainswererecordedsuf cientlyclosetotheloadpointatthecenterofthetopfacesheet.Far- eldstrainswerethoserecordedonthebottomfacesheetandsuf cientlyfarfromtheloadpoint.Fig.4showsloadvs.strainplotsforthreelocationsonthetopandbottomfacesheets.Thetensilereadingonthebottomfacesheetdirectlybelowtheloadpoint(gagenumber3inFig.2)isfar- eldandincreasesinagenerallinearmannerwiththeload.Thisisalsothecaseforthecompressivefar- eldstrainonthetopfacesheet,measured50.8mmfromthecenterpointoftheplateandalignedperpendiculartothesupports(gage2inFig.2),althoughthestrainlevelsweresomewhatlower.However,thetensilenear- eldstraingage,located25.4mmfromthecenterpointandalignedperpendiculartothesupports(gage1inFig.2)ishighlynon-linearandreachesstrainlevelsabovethoseinthefar- eldrange.Thesereadingsoffercluesaboutthedeformationpro leofthepanelasitisloaded.Aplatewiththecurrentsupportandloading
)
Nk( daoLDisplacement (mm)
Fig.3.Loadvs.displacementcurvesforupperandlowerfacesheetsofsandwichpanelunderquasi-staticloading.
夹心板的低速冲击
1392P.M.Schubeletal./Composites:PartA36(2005)1389–1396
)
Nk( daoLStrain (%)
Fig.4.Load–strainresponseatnear-andfar- eldlocationsofsandwichpanelinquasi-static
test.
conditionswillexhibitaglobalin-planecompressivestrainonitstopsurface.Neartheloadpoint,localeffectsbecomeapparentandtensilestrainsareproducedduetoindentation.Onthebottomfacesheet,globalbendingeffectsdominateandtensilestrainsonlyarepresent.Afterthestatictest,damageintheplatewasevaluated.Permanentindentationwasvisiblyapparentandmeasured1.3mmindepthatthepanelcenter.Theupperfacesheetwasultrasonicallyscannedtodeterminetheextentofdamageinthecompositeandbondwiththecore.Damageresultsarepresentedinafollowingsection.3.2.Impacttesting
Fig.5showsthestrainhistoriesforthestraingagelocationcorrespondingtogage1inFig.2forvariousimpactenergies.Thepeaktensilestrainincreasedwithincreasingimpactenergyand,excludingthehighestenergyimpact,thestrainpulsedurationwasconsistent.Forthehigherenergydrops,somepermanentstrainwasapparentaftertheimpact,
)
%( niartSTime (ms)
Fig.5.Impactstrainhistoriesatnear- eldgagelocation1.
)
Nk( ecroFTime (ms)
Fig.6.Impactloadhistoriesshowingpeakimpactloadandpulseduration.
whichwouldindicateonsetofdamage.Alsoofimportanceinthe108Jimpact,thepeakstrainof1.25%isquiteclosetothematerialultimatetensilefailurestrainof1.3%[18].Theloadhistoryofeachimpacteventwasacquiredandthepeakforceateachimpactenergylevelwasobtained(Fig.6).Forlowimpactenergies,theloadpulseissinusoidalandathigherenergiesthesinusoidalnatureofthepulseispreservedwithsome uctuationspossiblyindicatingfacesheetdamage.Thepulsedurationwasrelativelyconstantforallevents.Becauseoftheassumedsinusoidalpulse,arelativelystraightforwardloadhistoryestimationmethodcanbeusedtopredictthemaximumloadforagivenimpactenergy.Theloadpulsecanberepresentedasahalf-sinewavefðtÞZP
2pt
0sinT
(1)
whereP0isthemaximumload.Tistwicethepulseduration(period)andstaysconstant.Themaximumloadwasobtainedbycomputingthedifferenceofmomentofmomentumbyintegratingf(t)from0toT/4asP2pmv0Z
T
(2)
wheremisthemassoftheimpactorandvisthevelocityoftheimpactorjustbeforeimpactwhichcanbefoundbydirectmeasurementorenergybalance.TheincomingvelocitycanalsobeexpressedintermsofimpactenergytogivethemaximumloadasafunctionofimpactenergyP0Z
2pp
2mE(3)
whereEistheimpactenergyforaspeci cimpactevent.Thepulsedurationcanbedeterminedbydirectexaminationoftheloadhistory,orbymakingtheassumptionthattheforce–de ectionresponseislinearunderlowvelocityimpact.
