天字1号排列组合的讲义(新篇)
更新时间:2024-06-14 14:39:01 阅读量: 综合文库 文档下载
- 天字排下面字排推荐度:
- 相关推荐
排列组合的讲义
作者:徐克猛(天字1号) 2009-2-19
一、 排列组合定义
1、什么是C
公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
例如:编号1~3的盒子,我们找出2个来使用, 这里就是运用组合而不是排列,因为题目只是要求找出2个盒子的组合。即C(3,2)=3
2、什么是P或A
公式P是指排列,从N个元素取R个进行排列(即排序)。
例如:1~3,我们取出2个数字出来组成2位数,可以是先取C(3,2)后排P22,就构成了 C(3,2)×P(2,2)=A(3,2)
3、A和C的关系
事实上通过我们上面2个对定义的分析,我们可以看出的是,A比C多了一个排序步骤,即组合是排列的一部分且是第一步骤。
4、计算方式以及技巧要求
组合:C(M,N)=M!÷( N!×(M-N)!) 条件:N<=M 排列:A(M,N)=M!÷(M-N)! 条件:N<=M
为了在做排列组合的过程中能够对速度有必要的要求,我需要大家能够熟练的掌握1~7的阶乘, 当然在运算的过程中,我们要学会从逆向思维角度考虑问题,例如C(M,N)当中N取值过大,那么我们可以看M-N的值是否也很大。如果不大。我们可以求C(M,[M-N]),因为 C(M,N)=C(M,[M-N])
二、 排列组合常见的恒等公式
1、C(n,0)+C(n,1)+C(n,2)+……+C(n,n)=2^n
2、C(m,n)+C(m,n+1)=C(m+1,n+1) 针对这2组公式我来举例运用
(1)有10块糖,假设每天至少吃1块,问有多少种不同的吃法? 解答:C(9,0)+C(9,1)+……+C(9,9)=2^9=512
(2),公司将14副字画平均分给甲乙筛选出参加展览的字画,按照要求,甲比乙多选1副,且已知甲按照要求任意挑选的方法与乙任意挑选的方法 之和为70,求,甲挑选了多少副参加展览?
C(8,n)=70 n=4 即得到甲选出了4副。
三、 排列组合的基本理论精要部分(分类和分步)
(1)、加法原理(实质上就是一种分类原则):一个物件,它是由若干个小块组成的,我们要知道这个物件有多重,实际上可以分来算,比如,我们知道每一个小块的重量,然后计算总和就等于这个物件的重量了,这就是我们要谈的分类原则。排列组合当中,当我们要求某一个事件发成的可能性种类,我们可以将这个事件分成若干个小事件来看待。化整为零, 例如:7个人排座位,其中甲乙都只能坐在边上。问有几种方法。根据分类的方法。我们可以看,
第一类情况:甲坐在左边,乙坐在右边,其他人随便坐,A(5,5) 第二类情况:甲坐在右边,乙坐在左边,其他人随便坐,A(5,5)
我们分别计算出2种情况进而求和即得到答案。 这就是分类原则。 这样就是A(5,5)+A(5,5)=240
(2)、乘法原理(实质上就是一种分步原则):做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×?×mn种不同的方法.
例如: 7个人排座位,其中甲乙都只能坐在边上。问有几种方法,按照分步原则, 第一步:我们先对甲乙之外的5个人先排序座位,把两端的座位空下来,A(5,5) 第二步:我们再排甲乙,A(2,2) 这样就是 A(5,5)×A(2,2)=240
如何区分两个原理:
我们知道分类原则也就是加法原则,每一个分类之间没有联系,都是可以单独运算,单独成题的,也就是说,这一类情况的方法是独立的,所以我们采用了加法原理。要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;
我们知道分步原则也就是乘法原则。做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.说明其每一个步骤之间都是有必然联系的。是相互依靠的关系。所以采用了乘法原则。 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来
(3)特殊优先,一般次要的原则
例题:
(1)从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有___个。
第一步构建排列组合的定义模式,如果把数学逻辑转换的问题。
(2)在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 ,共12种。
(3)从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。
(A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。
(一)从6双中选出一双同色的手套,有C(6,1)种方法; (二)从剩下的5双手套中任选2双,有C(5,2)种方法。
(三)这2双可以任意取出其中每双中的1只,保证各不成双;
即 C(6,1)*C(5,2)*2^2=240
(4)身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。
分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有C(6,2)×C(4,2)×C(2,2)=90种。
四、 解决排列组合问题的策略
1、逆向思维法:我们知道排列组合都是对一个元素集合进行筛选排序。我们可以把这个集合看成数学上的单位1,那么1=a+b 就是我们构建逆向思维的数学模型了, 当a不利于我们运算求解的时候,我们不妨从b的角度出发思考,这样同样可以求出a=1-b。
例题:7个人排座,甲坐在乙的左边(不一定相邻)的情况有多少种?
