Measurement of Lagrangian velocity in fully developed turbulence
更新时间:2023-07-28 17:19:02 阅读量: 实用文档 文档下载
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
MeasurementofLagrangianvelocityinfullydevelopedturbulence
N.Mordant(1),P.Metz(1),O.Michel(2),J.-F.Pinton(1)
CNRS&LaboratoiredePhysique,´EcoleNormaleSup´erieure,
46all´eed’Italie,F-69007Lyon,FranceLaboratoired’Astrophysique,Universit´edeNice
ParcValrose,F-06108,Nice,France
(1)
(2)
arXiv:physics/0103084v2 [physics.flu-dyn] 30 Jul 2001
WehavedevelopedanewexperimentaltechniquetomeasuretheLagrangianvelocityoftracerparticlesinaturbulent ow,basedonultrasonicDopplertracking.ThismethodyieldsadirectaccesstothevelocityofasingleparticleataturbulentReynoldsnumberRλ=740.Itsdynamicsisanalyzedwithtwodecadesoftimeresolution,belowtheLagrangiancorrelationtime.Weobserve
2
thattheLagrangianvelocityspectrumhasaLorentzianformEL(ω)=u2rmsTL/(1+(TLω)),inagreementwithaKolmogorov-likescalingintheinertialrange.Theprobabilitydensityfunction(PDF)ofthevelocitytimeincrementsdisplaysachangeofshapefromquasi-Gaussianaintegraltimescaletostretchedexponentialtailsatthesmallesttimeincrements.Thisintermittency,whenmeasuredfromrelativescalingexponentsofstructurefunctions,ismorepronouncedthanintheEulerianframework.
PACSnumbers:47.27.Gs,43.58.+z,02.50.Fz
Lagrangiancharacteristicsof uidmotionareoffun-damentalimportanceintheunderstandingoftransportandmixing.Itisanaturalapproachforreacting owsorpollutantcontaminationproblemstoanalyzethemotionofindividual uidparticles[1].Anothercharacteristicofmixing owsistheirhighdegreeofturbulence.Forprac-ticalreasons,mostoftheexperimentalworkconcerninghighReynoldsnumber grangianmeasurementsarechal-lengingbecausetheyinvolvethetrackingofparticletra-jectories:enoughtimeresolution,bothatsmallandlargescales,isrequiredtodescribetheturbulent uctuations.EarlyLagrangianinformationhavebeenextractedfromthedispersionofparticles,followingTaylor’sap-proach.Recentlynumericalandexperimentalstudieshavefocusedonresolvingthemotionofindividual uidortracerparticles.Theemergingpictureisasfollows.Theone-componentvelocityauto-correlationfunctionisquasi-exponentialwithacharacteristictimeoftheorderoftheenergyinjectionscale[2,3,4].ThevelocitypowerspectrumisexpectedtohaveascalingEL(ω)∝ω 2,asrecentlyreported[5,6]andexpectedfromaKolmogorovsimilarityarguments.Inthesamespirit,thesecondor-L
derstructurefunctionshouldscaleasD2(τ)=C0 τ,where isthethepowerdissipation.Measurementsofatmosphericballoons[7]havegivenC0=4±2andalimitC0→7hasbeensuggestedinstochasticmodels[8].Recentexperiments[9,usinghighspeedopticaltech-niqueshaveshownthatthestatisticsoftheLagrangianaccelerationarestronglynon-Gaussian.
Wehavedevelopedanewexperimentalmethod,basedonsonartechniques[11],inordertostudyinalaboratoryexperimenttheLagrangianvelocityacrosstheinertialrangeoftimescales.Weobtainthe rstmeasurementofsingleparticlevelocityfortimesuptothe owlargescaleturnovertime,athighReynoldsnumber.InthisLetter,wereporttheresultsofthismeasurementsandcomparewithpreviousobservationsandnumericalpredictions.Ourtechniqueisbasedontheprincipleofacontinu-ousDopplersonar.Asmall(2mm×2mm)emittercon-tinuouslyinsoni esthe owwithapuresinewave,atfrequencyf0=2.5MHz(inwater).Themovingparticlebackscatterstheultrasoundtowardsanarrayofreceiv-ingtransducers,withaDopplerfrequencyshiftrelatedtothevelocityoftheparticle:2π f=q.v.Thescatter-ingwavevectorqisequaltothedi erencebetweentheincidentandscattereddirections.Anumericaldemod-ulationofthetimeevolutionoftheDopplershiftgivesthecomponentoftheparticlevelocityalongthescat-teringwavevectorq.Itisperformedusingahighresolu-tionparametricmethodwhichreliesonanApproximatedMaximumLikelihoodschemecoupledwithageneralizedKalman lterThestudyreportedhereismadewithasinglearrayoftransducerssothatonlyoneLagrangianvelocitycomponentismeasured.
