高中物理竞赛辅导 原子物理

更新时间:2024-03-28 23:15:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

原子物理

原子的核式结构

1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。

1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm以下。

氢原子的玻尔理论

1、核式结论模型的局限性

通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论:

①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波 2、玻尔理论的内容:

一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。

二、原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即

hγ=E2-E1

三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r和运动初速率v需满足下述关系:

rmv?nh2?,n=1、2……

其中m为电子质量,h为普朗克常量,这一条件表明,电子绕核的轨道半径是不连续的,或者说轨道是量子化的,每一可取的轨道对应一个能级。

定态假设意味着原子是稳定的系统,跃迁假设解释了原子光谱的离散性,最后由氢原子中电子轨道量子化条件,可导出氢原子能级和氢原子的光谱结构。

12e2E?mv?k2r 氢原子的轨道能量即原子能量,为 v2e2m?k2rr 因圆运动而有

e2E??k2r 由此可得

根据轨道量子化条件可得:

v?nh2?mr,n=1,2……

1

e2ke24?2m2r2r?kr??2mmv,便有 n2h2 因

得量子化轨道半径为:

n2h2rn?4?2kme2,n=1,2……

式中已将r改记为rn对应的量子化能量可表述为:

2?2mk2e4En??n2h2,n=1,2……

h2r1?4?2kme2 n=1对应基态,基态轨道半径为

?11r?5.29?10m=0.529A 1计算可得:

?r1也称为氢原子的玻尔半径

2?2mk2e4E1??h2基态能量为

计算可得: E1=?13.6eV。

对激发态,有:

E1n2,n=1,2…

n越大,rn越大,En也越大,电子离核无穷远时,对应E??0,因此氢原子的电离

rn?n2r1,En?能为:

电子从高能态En跃迁到低能态Em辐射光子的能量为:

E电离?E??E1??E1?13.6eV

hv?En?Em

光子频率为

因此氢原子光谱中离散的谱线波长可表述为:

v?En?EmE111?(2?2)hhnm,n?m

chc1?1??(1)1rE1n2?m2??,n?m

试求氢原子中的电子从第n轨道迁跃到n-1第轨道时辐射的光波频率,进而证明当n很大时这一频率近似等于电子在第n轨道上的转动频率。

辐射的光波频率即为辐射的光子频率?,应有

??1(En?En?1)h

2?2mk2e4En??n2h2将

2

代入可得

?11?2?2k2me42n?1??????2n2?h3n2(n?1)2 ?(n?1)4?2k2me4??n3h3当n很大时,这一频率近似为

电子在第n轨道上的转动频率为:

2?2k2me4??h3Unmvn?rn?2?rn2?m?rn2

hmvnrn?n?2? 将

fn?4?2k2me4fn???33nh代入得

因此,n很大时电子从n第轨道跃迁到第n-1轨道所辐射的光波频率,近似等于电

子在第n轨道上的转动频率,这与经典理论所得结要一致,据此,玻尔认为,经典辐射是量子辐射在n??时的极限情形。

氢原子光谱规律

1、巴耳末公式

研究原子的结构及其规律的一条重要途径就是对光谱的研究。19世纪末,许多科学家对原子光谱已经做了大量的实验工作。第一个发现氢原子线光谱可组成线系的是瑞士的中学教师巴耳末,他于1885年发现氢原子的线光谱在可见光部分的谱线,可归纳为如下的经验公式

1?1?R?2?2?n?2式中的

?11???,n=3,4,5,…

?为波长,R是一个常数,叫做里德伯恒量,实验测得R的值为

HH1.096776?107m。上面的公式叫做巴耳末公式。当n=3,4,5,6时,用该式计算出来的四条光谱线的波长跟从实验测得的H?、?、?、H?四条谱线的波长符合得很好。氢光谱的这一系列谱线叫做巴耳末系。

2、里德伯公式

1896年,瑞典的里德伯把氢原子光谱的所有谱线的波长用一个普遍的经验公式表示出来,即

?11??R???n2n2???2?n=1,2,3…n2?n1?1,n1?2,n1?3… ?1上式称为里德伯公式。对每一个n1,上是可构成一个谱线系:

1n1?1,n2?2,3,4… n1?2,n2?3,4,5…

莱曼系(紫外区)

巴耳末系(可见光区)