例题:一个正方体有8个顶点 我们任意选出4个,有多少种情况是这4个点可以构成四面体的。
例题:用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有( ) A.24个 B.30个 C.40个 D.60个
2、解含有特殊元素、特殊位置的题——采用特殊优先安排的策略: (1)无关型:两个特殊位置上分别可取的元素所组成的集合的交是空集
例题:用0,1,2,3,4,5六个数字可组成多少个被10整除且数字不同的六位数? (2)包含型:两个特殊位置上分别可取的元素所组成集合具有包合关系
例题:用0,1,2,3,4,5六个数字可组成多少个被5整除且数字不同的六位奇数?
P55×-P44=120-24=96
用0,1,2,3,4,5六个数字可组成多少个被25整除且数字不同的六位数?
25,75 (3×3×2×1)×2+P44=36+24=60
(3)影响型:两个特殊位置上可取的元素既有相同的,又有不同的。
例题:用1,2,3,4,5这五个数字,可以组成比20000大并且百位数字不是3的没有重复数字的五位数有多少个?
3、解含有约束条件的排列组合问题一――采用合理分类与准确分步的策略 例题:平面上4条平行直线与另外5条平行直线互相垂直,则它们构成的矩形共有________个。
简析:按构成矩形的过程可分为如下两步:第一步.先在4条平行线中任取两条,有
C4取2种取法;第二步再在5条平行线中任取两条,有C5取2种取法。这样取出的四条直线构成一个矩形,据乘法原理,构成的矩形共有6×10=60个 4、解排列组台混合问题——采用先选后排策略
对于排列与组合的混合问题,可采取先选出元素,后进行排列的策略。
例:4个不同小球放入编号为1、2、3、4的四个盒子,则恰有一个空盒的放法有___种。144
5、插板法
插板法的条件构成: 1元素相同,2分组不同,3必须至少分得1个
插板法的类型: (1)、10块奶糖分给4个小朋友,每个小朋友至少1块,则有多少种分法?(典型插板法 点评略) (2)、10块奶糖分给4个小朋友有多少种方法?(凑数插板法: 这个题目对照插板法的3个条件我们发现 至少满足1个这个条件没有, 所以我们必须使其满足,最好的方法 就是用14块奶糖来分,至少每人1块 ,当每个人都分得1块之后,剩下的10块就可以随便分了,就回归到了原题)
(3)、10块奶糖放到编号为1,2,3的3个盒子里,每个盒子的糖数量不少于其编号数,则有几种方法?(定制插板法: 已然是最后一个条件不满足,我们该怎么处理呢,应该学会先去安排 使得每个盒子都差1个,这样就保证每个盒子必须分得1个,从这个思路出发,跟第二个例题是姊妹题 思路是一样的 对照条件 想办法使其和条件吻合!) (4)、8块奶糖和另外3个不同品牌的水果糖要放到编号为1~11的盒子里面,每个盒子至少放1个,有多少种方法?(多次插空法 这里不多讲,见我排列组合基础讲义)
6、递归法(枚举法)
公考也有这样的类型, 排错信封问题,还有一些邮票问题
归纳法:
例如:5封信一一对应5个信封,其中有3个封信装错信封的情况有多少种?
枚举法:
例如:10张相同的邮票 分别装到4个相同的信封里面,每个信封至少1张邮票,有多少种方法? 枚举:
1,1,1,7 1,1,2,6 1,1,3,5 1,1,4,4 1,2,2,5 1,2,3,4 1,3,3,3 2,2,2,4 2,2,3,3 9种方法!
五、 疑难问题
1、如何验证重复问题
2、关于位置与元素的相同问题,
例如: 6个人平均分配给3个不同的班级,跟 6个学生平分成3组的区别
3、关于排列组合里面,充分运用对称原理。
例题: 1,2,3,4,5 五个数字可以组成多少个十位数小于个位数的四位数? 例题:7个人排成一排,其中甲在乙右边(可以不相邻)的情况有多少种?
注解:分析2种对立情况的概率,即可很容易求解。 当对立情况的概率相等,即对称原理。
4、环形排列和线性排列问题。(见我的基础排列组合讲义二习题讲解) 例如:3个女生和4个男生围坐在一个圆桌旁。 问有多少种方法?
例如:3对夫妇围坐在圆桌旁,男女间隔的坐法有多少种?
注解:排列组合中,特殊的地方在于,第一个坐下来的人是作为参照物,所以不纳入排列的范畴,我们知道,环形排列中 每个位置都是相对的位置,没有绝对位置,所以需要有一个人坐下来作为参照位置。
5、几何问题:见下面部分的内容。
例析立体几何中的排列组合问题
在数学中,排列、组合无论从内容上还是从思想方法上,都体现了实际应用的观点。 1 点
1.1 共面的点
例题: 四面体的一个顶点为A,从其它顶点与棱的中点中取3个点,使它们和点A在同一平面上,不同的取法有( )
A.30种 B.33种 C.36种 D.39种
答案:B
点评:此题主要考查组合的知识和空间相像能力;属难度中等的选择题,失误的主要原因是没有把每条棱上的3点与它对棱上的中点共面的情况计算在内。
1.2 不共面的点
例2: 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( )
A.150种 B.147种 C.144种 D.141种
解析:从10 个点中任取4个点有C(10,4)=210 种取法,其中4点共面的情况有三类:第一类,取出的4个点位于四面体的同一个面内,有C(6,2)=15种;第二类,取任一条棱上的3个点及对棱的中点,这4点共面有6种;第三类,由中位线构成的平行四边形,它的4个顶点共面,有3种。
以上三类情况不合要求应减掉,所以不同取法共有210-4×15-6-3=141 种。
答案:D。 点评:此题难度很大,对空间想像能力要求高,很好的考察了立体几何中点共面的几种情况;排列、组合中正难则反易的解题技巧及分类讨论的数学思想。
几何型排列组合问题的求解策略
有关几何型组合题经常出现在各类试题中,它的求解不仅要具备排列组合的有关知识,而且还要掌握相关的几何知识.这类题目新颖、灵活、能力要求高,因此要求掌握四种常用求解策略.