夹心板的低速冲击
P.M.Schubeletal./Composites:PartA36(2005)1389–13961393
30)
N25Calculated T = 9.2 ms
k( ec20roF tc15apmI k10aExperimentaleP5Load History
Estimation Method
25
50
75
100
125
Impact Energy (J)
Fig.7.Predictedandexperimentalpeakimpactloadvs.impactenergy.LoadestimationscalculatedwiththeoreticalT(9.2ms).
Then,Tcanbeestimatedby
TZ2p
r m
k
(4)
wherethepanelstiffnessk(2.87MN/m)canbefoundfromtheinitialslopeofthestaticloadvs.de ectioncurveoftheupperfacesheet(Fig.3).Inthecurrentstudy,theaimwastopredicttheloadresponseusingtheoreticalmethodstodetermineboththeimpactorvelocityandthepulseduration.However,themeasuredTfromFig.6(8.8ms)isclosetothetheoreticalvalueof9.2ms.ThepredictedmaximumloadsshowninFig.7asafunctionofimpactenergyareingoodagreementwiththeexperimentalresults.Thismethodisadvantageousbecause,byrunningonequasi-staticloadingtest,parisonofquasi-staticandimpacttests
Incomparingthequasi-staticandimpactloadingresponseofcompositesandwichpanels,theload–straincharacteristicsatcorrespondinglocationswereused.Fortheimpactcase,thepeakloadandstrainsforeachimpacteventwereusedintheanalysis.Iftheloadsarethesameatidenticalfacesheetlocationsandstrainlevels,then,thelowvelocityimpactbehaviorofthesandwichplateisverysimilartothequasi-staticcase.However,anyobserveddifferencescanbeexplained.
Fig.8showsacomparison,atgagelocation1onthetopfacesheet,ofthestaticload–strainresponseandthepeakimpactloadvs.strainbehavior.Atequivalentstrains,theimpactloadisconsistentlyhigher.Asthestrainlevelsincrease,thestaticandimpactresponsesdivergefurther.Thenon-linearupturnattheendofthestaticload–strainresponseisnotseenintheimpactdata.Thisdivergencecouldsuggestthatthedeformationpro leofthetopfacesheetinthestatictestismoresevere,meaningthatthestrainsaroundthecontactareaarehigher.Additional
30
25
20)
Nk( da15
oL10
IMPACT
5
QUASI-STATIC
00.5
11.5
Strain (%)
parisonofload–strainresponseofnear- eldgagelocation1.
near- eldstrainreadingsontheupperfacesheetcon rmthiseffectaswell.
Atadistancesuf cientlyfarfromtheloadingarea,thestrainsarenotin uencedbythelocalizeddeformationpro lecausedbytheindenter/impactorcontactarea.Fig.9showsthecomparisonoftheload–strainresponseofthesandwichpanelatgageposition2.Thebehaviorisquiteconsistent.Far- eldstrainreadingstakenfromthebottomfacesheetalsocorrelatewellforstaticandimpactloadings.Thefar- eldstrainsareoutsidetheregionaffectedbythelocalizedindentationandtheload–straincurvesincreaserelativelylinearly,unlikethenear- eldcurveswhicharenon-linearathigherloads.Thus,staticandlowvelocityimpactloadingsproducesimilardeformationbehaviorin
30
IMPACT25
QUASI-STATIC
20)
Nk( da15
oL10
5
00.050.10.150.20.250.3
Compressive Strain (%)
parisonofload–strainresponseoffar- eldgagelocation2.