Theturbulent owisproducedinthegapbetweentwocounter-rotatingdiscs[12].Thissetuphastheadvan-tagetogenerateastrongturbulenceinacompactregionofspace,withnomeanadvection.Inthisway,parti-clescanbetrackedduringtimescomparabletothelargeeddyturnovertime.DiscsofradiusR=9.5cmareusedtosetwaterintomotioninsideacylindricalvesselofheightH=18cm.Toensureinertialentrainment,thediscsare ttedwith8bladeswithheighthb=5mm.Inthemeasurementreportedhere,thepowerinputis =25W/kg.Itismeasuredontheexperimentcool-ingsystem,fromtheinjection-dissipationbalance.TheintegralReynoldsnumberisRe=R2 /ν=6.5104,where istherotationfrequencyofthediscs(7.2Hz),andν=10 6m2/sisthekinematicviscosityofwa-ter.AconventionalturbulentReynoldsnumbercanbecomputedfromthemeasuredrmsamplitudeofveloc-
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
ity uctuations(urms=0.98(λ=
m/s)andanestimateoftheTaylormicroscaleν/ =0.2ms)
issmaller,sothatwedonotexpecttoresolvethedis-sipativeregion.Thestatisticalquantitiesarecalculatedfrom3×106velocitydatapoints,takenatasamplingfrequencyequalto6500Hz.Theacousticmeasurementzoneisincentralregionofthe ow,10cmthickintheaxialdirectionandalmostspanningthecylindercross-section.Inthisregionthe owisagoodapproximationtoisotropicandhomogeneousconditions:atallpoints,themeanvelocityisnonzero,butequaltoaboutonetenthofitsrmsvalue.
We rstconsidertheLagrangianvelocityauto-correlationfunction:
RL(τ)=
v(t)v(t+τ) t
2
1+(T(2)
Lω)2
.WeobserveaclearrangeofpowerlawscalingEL(ω)∝ω 2.ThisisinagreementwithaKolmogorovK41pic-tureinwhichthespectraldensityatafrequencyωisadimensionalfunctionofωand :EL(ω)∝ ω 2.Toourknowledge,thisisthe rsttimethatitisdirectlyob-servedathighReynoldsnumberandinalaboratoryex-
periment,althoughithasbeenreportedinoceanicstud-ies[5]andinlowerReynoldsnumberdirectnumericalsimulations[6].DeparturefromtheKolmogorovbehav-iorisobservedatlowfrequenciesinagreementwiththeexponentialdecayoftheauto-correlation.Athighfre-quencies,thespectrumdeviatesfromtheLorentzianformduetotheparticleresponse.NoteinFig.1bthatthemeasurementismadeoveradynamicalrangeofabout60dB.
Wenowconsiderthesecondorderstructurefunction
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
ofthevelocityincrement
DL2(τ)= (v(t+τ) v(t))2 t= ( τv)2 .
(3)
Weemphasizethatthesearetimeincrements,andnot
spaceincrementsasintheEulerianstudies.Thepro leDLauto-correlation2(τ)isshownintheinsetofFig.2.byDtimesoneobservesthe2(τ)=2u2trivialscalingrms Itislinked1 RL
(τ) totheL:atsmall
DL
(τ)∝τ2andatlargetimesDL
2
2(τ)saturatesat2u2rms(asv(t)andv(t+τ)areuncorrelated).
)ετ(/L2
D10
10
t/τ10
η
FIG.2:SecondorderstructureDLfunction.Inset:pro le2(τ)asafunctionoftime,non-dimensionalizedTL.Inthemain gurethesecondorderstructurefunctionisnon-dimensionalizedbytheKolmogorovscaling τ.
Inbetweenthesetwolimits,oneexpectsaninertialrangeofscaleswithaKolmogorov-likescaling
DL2(τ)=C0 τ,
(4)
whereC0isa‘universal’constant.Suchabehavioriscon-sistentwithdimensionalanalysisandwithanω 2scal-ingrangeinthevelocitypowerspectrum.Fig.2shows
DL2(τ)/ τ;aplateauwithaconstantC0isnotobserved.NotethatthisalsothecaseinEulerianmeasurementswhenthethird
orderstructurefunctionisrepresentedinlinearcoordinates[13].Thefunctionreachesamaximumat20τη,forwhichC0~2.9.ThisvalueisinagreementwiththeestimationC0=4±2in[7]andintherangeofvalues(between3and7)usedinstochasticmodelsforparticledispersion[14].Inourcasetheremayalsobeabiasatsmalltimesduetoparticlee ects.Howeverifweassumetheexponential tforthevelocityautocorre-lationfunctiontobevaliddowntothesmallestscales,weobtainavalueC0=3.5asanupperboundforthe
maximumofDL
(τ)/ τ.Inoursetofmeasurementsbe-tweenR2
λ=100andRλ=1100,wehaveobservedanincreaseofC0(de nedinthesameway)from0.5to4.WepointoutthatintheabsenceofanequivalentoftheK´arm´an-HowarthrelationshipfortheLagrangiantimeincrements,alimitvalueofC0isnotapriori xed.
