2019年全国各地中考数学真题分类汇编:统计与概率(浙江专版)(

更新时间:2024-03-14 04:25:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2019年全国各地中考数学真题分类汇编(浙江专版)

统计与概率

一.选择题(共10小题)

1.(2019?杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A.平均数

B.中位数

C.方差

D.标准差

2.(2019?温州)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.

B.

C.

D.

3.(2019?宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S(单位:千克)如表所示:

S 22

2

甲 24 2.1 乙 24 1.9 丙 23 2 丁 20 1.9 今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A.甲

B.乙

C.丙

D.丁

4.(2019?温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )

A.20人

B.40人

C.60人

D.80人

5.(2019?金华)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( ) A.

B.

C.

D.

6.(2019?嘉兴)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )

A.签约金额逐年增加

B.与上年相比,2019年的签约金额的增长量最多 C.签约金额的年增长速度最快的是2016年

D.2018年的签约金额比2017年降低了22.98%

7.(2019?湖州)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ) A.

B.

C.

D.

8.(2019?绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下: 组别(cm) 人数 x<160 5 160≤x<170 38 170≤x<180 42 x≥180 15 根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( ) A.0.85

B.0.57

C.0.42

D.0.15

9.(2019?衢州)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是( ) A.1

B.

C.

D.

10.(2019?台州)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s=[(x1﹣5)+(x2﹣5)+(x3﹣5)+…+(xn﹣5)],其中“5”是这组数据的( ) A.最小值

B.平均数

C.中位数

D.众数

2

2

2

2

2

二.填空题(共8小题)

11.(2019?杭州)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .

12.(2019?宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 .

13.(2019?温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人.

14.(2019?嘉兴)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为 . 15.(2019?湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是 分.

16.(2019?金华)数据3,4,10,7,6的中位数是 . 17.(2019?衢州)数据2,7,5,7,9的众数是 .

18.(2019?台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 . 三.解答题(共9小题)

19.(2019?杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).

实际称量读数和记录数据统计表

序号 数据 甲组 48 52 47 49 54 1 2 3 4 5 乙组 ﹣2 2 ﹣3 ﹣1 4

(1)补充完成乙组数据的折线统计图. (2)①甲,乙两组数据的平均数分别为

2

2

,,写出

2

2

之间的等量关系.

②甲,乙两组数据的方差分别为S甲,S乙,比较S甲与S乙的大小,并说明理由.

20.(2019?宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.

100名学生知识测试成绩的频数表

成绩a(分) 50≤a<60 60≤a<70 70≤a<80 80≤a<90 90≤a≤100 由图表中给出的信息回答下列问题: (1)m= ,并补全频数直方图;

频数(人) 10 15 m 40 15 (2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;

(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.

21.(2019?温州)车间有20名工人,某一天他们生产的零件个数统计如下表.

车间20名工人某一天生产的零件个数统计表

生产零件的个数(个) 工人人数(人) 9 1 10 1 11 6 12 4 13 2 15 2 16 2 19 1 20 1 (1)求这一天20名工人生产零件的平均个数.

(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,

从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?

22.(2019?嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:

【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值): 【信息二】上图中,从左往右第四组的成绩如下:

75 81 75 82 79 82 79 83 79 83 79 84 80 84 80 84 【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):

小区 A B 平均数 75.1 75.1 中位数 77 众数 79 76 优秀率 40% 45% 方差 277 211 根据以上信息,回答下列问题:

(1)求A小区50名居民成绩的中位数.

(2)请估计A小区500名居民成绩能超过平均数的人数.

(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.

23.(2019?湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.

某校抽查的学生文章阅读的篇数统计表

文章阅读的篇数(篇) 人数(人) 3 20 4 28 5 m 6 16 7及以上 12 请根据统计图表中的信息,解答下列问题: (1)求被抽查的学生人数和m的值;

(2)求本次抽查的学生文章阅读篇数的中位数和众数;

(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.

24.(2019?绍兴)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.

根据图中信息,解答下列问题:

(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?

(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法. 25.(2019?金华)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:

(1)求m,n的值. (2)补全条形统计图.

(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.

26.(2019?衢州)某校为积极响应“南孔圣地,衢州有礼”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动.其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程.为了解学生参与综合实践类课程活动情况,随机抽取了部分学生进行调查,根据调查结果绘制了如图所示不完整的条形统计图和扇形统计图.

(1)请问被随机抽取的学生共有多少名?并补全条形统计图.

(2)在扇形统计图中,求选择“礼行“课程的学生人数所对应的扇形圆心角的度数. (3)若该校共有学生1200人,估计其中参与“礼源”课程的学生共有多少人?

27.(2019?台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.

(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?

(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数; (3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.

本文来源:https://www.bwwdw.com/article/6vq8.html

Top