夹心板的低速冲击
1394P.M.Schubeletal./Composites:PartA36(2005)1389–1396
theplateexceptforthelocaleffectsproducedbytheindenter/impactor.
3.4.Posttestdamagecharacterization
Thestaticandimpact-loadedpanelswereinspectedandultrasonicallyscannedafterthetestsfordamage.Bothplatesshoweddelaminationdamagearoundthecontactareaoftheindenter/impactor.Fig.10showsultrasonicC-scanimagesforthetwoloadingconditions.Thedarkareasatthepanelcenterindicatefacesheetdamage,whichB-scanscon rmedtobedelaminationswithintheupperfacesheet.ThelighterareasontheC-scanofthestaticallyloadedpanelsignifyadhesivenon-uniformityinthefacesheet-corebondbutdonotaffectitsresponse.Uponvisualinspection,apronouncedindentationcouldbeseenatthecenteroftheimpactedpanelwhichmeasured0.9mmindepth.Alldamageinbothloadingcaseswaslocalizedandthedelaminatedareaswereroughlythesameinsize.Althoughthepeakloadlevelintheimpacttestswashigherthanthatinthequasi-statictest,noincreaseinthelevelofdamagewasapparent.Acomparablelevelofdelaminationdamagewasinitiatedinthestaticpanelatalowerload.Therefore,thestatictestingeneralismoreconservativewhenconsideringlocalizedstrainanddamagelevels,whichhasbeenconcludedinothersandwichimpactstudies[20].
Alongwiththeloadhistoryestimationmethod,astraightforwarddamagepredictionmodelcanbedeveloped.Runningaquasi-statictestonacompositesandwichpanelyieldsthepanelstiffnessaswellasadamageinitiationload.Foragivenimpactenergy,thepeakimpactforcecanbeestimated.Bycomparingthispeakimpactforcewiththedamageinitiationloadfromthequasi-statictest,aquickdamagepredictioncanbemade.Ifthepredictedpeakimpactforceexceedsthatofthestaticdamageinitiation,damageispossibleinthepanelforthegivenimpactenergy.
3.5.Indentationbehaviorofsandwichpanels
Describingthebehaviorofacompositesandwichpanelalsoinvolvesunderstandingitsindentationbehaviorasitisloaded.Indentationincludeslocalfacesheetdeformationandcorecrushing,ofteninteractinginacomplexway.Analysisofindentationismorestraightforwardinasandwichbeamcon gurationandtheoreticalcontactlawshavebeensuccessfullyestablishedwithgoodagreementwithexperimentalresults[19,21].However,quasi-staticindentationonasandwichpanelwitharigidspherepresentsadditionalanalyticaldif culties.Sburlati[22]addressedtheproblemwithamathematicalmodelbasedonelasticplatetheorywithsomesuccess,butthemodeldidnotextendpasttheinitiallinearload–indentationrelationship,afterwhichcoreyieldingeffectsarepresent.ThesameistruefortheworkbyAndersonandMadenci[23],whereathree-dimensionalanalyticalmodelbasedonlaminatetheorydevelopscompletestressanddisplacement eldsandcomputesthecontactarea.Thesemodelsdonotcapturethecorecrushingdamageprocessesandnon-linearindentationbehavior.
OlssonandMcManus[24]developedamethodtoincorporateindentationdamageeffectsintothesandwichpanelbehavior.Inthismodel,apoint-loadisassumedandmustbecorrectedduringcalculation.A‘membranesolution’isdescribedwherepastthelinearregionofthecontactload–indentationcurve,largede ectionsinthefacesheetcauseittobedominatedbymembranestresses.Theregionaffectedbycorecrushingismodeledasamembrane,whiletherestofthesandwichpanelismodeledasaplateonanelasticfoundation.Thistheoryresultsinaload–indentationcurvewithaninitiallinearregion,asofteninguponcoreyieldingfollowedbyastiffeningasthemembranestressbecomesdominant.Themodelseemstodescribeapproximatelytheindentationprocesses
observed
Fig.10.UltrasonicC-scanimagesofsandwichpanelsshowingposttestdelaminationdamage:(a)staticallyloadedpanel;(b)impactloadedpanel(108J).