DimensionalanalysisyieldsDL
2(τ)=C0(Re) τandsimi-larityargumentsgiveC0(Re)→const.orC0(Re)→Reαinthelimitofin niteReynoldsnumbers.
3
TofurtherdescribethestatisticsoftheLagrangianve-locity uctuations,wehaveanalyzedthestatisticsofthevelocityincrements τv.TheirPDFΠτforτcoveringtheaccessiblerangeoftimescalesisshowninFig.3.
FIG.3:PDFστΠτofthenormalizedincrement vτ/στ.Thecurvesareshiftedforclarity.Fromtoptobottom:τ=[0.15,0.3,0.6,1.2,2.5,5,10,20,40]ms.
Toemphasizethefunctionalform,thevelocityincre-mentshavebeennormalizedbytheirstandarddeviationsothatallPDFshaveunitvariance.A rstobservationisthatthePDFsaresymmetric,inagreementwiththelocalsymmetriesthis ow.AnotheristhatthePDFsal-mostGaussianatintegraltimescalesandprogressivelydevelopstretchedexponentialtailsforsmalltimeincre-ments.Atthesmallestincrement,thestretchedexpo-nentialshapeisinagreementwithmeasurementsofthePDFofLagrangianaccelerationatidenticalReynoldsnumbers[10].Inourcase,thelimitformofthevelocityincrementsPDFisnotaswideasthatoftheaccelerationbecausetheKolmogorovscaleisnotresolved.NotethatinregardsoftheevolutionofthePDF,theintermittencyisatleastasdevelopedintheLagrangianframeasitisintheEulerianone[15].
FIG.4:EvolutionoftheexcesskurtosisfactorK(τ)= ( τv)4 / ( τv)2 2 3forthePDFsofthetimevelocityincrements.
Thecontinuousevolutionwithscalecanbequanti ed
We have developed a new experimental technique to measure the Lagrangian velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler tracking. This method yields a direct access to the velocity of a single particule at a turbulent Reynold
usingthe atnessfactor.WeshowinFig.4thevari-ationexcesskurtosisK(τ)= ( τv)4 / ( τv)2 2 3.ItisnullatintegralscaleasexpectedfromtheGaus-sianshapeofthePDFandincreasessteeplyatsmallscales.Belowabout5τη,theincreaseislimitedbythecut-o oftheparticle;anextrapolationofthetrendtoτηyieldsK(τη)
~40inagreementwithaccelerationmea-surementsin[10].
10
L
q
D10
10
DL
10
FIG.5:ESSplotsofthestructurefunctionvariation(indou-blelogcoordinates).Thesolidcurvesarebestlinear tswith
slopesequaltoξL
q=0.56±0.01,1.34±0.02,1.56±0.06,1.8±0.2forp=1,3,4,5fromtoptobottom.Coordinatesinarbitraryunits.
Moregenerally,onecanchoosetodescribetheevolu-tionofthePDFsbythebehavioroftheirmoments(or
‘structurefunctions’)DL
changeofq(τ)= |δτv|q .Indeed,acon-sequenceoftheshapeofthePDFswithscaleisthattheirmoments,asthe atnessfactorabove,varywithscale.ClassicallyintheEulerianpicture,oneex-pectsscalingintheinertialrange,DE
q(r)∝rζq,atleastinthelimitofverylargeReynoldsnumbers.Atthe -niteReynoldsnumberwheremostexperimentsaremade,thelackofatrueinertialrangeisusuallycompensatedbystudyingtherelativescalingofthestructurefunc-tions–theESSansatz[16].Weusethesecondorderstructurefunctionasareference.Indeedthedimensional
estimationofDL2(asthatofDE
3)dependslinearlyontheincrementandonthedissipation.Fig.5showsthat,asintheEulerianframe,arelativescalingisobservedfortheLagrangianstructurefunctionsoforders1to5,DLq(τ)∝DL2(τ)ξq.Weobservethattherelativeexpo-nentsfollowasequencecloseto,butmoreintermittentthanthecorrespondingEulerianquantity.Indeed,we
obtain:ξLL
L/ξLξ1/ξ3=0.42,ξ3=0.75,ξL/ξLL3=1.17,5
/ξL
2
43=1.28tobecomparedtothecommonlyac-4
ceptedEulerianvalues[17]ξEξ1/ξE3=0.36,ξE2/ξE
3=0.70,E4/ξE3=1.28,ξE5/ξE
3=1.53.
