2009大专A班数学分析第十二章反常积分自测题解答

更新时间:2024-03-07 11:11:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学分析第十二章反常积分自测题解答

一、判断题 (每小题2分,共12分) ( √ )1. 若无穷积分( × )2.

???af(x)dx收敛, 则无穷积分

???af(x)dx也收敛.

???adx1? (a?0). x2a( √ )3. 无穷积分

???1sinxdx发散. xx?a?xf(x)?d???,??1,则瑕积分( × )4. 设a是非负函数f(x)的瑕点,且lim??baf(x)dx

收敛.

( √ )5.在

???a[f(x)?g(x)] dx收敛的条件下,???af(x)dx可能发散.

( × )6. 若无穷积分

???af(x)dx收敛,则无穷积分???af2(x)dx也收敛.

注:2. 当a?0时,0是被积函数f(x)? 0dx1的瑕点,且瑕积分发散. 22? axx

(x?a)f(x). 4. 当a是f(x)的瑕点时,判别瑕积分的敛散性要考虑极限lim?x?a?二、选择题 (每小题2分, 共10分) 1.下列结论或运算正确的是( C ).

??xx是奇函数,故???1?x2dx?0. ?111?x2

????arctanx??arctanxxarctanxdx?0 D. 由于dx?2?dx. C. ?是偶函数,故???1?x4??0xxx????arctanx????x23dx注:无穷积分 ?xdx,?xdx,?,? 0xdx均发散; ??1?x2 1 1A.

??x2dx????x3dx B. 由于

??? 00x1πx1π22,. dx?arctanx?dx?arctanx??44???1?x241?x24 0?????? 02.

?????f(x)dx收敛是?0f(x)dx与?0??f(x)dx都收敛的( A ).

A.充要条件 B.必要条件 C.充分条件 D.无关条件 3.下列广义积分中发散的是( D ). A.

2???11111111dxdx dxdx B. C. D. 2???0200x1?xx1?x4.

1??1x2dx?( D ).

311A. ? B. C. ? D. 不存在

2221

5.

???1xx?121dx?( B ).

A. 0 B.

???? C. D. 不存在 24??注:

?1xx?12 1dx??1x2 111?2xdx???? 11π1?. d()??arcsinx12x11?2x?1??三、填空题 (每小题2分,共10分)

1. a是函数f(x)的瑕点?f(x)在点a的任意邻域无界. 2. 无穷积分

?2????f(x)dx发散??C?R,??? cf(x)dx与? c??f(x)dx之一发散.

3. 瑕积分

?1dx当 λ满足??1时收敛. ?(2?x)4. 当??1时, 无穷积分

?????21dx发散.

(x?1)?5. 无穷积分

?1sinxdx当 λ满足0???1时条件收敛, 当 λ满足??1时绝对收敛. x?四、求下列反常积分(每小题5分,共30分) 1.

?????1dx. 29?3x解: 由定义

??? 0 p113xdx?limdx?limarctanp???? 09?3x2p???99?3x23 p? 0 03π, 923π, 92 0113xdx?limdx?limarctan???9?3x2q???? q9?3x2q???93 0? q 故

??????? 01113dx?dx?dx?π. ? 09?3x2???9?3x29?3x292.

???1x(x?1)2 1dx .

解:

???1x(x?1)?x2 1dx???? 11x1x??(?2)dx??lnx?ln(x2?1)??ln?ln2.

2xx?12?? 1x?1 1????e3. ?dx. ?x??1?e?? 2

0eexx 0解: ?dx?dx?ln(1?e)?ln2, ?x???????1?ex1?e 0?x??ee?x??dx?dx??ln(1?e)?ln2, ?x? 0 01?e?x1?e?x?x?x??? 0e故?dx?2ln2. ?x??1?e??4.

? 2 03xdx. x?1x3解: x?1是被积函数f(x)?x?1的瑕点,分别考虑瑕积分

? 1 03 2xxdx与?3dx,有

1x?1x?1? 1 03 1?? 1??xx123dx?limdx?lim[(x?1)?]dx ?? 0?? 033??0??0x?1x?1x?152332133, ?lim[(x?1)?(x?1)]???0?5210 0 2 1??? 13xx3321dx?lim??3dx?lim[, (x?1)?(x?1)]?? 1????0??05210x?1x?1 1?? 2 1xxdx??3dx? 0x?1x?15323 2故

? 2 03? 2 13x21dx?.

5x?15.

2?x? 0xdx.

1解: a?0是被积函数f(x)?2?xx的瑕点,有

12?x223 110dx??(?x)dx?(4x?x)?. ? 0 0 033xx16.

? 1 01dx.

x(1?x)解: a?0是被积函数f(x)?1x(1?x)的瑕点,有

?

1 0 1 112dx?limdx?lim2ln(1?x)?2ln2. ?? 0??? ???0??0x(1?x)(1?x)3

五、判断下列反常积分的敛散性(每小题5分,共30分) 1.

? 1x1?x2 0dx.

解: b?1是被积函数f(x)?12x1?x2的瑕点.

由 lim(1?x)f(x)?lim(1?x)??x?1x?112x1?x2?lim?x?1x1, ?1?x2 111x有???1,d?,故瑕积分?dx收敛.

2 0221?x2.

? ?2 ?2 ?11sindx. x2x11sin的瑕点.

xx2 ?解: x?0是被积函数f(x)? ?由于lim???0?? 2 1111112sindx?lim(?sin)d()?limcos?lim[cosπ-cos] ???0?? ???0???0x2xxxx??π2不存在,故瑕积分

? ?2 0 ?11112 2sindx发散,从而瑕积分?? 2sindx发散.