夹心板的低速冲击
P.M.Schubeletal./Composites:PartA36(2005)1389–1396
1395
)
Nk( ecroF tcatnoC0
1
2
3
Indentation (mm)
Fig.11.Staticloadingindentationresponsecomparingexperiment,analyticalmodelsandFEanalysis.
inthecurrentstudy.However,whenappliedtothecurrentsandwichpanelcon gurationandstaticloadingsituation,thestiffeningeffectwaspresentbutthemodelunder-estimatedtheindentationandthecorrelationbetweenthemembranesolutionandexperimentalresultswasnotclose.A niteelementmodelwasdevelopedtosimulatetheload–de ectionbehaviorofthetopandbottomfacesheetsinthestaticloadingcase.Withthisinformation,amodeloftheindentationofthesandwichpanelwasobtained.ThemodelwasconstructedwithABAQUS,withthefacesheetsmodeledasorthotropiclaminaeandthecoreasanisotropicelasticmaterialuntilyielding.Aftercoreyielding,thecorewasmodeledasaplasticallyyieldingmaterial(crushablefoam).Theindenterwasrigidandcontactwasassumedfrictionless.Theuniformmeshwasthree-dimensional,withsimplysupportedboundaryconditionsalongtwoedges,identicaltotheexperimentalsetup.Fig.11showstheexperimentalcontactforce–indentationcurvealongwiththeFEanalysisresults.TheFEmodelmatchesquitewelltheexperimentalresultsandcapturesthestiffeningbehavior.Forcomparison,themembranesolutionisalsoplottedwhichshowsthepooragreementwithexperimentaldata.Additionally,aplateonanelasticfoundationsolutionforsmallde ectionsisshown[25].Thelinearplatesolutioncorrelateswellwiththebehavioratsmallindentationspriortocoreyielding.
4.Conclusions
Besidesthelocalizedeffectscausedbyloadcontactcharacteristics,thequasi-staticandlowvelocityimpactbehaviorofcompositesandwichpanelscomposedofwovencarbonfabric/epoxyfacesheetsandaPVCfoamcoreinvestigatedinthecurrentstudyarequitesimilar.Inthisrespect,thelowvelocityimpactresponseofplatescanbecharacterizedasquasi-staticinnature.Thisconclusionis
basedonthecomparisonofaquasi-statictestandmultipleimpacttestsonsandwichpanelsandananalysisoftheload–strainresponse,aswellasathoroughdamageevaluationofpanelsunderbothtypesofloading.Therefore,aquasi-statictest,whichiseasiertoperformandanalyze,canbeusedtopredictrelatedimpactresponse.Localizedeffectsdealmainlywiththecontactcharacteristicsbetweentheindenter/impactorandtheupperfacesheet.Astatictestproducesamorepronounceddeformationpro leanddamageprocessesareinitiatedearlier.Thecurrentresultssuggestthatthequasi-statictestisingeneralmoresevereintermsofthedeformationandstrainlevelsinducedintheloadedfacesheet.
Additionally,aloadhistoryestimationmethod,basedonthesinusoidalshapeoftheimpactloadpulse,wasemployedtopredictthepeakimpactforceasafunctionofimpactenergy.Assumingalinearload–de ectionrelationship,thepulseperiodcanbecalculatedfromaquasi-statictest.Thepredictedpeakloadsagreedquitewellwiththeexperimen-talresults,meaninglowvelocityimpactbehaviorcanbepredictedwithoutrunningasingleimpacttest.Astraight-forwarddamagepredictionmethodwasalsoputforthwhichcouldbeusedtopredictimpactdamageinthecompositesandwichpanelbycomparingthepeakimpactloadtothestaticdamageinitiationload.