一 分步求解
例1 圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为______.
解:本题所求的三角形,即为圆的内接直角三角形,由平面几何知识,应分两步进行:先从2n个点中构成直径(即斜边)共有n种取法;再从余下的(2n-2)个点中取一点作为直角顶点,有(2n-2)种不同取法.故总共有n(2n-2)=2n(n-1)个直角三角形.故填2n(n-1).
例2: 从集合{0、1、2、3、5、7、11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点原直线共有____条(结果用数值来表示).
解:因为直线过原点,所以C=0. 从1、2、3、5、7、11这6个数中任取2个作为A、B, 两数的顺序不同,表示的直线也不同,所以直线的条数为 P(6,2)=30. 二 分类求解
例3 四边体的一个顶点为A,从其它顶点与各棱的中点中取3点,使它们和A在同一平面上,不同取法有( )
(A)30种 (B)33种 (C)36种 (D)39种
解:符合条件的取法可分三类:① 4个点(含A)在同一侧面上,有3 =30种;②4个点(含A)在侧棱与对棱中点的截面上,有3种;由加法原理知不同取法有33种,故选B. 三 排除法求解
例4 从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )
(A) 8种 (B) 12种 (C) 16种 (D) 20种
解:由六个任取3个面共有 C(6,3)=20种,排除掉3个面都相邻的种数,即8个角上3个平面相邻的特殊情形共8种,故符合条件共有 20-8=12种,故选(B).
例5 正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有( )个?
解:从7个点中任取3个点,共有C(7,3)=35 个,排除掉不能构成三角形的情形.3点在同一直线上有3个,故符合条件的三角形共有 35-3=32个. 四 转化法求解
例6 空间六个点,它们任何三点不共线,任何四点不共面,则过每两点的直线中有多少对异面直线?
解:考虑到每一个三棱锥对应着3 对异面直线,问题就转化为能构成多少个三棱锥. 由于这六个点可构成C(6,4)=15 个三棱锥,故共有3×15 =45对异面直线.
例7 一个圆的圆周上有10个点,每两个点连接一条弦,求这些弦在圆内的交点个数最多有几个?
解:考虑到每个凸四边形的两条对角线对应一个交点,则问题可转化为构成凸四边形的个数.显然可构成 C(10,4)=210个圆内接四边形,故10个点连成的点最多能在圆中交点210个.
6、染色问题:
不涉及环形染色 可以采用特殊区域优先处理的方法来分步解决。 环形染色可采用如下公式解决:
An=(a-1)^n+(a-1)×(-1)^n n表示被划分的个数,a表示颜色种类
原则:被染色部分编号,并按编号顺序进行染色,根据情况分类 在所有被染色的区域,区分特殊和一般,特殊区域优先处理
例题1:将3种作物种植在如图4所示的5块试验田里,每块种植一种作物,且相邻的试验田不能种同一种作物。则有多少种种植方法?
图1
例题2:用5种不同颜色为图中ABCDE五个部分染色,相邻部分不能同色,但同一种颜色可以反复使用,也可以不使用,则符合要求的不同染色方法有多少种?
图2
例题3:将一个四棱锥的五个顶点染色,使同一条棱的2个端点不同色,且只由五个颜色可以使用,有多少种染色方法?
图3
例题4:一个地区分为如图4所示的五个行政区域,现在有4种颜色可供选择,给地图着色,要求相邻区域不同色,那么则有多少种染色方法?
图4
例题5:某城市中心广场建造了一个花圃,分6个部分(如图5) 现在要栽种4种不同的颜色的花,每部分栽种一种且相邻部分不能种同样颜色的花,则有多少种不同栽种方式?
图5:
正在阅读:
天字1号排列组合的讲义(新篇)06-14
高中英语试卷讲评课教学模式03-08
《数字地形测量学》第2章 测量的基本知识06-10
中关村国家自主创新示范区发展规划纲要(2011-2022年)04-16
梅花意象批评11-08
留学韩国之费用低廉08-05
少先队工作总结09-25
梅花易数意象05-22
2012年湖南会计从业资格证《会计电算化》课后习题答案05-13
高中化学新课程学习心得(5)06-07
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 天字
- 新篇
- 讲义
- 排列
- 组合