3

n1?3,n2?4,5,6… n1?4,n2?5,6,7… n1?5,n2?6,7,8…

帕邢系(红外区) 布拉开系(远红外区)

普丰德系(远红外区)

以上是氢原子光谱的规律,通过进一步的研究,里德伯等人又证明在其他元素的原子光谱中,光谱线也具有如氢原子光谱相类似的规律性。这种规律性为原子结构理论的建立提供了条件。

玻尔理论的局限性:

玻尔原子理论满意地解释了氢原子和类氢原子的光谱;从理论上算出了里德伯恒量;但是也有一些缺陷。对于解释具有两个以上电子的比较复杂的原子光谱时却遇到了困难,理论推导出来的结论与实验事实出入很大。

例题1:设质子的半径为10m,求质子的密度。如果在宇宙间有一个恒定的密度等于质子的密度。如不从相对论考虑,假定它表面的“第一宇宙速度”达到光速,试计算它的半径是多少。它表面上的“重力加速度”等于多少?(1mol气体的分子数是6?108个;光速?3?10m/s);万有引力常数G取为6?1023?15?11Nm2/kg2。只取一位数做近

似计算。

22g?kg2326HH6?106?1022解:的摩尔质量为2g/mol,分子的质量为

2kg26∴质子的质量近似为 6?10

25411?153193????/?10??10kg/m2616?45324质子的密度 ρ=6?10=4?6?10?10

设该星体表面的第一宇宙速度为v,由万引力定律,得

mv2mMGM?Gv2?rr2,r

4M??r3?3而 4G?r3?v?3?4Gr2?r∴ v?2?Gp

v2G??3?10826?10?11??3?104?m?1?101924

4g?GM/y2?G?y3?/y2?4yG?3由于“重力速度”

4

r?

1?1019?3?1012m/s224∴

?112?10N?m/kgG?【注】万有引力恒量一般取6.67 g?4?3?104?6?10?11???例题2:与氢原子相似,可以假设氦的一价正离子(He)与锂的二价正离子(L

核外的那一个电子也是绕核作圆周运动。试估算

??????)

(1)He、L的第一轨道半径; (2)电离能量、第一激发能量;

(3)赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。

解:在估算时,不考虑原子核的运动所产生的影响,原子核可视为不动,其带电量用+Ze表示,可列出下面的方程组:

mv2nZe2?rn4??0yn2,

1Ze22En?mvn?24??0rn, mvnrn?n?

② ③

h2?,n=1,2,3,…

hv?En2?En1,

1由此解得rn,En,并可得出?的表达式:

?0h2n2n2rn??r12?meZZ,

?0h2r1??0?53?10?102??me其中米,为氢原子中电子的第度轨道半径,对于He,Z=2,

对于Li

??,Z=3.

Z2Z2En???E12222nn, 8?0hE1??其中

me2 ⑥

me48?0h22??13.6电子伏特为氢原子的基态能.

1??1?1?2?12?1????Z??ZR?2222?22???8?0hc?n1n2??n1n2?.

n1?1,2,3,…

me4 ⑦

n2?n1?1,n1?2,n1?3,…

R是里德伯常数。

5

(1)由半径公式⑤,可得到类氢离子与氢原子的第一轨道半径之比:

rHe?rH?,H.

(2)由能量公式⑥,可得到类氢离子与氢原子的电离能和第一激发能(即电子从第一轨道激发到第二轨道所需的能量)之比:

10?EHe?10?EH电离能:

ZH1?ZH?2rLi??r?ZH1?ZLi??3??E1ZHe??E1ZH22?2?41,

10?ELi??0?E1H??E1ZLi???E1ZH第一激发能:

21EHe??EHe?21EH?EH32?2?91

2222E12?E1221??3?4?31212?E12?E12421,

21ELi?ELi????21EH?EH3232?27E12?E1221?4?9?21123E12?E12?214。

1(其中:E表示电子处在第二轨道上的能量,E表示电子处在第一轨道上的能量)

(3)由光谱公式⑦,氢原子赖曼系第一条谱线的波长有:

2相应地,对类氢离子有:

?11??R?2?2??H?12? 1??1?22R?2?2??2??1 He?, 11??1?32R?2?2??Li??2??1

11?He因此 : ?H??1?li??1??4,?H9。

??例3:已知基态He的电离能为E=54.4Ev,(1)为使处于基态的He进人激发态,入射光子所需的最小能量应为多少?(2)He从上述最底激发态跃迁返回基态时,如

考虑到该离子的反冲,则与不考虑反冲相比,它所发射的光子波长的百分变化有多大?