Thecontactforce–indentationrelationshipforsandwichpanelswasalsoinvestigatedforthestaticloadingcase.Someanalyticalmodelswerestudiedfortheirapplica-bilitytothecurrentsandwichsetup.Two[22,23]werefoundtobelimitedintheirscopebecausetheydidnotmodelthepanelbehaviorbeyondcoreyielding.Anothermodel[24]didaccountforcoreyieldingandfacesheetstiffeningbutunderestimatedtheindentationresponseforthecurrentcon guration.Aneedexistsforananalyticalindentationmodelthatcanaccountforthecomplexinteractionsthatgovernthebehaviorofthestructurefromsmallcontactarealoading,leadingtocoreyieldingandultimatelyincludingthestiffeningeffectobservedinsandwichplates.Theinitiallinearindentationbehavioruntilcoreyieldingmatchedwellthatofasimpleplateonanelasticfoundationmodel.A niteelementmodelwasimplementedtocapturethefullresponseofthepanelindentationandwasabletomatchthestiffeningbehaviorseenintheexperimentsquitewell.
Acknowledgements
ThisresearchwassponsoredbytheOf ceofNavalResearch(ONR).WearegratefultoDrY.D.S.RajapakseofONRforhisencouragementandcooperation.WealsoacknowledgetheeffortsofDrJ.W.YoofordevelopingandimplementingtheABAQUS niteelementmodelforthispaper.
夹心板的低速冲击
1396P.M.Schubeletal./Composites:PartA36(2005)1389–1396
References
[1]VinsonJR.Sandwichstructures.ApplMechRev2001;54(3):201–14.[2]AbrateS.Localizedimpactonsandwichstructureswithlaminated
facings.ApplMechRev1997;50(2):69–82.
[3]AbrateS.Impactoncompositestructures.CambridgeUK:Cambridge
Press;1998.
[4]HazizanMA,CantwellWJ.Thelowvelocityimpactresponseof
positesPartB2002;33:193–204.
[5]NemesJA,SimmondsKE.Low-velocityimpactresponseoffoam-coresandwichcomposites.JComposMater1992;26(4):500–19.[6]EdgrenF,AspLE,pressivefailureofimpactedNCF
compositesandwichpanels—characterisationofthefailureprocess.JComposMater2004;38(6):495–514.
[7]AbotJL.Fabrication,testingandanalysisofcompositesandwich
beam.PhDThesis,NorthwesternUniversity;2000.
[8]AbotJL,positesandwichbeamsunderlowvelocity
impact.In:ProcofAIAAConfSeattle;2001.
[9]ShipshaA,HallstromS,ZenkertD.Failuremechanismsand
modellingofimpactdamageinsandwichbeams—a2Dapproach:partI—experimentalinvestigation.JSandStructMater2003;5(1):7–31.
[10]ShipshaA,HallstromS,ZenkertD.Failuremechanismsand
modellingofimpactdamageinsandwichbeams—a2Dapproach:partII—analysisandmodelling.JSandStructMater2003;5(1):33–51.
[11]MinesR,WorrallCM,GibsonAG.Thestaticandimpactbehaviourof
posites1994;25(2):95–110.[12]AndersonT,MadenciE.Experimentalinvestigationoflow-velocity
posStruct2000;50:239–47.
[13]ScarponiC,BriottiG,BarboniR,MarconeA,IannoneM.Impact
testingoncompositelaminatesandsandwichpanels.JComposMater1996;30(17):1873–911.
[14]TsangP,DugundjiJ.Damageresistanceofgraphite/epoxysandwich
panelsunderlowspeedimpacts.JAmHelicopterSoc1992;37:75–81.[15]AmburDR,CruzJ.Low-speedimpactresponsecharacteristicsof
compositesandwichpanels.AIAA/ASME/ASCE/AHSStructDynMaterConfCollectTechPap4;1995:p.2681–2689.