?2xxxx3.

??? 0xlnxdx. 22(1?x)22xlnxx4lnx解: 由limxf(x)?limx?lim?0, 2222x???x???x???(1?x)(1?x)x有??2?1,d?0,故无穷积分

??? 0xlnxdx收敛. 22(1?x)注:由于limf(x)?limx?0xlnx1?lim?limxlnx?0,故x?0不是f(x)的瑕点.

x?0(1?x2)2x?0(1?x2)2x?0 补充定义f(0)?0,则被积函数f(x)在区间[0,??)连续.

4.

??? 21dx.

x(x?1)(x?2)解:x?2是被积函数f(x)?1x(x?1)(x?2)的瑕点,

分别考虑瑕积分

? 3 2??11dx与无穷积分?dx,

3x(x?1)(x?2)x(x?1)(x?2) 4

由 lim(x?2)f(x)?lim(x?2)??x?2x?212121?limx(x?1)(x?2)x?2?11, ?x(x?1)2 3111有???1, d?, 故瑕积分?dx收敛;

222x(x?1)(x?2)3232由limxf(x)?limxx???x???1x3?lim?1, x???x(x?1)(x?2)x(x?1)(x?2)??31有???1, d?1, 故无穷积分?dx收敛.

32x(x?1)(x?2)综上, 反常积分

??? 21dx收敛.

x(x?1)(x?2)5.

???1dx (p?0). 2px(lnx)1(p?0)的瑕点,

x2(lnx)p解: x?1是被积函数f(x)?分别考虑瑕积分

??11与无穷积分dx? 1x2(lnx)p? 2x2(lnx)pdx. 21?x?1?p(1)由 lim(x?1)f(x)?lim??1, 即有??p,d?1. 2?x?1?x?1?x?lnx?于是,当p?1时,瑕积分

p1? 1x2(lnx)pdx发散;

2当0?p?1时,瑕积分

1? 1x2(lnx)pdx收敛.

2(2)由limxf(x)?limxx???x???2211?lim?0, 2ppx???x(lnx)(lnx)有??2?1,d?0,于是,无穷积分

??? 21dx收敛. 2px(lnx)综上, 反常积分

???11dx当0?p?1时收敛, 当p?1时发散.

x2(lnx)p 5

6.

???1dx (p?0). px(lnx)解: x?1是被积函数f(x)?1(p?0)的瑕点, px(lnx)??11分别考虑瑕积分?与无穷积分dx? 2x(lnx)pdx. 1x(lnx)p21?x?1?p(1)由 lim(x?1)f(x)?lim???1, 即有??p,d?1. x?1?x?1?x?lnx?于是,瑕积分

p1? 1x(lnx)pdx当p?1时发散;当0?p?1时收敛.

2?ln(lnx)?????, p?12??? +?dlnxdx?1???(2)???, p?1, ?1?pp?p?12 2x(lnx)(lnx)??(p?1)(ln2)?p?1???, p?1?(1?p)(lnx)2??于是,无穷积分

??? 21dx当p?1时发散;当p?1时收敛. 2px(lnx)综上, 反常积分

???11dx发散.

x2(lnx)psinxdx (1)当0???1时条件收敛(注:此时0不是被积函数的瑕点); x?六、证明:反常积分

???0(2)当1???2时绝对收敛; (3)当??2时发散. (8分) 证:(1) 当0???1时, 由lim?x?0?0, ??1sinx1??sinx,知x?0不是被积函数 ?limx?????x?0xx?1, ??1??sinxsinx的瑕点,所以? 0x?dx为无穷积分. x???sinx11dxf(x)?f(x)?g(x)?sinx 首先,证明无穷积分?收敛.取,,有1)在

1x?x?x?A1区间[1,??)单调减少且lim??0;2)F(A)??sinxdx?cos1?cosA?2,即有界.由

1x???x??sinx??sinxdxdx收敛. 狄利克雷判别法,无穷积分?收敛,从而无穷积分??? 10xx 其次,证明无穷积分

??? 1sinxdx发散.已知?x?1,有sinx?sin2x,从而 ?xsinxsin2x1?cos2x1cos2x . ?????????xx2x2x2x

6

无穷积分

???1??1??1?cos2xcos2xdx收敛,但无穷积分?dx发散,故无穷积分?dx发

112x?2x?2x?散,从而无穷积分

???0sinxdx发散. ?x??sinx?0x?dx条件收敛.

sinx1sinxf(x)?lim?lim????,知x?0是被积 (2)(3) 当??1时, 由lim???1x?0?x?0?xx?0?xx??sinx 1sinxsinxf(x)?dxdx. 函数的瑕点,所以要分别考虑无穷积分?与瑕积分???? 1 0xxx于是,当0???1时,无穷积分由于f(x)???1sinx1dx收敛(??1),故当??1时,无穷积分, 已知无穷积分????? 1xxx??? 1sinxdx绝对收敛. x?在区间(0,1],被积函数f(x)?sinxsinx??1sinx?0limx?lim?1, ,且有????x?0x?0xxx1故当??1?1,即1???2时,瑕积分?1sinxx3 0dx绝对收敛;当??1?1,即??2时,瑕积分

?sinxx3 0dx发散.

于是,反常积分

???0sinxdx当1???2时绝对收敛,当??2时发散. ?x 7

本文来源:https://www.bwwdw.com/article/72pa.html

Top