6

?(离子He的能级En与n的关系和氢原子能级公式类中,可采用合理的近似。)

分析:第(1)问应正确理解电离能概念。第(2)问中若考虑核的反冲,应用能量守恒和动量守恒,即可求出波长变化。

解:(1)电离能表示He的核外电子脱离氦核的束缚所需要的能量。而题问最小能量对应于核外电子由基态能级跃迁到第一激发态,所以

?1?1Emin?E??2?22?1??1?????1????54.4?4?40.8eV

(2)如果不考虑离子的反冲,由第一激发态迁回基态发阜的光子有关系式:

Emin?hv0

12Mv现在考虑离子的反冲,光子的频率将不是v0而是v,2为反冲离子的动能,则

1Emin?hv?Mv22由能量守恒得

vMv?h?c 又由动量守恒得

vh?c是发射光子的动量的大小,于是,波长的式中Mv是反冲离子动量的大小,而

相对变化

??????所以 ?0????ov0?vhv0?hvMv2Mvchv?????ovhv=2Mvc2Mc22Mc2

hv0h(v?v0)hv?2Mc22Mc22Mc2

2由于Mc??hv??h?v?v0?

???代入数据?o即百分变化为0.00000054%

40.8?1.60?10?19??5.4?10?9?27822?4?1.67?10??3?10?

原子核

原子核所带电荷为+Ze,Z是整数,叫做原子序数。原子核是由质子和中子组成,

两者均称为核子,核子数记为A,质子数记为Z,中子数便为A-Z。原子的元素符号记为X,原子核可表述为ZX,元素的化学性质由质子数Z决定,Z相同N不同的称为同位素。

A1在原子物理中,常采用原子质量单位,一个中性碳原子质量的12记作1个原子单

?27m?1.007226u。位,即lu=1.660566?1kg。质子质量:?中子质量:mn?1.008665u。

7

电子质量:me?0.000549u。

结合能

除氢核外,原子核ZX中Z个质子与(A-Z)个中子静质量之和都大于原子核的静质量MX,其间之差:

A称为原子核的质量亏损。式中、分别为质子、中子的静质量。造成质量亏损的原因是核子相互吸引结合成原子核时具有负的能量,这类似于电子与原子核相互吸引力结合成原子时具有负的能量(例如氢原子处于基态时电子轨道能量为-13.6eV)。据相对论质能关系,负能量对应质量亏损。质量亏损折合成的能量:

称为原子核的结合能,注意结合能取正值。结合能可理解成为了使原子核分裂成各

?M?Zm???A?Z?mn?Mx

???E??Mc2

?E个质子和中子所需要的外加你量。A称为核子的平均结合能。

天然放射现象

天然放射性元素的原子核,能自发地放出射线的现象,叫天然放射现象。这一发现揭示了原子核结构的复杂性。天然放射现象中有三种射线,它们是:

4α射线:速度约为光速的1/10的氦核流(2He),其电离本领很大。

e?1β射线:速度约为光速的十分之几的电子流(),其电离本领较弱,贯穿本领

较弱。

γ射线:波长极短的电磁波,是伴随着α射线、β射线射出的,其电离本领很小,贯穿本领最强。

0原子核的衰变

放射性元素的原子核放出某种粒子后,变成另一种新核的现象,叫做原子核的衰变,衰变过程遵循电荷守恒定律和质量守恒定律。用X表示某种放射性元素,z表示它的核电荷数,m表示它的质量数,Y表示产生的新元素,中衰变规律为:

mα衰变:通式 例如

zX?m?44Y?Hez?22

23892mβ衰变:通式 例如

U?234m4Th?He902

0zX?Y?ez?1?1 23491Pa?0?1 e23490Th? 8

mzX?mzX??γ衰变:通式 (γ射线伴随着α射线、β射线同时放出的。原子核放出γ射线,要引起核的能量发生变化,而电荷数和质量数都不改变)

衰变定律和半衰期

研究发现,任何放射性物质在单独存在时,都遵守指数衰减规律

N(t)?N?e??t

这叫衰变定律。式中N0是t=0时的原子核数目,N(t)是经时间t后还没有衰变的原子核的数目,λ叫衰变常数,对于不同的核素衰变常数λ不同。由上式可得:

?dN/dtN ②

式中?dN代表在dt时间内发生的衰变原子核数目。分母N代表t时刻的原子核总

??数目。λ表示一个原子核在单位时间内发生衰变的概率。不同的放射性元素具有不同的衰变常数,它是一个反映衰变快慢的物理量,λ越大,衰变越快。

半衰期表示放射性元素的原子核有半数发生衰变所需的时间。用T表示,由衰变定律可推得:

半衰期T也是反映衰变快慢的物理量;它是由原子核的内部因素决定的,而跟原子所处的物理状态或化学状态无关;半衰期是对大量原子核衰变的统计规律,不表示某个原子核经过多长时间发生的衰变。由①、③式则可导出衰变定律的另一种形式,即

T?ln2?

?1?N?N0???2?(T为半衰期,t表示衰变的时间,N0表示衰变前原子核的总量,N

表示t后未衰变的原子核数)

tT?1?M?M????2?(M?为衰变前放射性物质的质量,M为衰变时间t后剩余的质或

量)。

tT原子核的组成

用人工的方法使原子核发生变化,是研究原子核结构及变化规律的有力武器。确定原子核的组成有赖于质子和中子的发现。

1919年,卢瑟福用α粒子轰击氮原子核而发现了质子,这个变化的核反应方程:

141932年,查德威克用α粒子轰击铍原子核而发现了中子,这个变化的核反应方程是:

4171N?He?O?H7281

9通过以上实验事实,从而确定了原子核是由质子和中子组成的,质子和中子统称为

9

4121Be?He?C?n4260

核子。某种元素一个原子的原子核中质子与中子的数量关系为:

质子数=核电荷数=原子序数 中子数=核质量数-质子数

具有相同质子数不同中子数的原子互称为同位素,利用放射性同位素可作“示踪原子”,用其射线可杀菌、探伤、消除静电等。

核能

①核能

原子核的半径很小,其中质子间的库仑力是很大的。然而通常的原子核却是很稳定的。这说明原子核里的核子之间一定存在着另一种和库仑力相抗衡的吸引力,这种力叫核力。

从实验知道,核力是一种强相互作用,强度约为库仑力的确100倍。核力的作用距离很短,只在2.0?10?15m的短距离内起作用。超过这个距离,核力就迅速减小到零。

?15质子和中子的半径大约是0.8?10m,因此每个核子只跟它相邻的核子间才有核力的作用。核力与电荷无关。质子和质子,质子和中子,中子和中子之间的作用是一样的。当两核子之间的距离为0.8~2.0fm时,核力表现为吸力,在小于0.8fm时为斥力,在大于10fm时核力完全消失。

②质能方程

爱因斯坦从相对论得出物体的能量跟它的质量存在正比关系,即 这个方程叫做爱因斯坦质能方程,式中c是真空中的光速,m是物体的质量,E是物体的能量。如果物体的能量增加了△E,物体的质量也相应地增加了△m,反过来也一样。△E和△m之间的关系符合爱因斯坦的质能方程。

③质量亏损

原子核由核子所组成,当质子和中子组合成原子核时,原子核的质量比组成核的核子的总质量小,其差值称为质量亏损。用m表示由Z个质子、Y个中子组成的原子核的质量,用mP和mn分别表示质子和中子的质量,则质量亏损为:

④原子核的结合能和平均结合能 由于核力将核子聚集在一起,所以要把一个核分解成单个的核子时必须反对核力做功,为此所需的能量叫做原子核的结合能。它也是单个核子结合成一个核时所能释放的能量。根据质能关系式,结合能的大小为:

原子核中平均每个核子的结合能称为平均结合能,用N表示核子数,则:

E?mc2

?E??m?c2

?m?ZmP?Ymn?m

?E??m?c2

?E平均结合能=N

平均结合能越大,原子核就越难拆开,平均结合能的大小反映了核的稳定程度。从平均结合能曲线可以看出,质量数较小的轻核和质量数级大的重核,平均结合能都比较小。中等质量数的原子核,平均结合能大。质量数为50~60的原子核,平均结合能量大,约为8.6MeV。