[16]CaprinoG,TetiR.Impactandpost-impactbehavioroffoamcore
posStruct1994;29:47–55.
[17]McGowanDM,AmburDR.Structuralresponseofcomposite
sandwichpanelsimpactedwithandwithoutcompressionloading.JAircraft1999;36(3):596–602.
[18]AbotJL,YasminA,JacobsenAJ,DanielIM.In-planemechanical,
thermalandviscoelasticpropertiesofasatinfabriccarbon/posSciTechnol2004;64:263–8.
[19]AbotJL,DanielIM,GdoutosEE.Contactlawforcompositesandwich
beams.JSandStructMater2002;4(2):157–74.
[20]FeraboliPJ,IrelandDR,KedwardKT.Ontheroleofforce,energy
andstiffnessinlowvelocityimpactevents.In:ProcofASC18thAnnualTechConf,Gainesville;2003.
[21]GdoutosEE,DanielIM,WangKA.Indentationfailureincomposite
sandwichstructures.ExpMech2002;42(4):426–31.
[22]SburlatiR.Thecontactbehaviorbetweenafoamcoresandwichplate
positesPartB2002;33:325–32.
[23]AndersonT,MadenciE.Graphite/epoxyfoamsandwichpanelsunder
quasi-staticindentation.EngFractMech2000;67:329–44.
[24]OlssonR,McManusHL.Improvedtheoryforcontactindentationof
sandwichpanels.AIAAJ1996;34(6):1238–44.
[25]VlasovVZ,Leont’ev,UN.Beams,platesandshellsonelastic
foundations.IsraelProgforSciTranslation,Jerusalem;1966:Ch4.
正在阅读:
Low velocity impact behavior of composite sandwich panels05-16
6第六章 思考题10-21
证劵从业资格考试市场基础讲义05-01
天文图片02-10
鄂尔多斯市快递公司名录2018版101家 - 图文06-03
中国轴承密封圈行业发展研究报告05-31
关于调整部分矿种矿山生产建设规模标准的通知(国土资发 208 号)02-03
转子允许不平衡量的计算04-16
指令练习(1)09-12
- 1Active Vibration Suppression of Sandwich Beams
- 2Journal_Impact_factor_2022
- 3MILITARY STANDARD SANDWICH CONSTRWCTIONS AND CORE MATERIALS
- 4The impact on American and Chinese culture
- 5the impact of social network sites
- 6Impact of information and communications technology on transport
- 7Impact of information and communications technology on transport
- 8LOW培训教材 - 图文
- 9Low-carbon life
- 10Low-carbon life
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- composite
- velocity
- behavior
- sandwich
- impact
- panels
- Low
- 16存储管理5请求页式管理请求段式管理2
- 同济-材料学专业-《材料研究方法》专业课考研-08真题
- 陕西省长安一中 高新一中 交大附中 师大附中 西安中学(五校)2013届高三第三次模拟考试试题
- 浅谈小学数学课堂教学的有效性
- 郑州五中经验交流
- 使用基于图形的物理综合加快FPGA设计时序收敛
- 全年重要节日和纪念日
- 建筑企业业务及分包工程的税务管理
- 《放飞教育希望》读后感
- 新课堂五年级教学设计-匆匆
- 合理施肥常见知识问答
- 中国建设服务型政府的宏观分析 考题答案76分
- 【2012高一精粹达标练习8.《杜甫诗四首》 登岳阳楼 (语文版必修2))
- 剑桥一级上Unit3(B)
- 2014-2015第二学期期末语文试卷B
- 北京版手术分级及编码
- 洛克王国炼金大全
- 系统级编程选择题
- 畜禽专用抗生素泰妙菌素的研究进展
- 发动机柔性生产线的运用与管理