Inconclusion,usinganewexperimentaltechnique,wehaveobtainedaLagrangianvelocitymeasurementthatcoverstheinertialrangeofscales.OurresultsareconsistentwithKolmogorov-likedimensionalpredictionsforsecondorderstatisticalquantities.Athigherorders,theobservedintermittencyisverystrong.HowtheLagrangianintermittencyisrelatedtothestatisticalpropertiesoftheenergytransfersisanopenquestion.Fromadynamicalpointofview,theNavier-StokesequationinLagrangiancoordinatescouldbemodeledusingstochasticequations.WorkiscurrentlyunderwaytocomparethedynamicsoftheLagrangianvelocitytopredictionsofLangevin-likemodels.
acknowledgements:WethankBernardCastaingforinterestingdiscussionsandVermonCorporationforthedesignoftheultrasonictransducers.Thisworkissup-portedbygrantACINo.2226fromtheFrenchMinist`eredelaRecherche.
[1]PopeS.B.,Annu.Rev.FluidMech.,26,23,(1994).
[2]VirantM.,DracosT.,Meas.Sci.Technol.,8,1539,
(1997).
[3]SatoY.,YamamotoK.,J.FluidMech.,175,183,(1987).[4]YeungP.K.,PopeS.B.,J.FluidMech.,207,531,(1989).[5]LienR-C.,D’AsaroE.A.,DairikiG.T.,J.Fluid.Mech.,
362,177,(1998).
[6]YeungP.K.,J.FluidMech.,427,241,(2001).[7]HannaS.R.,J.Appl.Meteorol.,20,242,(1981).[8]SawfordB.L.,Phys.Fluids,A3,1577,(1991).
[9]VothG.A.,SatyanarayanK.,BodenschatzE.,Phys.Flu-ids,10,2268,(1998).
[10]LaPortaA.,VothG.A.,CrawfordA.,AlexenderJ.,Bo-denschatzE.,Nature,409,1017,(2001).
[11]MordantN.,MichelO.,PintonJ.-F.,submittedtoJASA,
(2000)andArXiv:physics/0103083.[12]MordantN.,PintonJ.-F.,Chill`aF.,J.Phys.IIFrance,
7,1729-1742,(1997).[13]Mal´ecotY.PhDThesis,Universit´edeGrenoble,(1998).[14]DuS.,SawfordB.L.,WilsonJ.D.,WilsonD.J.,Phys.
Fluids,7,3083,(1995).
[15]AnselmetF.,GagneY.,Hop ngerE.J.,AntoniaR.A.J.
FluidMech.,140,63,(1984).
[16]BenziR.,CilibertoS.,BaudetC.,Ruiz-ChavarriaG.,
TripiccioneC.,Europhys.Lett,24,275,(1993).[17]ArneodoA.etal.,Europhys.Lett,34,411,(1996).
正在阅读:
Measurement of Lagrangian velocity in fully developed turbulence07-28
郑州大学2003级弹性力学期末考试试题A01-05
高层建筑冬季施工方案05-09
的建议关于制定“财产法”而不是“物权法”10-22
未来旅游发展趋势分析论文11-18
阿尔及利亚独立战争军服图册07-08
贵州茅台酒股份有限公司财务分析 修改版01-02
2014年采掘接续计划09-09
- 1Low velocity impact behavior of composite sandwich panels
- 2第3讲PPT (Turbulence and its modelling)
- 3TL9000 Measurement Handbook.
- 4Capacitance sensor for void fraction measurement in water steam
- 5Closure of two dimensional turbulence the role of pressure gradients
- 6Closure of two dimensional turbulence the role of pressure gradients
- 7Three-Phase V-I Measurement
- 82021年高考英语 Module 2 Developing and Developed Countr
- 9Full-scale measurement of Akashi-Kaikyo Bridge during typhoo
- 10chapter 1-matter and measurement-3,4 (2)
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Measurement
- Lagrangian
- turbulence
- developed
- velocity
- fully
- 作文是表情达意的交际工具
- 2014台湾省数据结构(C++)考资料
- 叉车驾驶员培训手册
- 太阳光线双轴跟踪装置的机械系统设计
- 新人教版九年级物理18.4焦耳定律
- 旅游景区电子票务系统解决方案
- 2005The future of animal models of invasive aspergillosis
- HP520声卡驱动解决方案
- 影院名称 - 北京文化热线
- 2013年10月中国文化概论
- Modeling the Kinematics and Dynamics of Compliant Contact
- 文章不厌百回改——(教育学会投稿)
- 6 仪表与警示灯系统
- 模具行业专业术语
- 《记承天寺夜游》对比阅读试题及答案01
- 猪场伪狂犬病净化技术要点
- 高中语文研究性学习课题参考题目
- 主题班会-回忆童年
- 林业经济管理学课后习题整理
- 银行代销业务自查报告