10

核反应

原子核之间或原子核与其他粒子之间通过碰撞可产生新的原子核,这种反应属于原子核反应,原子核反应可用方程式表示,例如

147N?He?O?H281

414117HHeNO即为氦核(α粒子)2轰击氮核7后产生氧同位素8和氢核1的核反应,

4171核反应可分为如下几类

(1)弹性散射:这种过程,出射粒子就是入射粒子,同时在碰撞过程中动能保持不变,例如将中子与许多原子核碰撞会发生弹性散射。

(2)非弹性散射:这种过程中出射粒子也是原来的入射粒子,但在碰撞过程中粒子动能有了变化,即粒子和靶原子核发生能量转移现象。例如能量较高的中子轰击原子核使核激发的过程。

(3)产生新粒子:这时碰撞的结果不仅能量有变化,而且出射粒子与入射粒子不相同,对能量较大的入射粒子,核反应后可能出现两个以上的出射粒子,如合成101号新元素的过程。

253(4)裂变和聚变:在碰撞过程中,使原子核分裂成两个以上的元素原子核,称为裂变,如铀核裂变

42561Es?He?Md?n9921010

253裂变过程中,质量亏损0.2u,产生巨大能量,这就是原子弹中的核反应。 引起原子核聚合的反应称为聚变反应,如

1139951U?n?Xe?S?2n9205488r0

21氢弹就是利用氘、氘化锂等物质产生聚变后释放出巨大能量发生爆炸的。

核反应中电荷守恒,即反应生成物电荷的代数和等于反应物电荷的代数和。核反应中质量守恒,即反应生成物总质量等于反应物总质量。这里的质量指相对论质量,相对论质量m与相对论能量E之间的关系是

因此质量守恒也意味着能量守恒。核反应中质量常采用原子质量单位,记为u.lu相当于931.5MeV。

核反应中相对论质量守恒,但静质量可以不守恒。一般来说,反应生成物总的静质量少于反应物总的静质量,或者说反应物总的静质量有亏损。亏损的静质量记为△m,反应后它将以能量形式释放出来,称之为反应能,记为△E,有

需要注意的是反应物若有动能,其相对论质量可大于静质量,但在算反应能时只计静质量。反应能可以以光子形式向外辐射,也可以部分转化为生成物的动能,但生成物的动能中还可以包含反应物原有的动能。

11

H?H?He?S??1288r

1395E?mc2

?E??mc2

下面讨论原子核反应能的问题:

在所有原子核反应中,下列物理量在反应前后是守恒的:①电荷;②核子数;③动量;④总质量和联系的总能量等(包括静止质量和联系的静止能量),这是原子核反应的守恒定律。下面就质量和能量守恒问题进行分析。

设有原子核A被p粒子撞击,变为B和q。其核反应方程如下:

A+p→B+q

上列各核和各粒子的静质量M和动能E为

反应前

MaEaMpEp

反应后

根据总质量守恒和总能量守恒可得

MbEbMqEq

由此可得反应过程中释放的能量Q为:

EpEqEaEbMa?2?Mp?2?Mb?2?Mq?2cccc

Q??Eb?Eq???Ea?Ep???Ma?Mp???Mb?Mq?c2

此式表示,反应能Q定义为反应后粒子的动能超出反应前粒子的动能的差值。这也等于反应前粒子静质量超过反应后粒子的静质量的差值乘以c。所以反应能Q可以通过粒子动能的测量求出,也可以由已知的粒子的静质量来计算求出。

下面来讨论怎样由动能来求出Q。设A原子核是静止的。由能量守恒可得

2??Pq Pp ?A Pp

Pb

Q?Eb?Eq?EpPP?Pb?Pq

根据反应前后动量守恒得

式中PP为反应前撞击粒子的动量,Pb和为标量

222Pq是反应后新生二粒子的动量。上式可改

Pb?Pp?Pq?2PpPqcos? 由于p?2ME,上式可改为

2MbEb?MpEp?MqEq?2MpMqEpEqcos?从上式求出Eb,代入

Q?Eb?Eq?Ep中得

?MqQ?Eq??1?Mb???Mq???Ep?1????Mb从上式中的质量改为质量数之比可得:

MpMqEpEq??cos???2Ab?

ApAqEpEqAq?Aq???Q?Eq?cos??1?A???Ep??1?A???2Abb?b???

EE如果p事先测知,再测出q和β,即可算得Q。

12

本文来源:https://www.bwwdw.com/article/6xkr.html

Top