灰铸铁白口成因

更新时间:2023-10-05 11:53:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

引用 引用 灰铸铁、球墨铸铁渗碳体的成因与防止

引用

引用

化学元素Ti 球墨铸铁 张文和,丁俊,聂富荣

(铸峰特殊合金有限公司销售公司,南京210002)

摘要:灰铸铁、球墨铸铁铸件生产过程中,往往出现游离渗碳体。本文从铸铁的常规化学成分;反石墨化元素;O、N、H气体元素;共晶团数;冷却速度;铸铁的熔炼;炉料遗传性;共晶最后阶段凝固特点等方面,阐述铸铁渗碳体出现的原因,并提出相应的防止措施。

关键词:渗碳体;石墨化;白口倾向;共晶团;孕育

铸铁凝固时,铁液按稳定系结晶,碳原子以石墨状态析出,铸铁断口呈灰色,得到灰铸铁;铁液按介稳定系结晶,碳原子与铁原子结合成碳化铁,断口呈白色,得到白口铸铁;介于两者之间,得到麻口铸铁。

铸铁中碳原子聚合成石墨的过程,称石墨化。

灰铸铁共晶阶段冷却曲线如图1,

TE1——稳定系共晶转变开始温度

TE——介稳定系共晶转变开始温度TE

TEN——共晶生核开始温度

TEU——大量形核温度

TER——共晶回升温度最高值

TS——共晶转变终了温度

如果TEU>TE、TS>TE则得到全部灰口组织;如果TEN、TER则得到全部白口组织。若TEU>TE,Ts,则凝固后出现游离渗碳体;TS略低于TE时,会在最后凝固区域或共晶团间出现少量游离渗碳体。TER,TEU则出现莱氏体。铁液中生核能力强,则生核开始温度TEN高,基晶团数量增加,共晶阶段冷却曲线上移减少共晶转变过冷度,使TS>TE促进形成灰口组织。因此强化孕育增加生核能力,提高共晶团数量,必然减少白口倾向。

影响铸铁共晶阶段冷却曲线的因素有:①是化学元素(合金元素);②冷却速度;③结晶核心;④生铁的遗传性。例如:石墨化过程在TE一TE共晶区间进行,Cr、V、Ti缩小TE1一TE共晶区间,石墨尚未析出就下降到介稳定共晶转变温度TE以下,碳原子来不及扩散与聚合成石墨,铸铁凝固成白口或麻口。铸铁出现渗碳体显然会降低力学性能和

切削性能。

灰铸铁碳化物按其在大多数视场中的百分比,分6级评定,见

表1。

球墨铸铁渗碳体数量分级有国家标准(GWl944l一1988),按数量最

多的视场对照图谱或用金相软件评定,见表2。

照图谱或用金相软件评定,见表二

l 常规化学成分的影响

碳和硅:都是强石墨化元素,适当提高碳、硅量对消除碳化物或渗碳体十分有效。灰铸铁降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高力学性能;但同时降低铸造性能、增大断面敏感性、增加铸件内应力、增加碳化物量,从而增加机械加工难度和刀具磨损。降低碳当量会增加白口倾向,常用强化孕育来防止。球墨铸铁与灰铸铁一样,采用纯净炉料,综合考虑铁液流动性、减少缩孔和缩松等因素,碳当量应控制在4.6%一4.8%最好,w(c)≥3%渗碳体就可以消失,w(Si)在2.0%一3.0%之间,薄壁件取上限,厚壁件取下

限。

锰和硫:是阻碍石墨化元素,能稳定碳化物,一般灰铸铁含硫0.02%一0.15%、含锰0.4%一1.2%,化学反应生成MnS、FeS,熔点大于1600℃,以颗粒状分布于基体中,不会对石墨化产生影响。硫化物是共晶石墨形核的基底,硫化物热力学稳定性越高,孕育作用越大。为

确保孕育效果灰铸铁含硫量在0.06%--0.10%之间为好。

2反石墨化元素的影响

V、zr、Nh、Ti、cr、Mo、w、B、ce、:Mg、Te、H、N、Bi都是反石墨化元素。压、Ti、B、ce、N、cr、Bi等元素含量极低时,有促进石墨化的作用,然而超过一定量就是强烈反石墨化元素。由于珠光体是过冷奥氏体在共析温度时形成的机械混合物,是铁素体和渗碳体按层片状交替排列的层状组织。加人少量合金元素可以促进、稳定和细化珠光体,提高力学性能和使用性能,过量合金元素肯定会使铸铁渗碳体增加。用于合金化处理的原铁液应有较高的碳当量,使其白口倾向小、铸造性能好,不易产生缩孔和缩松。碳当量高应使含碳量较高含硅量较低,防止硅增加铁素体、粗化珠光体、抵消合金元素作用等有害倾向。

提高铸件强度和断面均匀性。反石墨化元素的最高加入量见表3。

本文来源:https://www.bwwdw.com/article/72rd.html

Top