深入浅出讲解麦克斯韦方程组

更新时间:2023-11-10 00:50:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

深入浅出讲解麦克斯韦方程组

前一段时间给大家发过一篇《世界上最伟大的十个公式》,排在第一位的是麦克斯韦方程,它是电磁学理论的基础,也是相对论假定光速不变的依据,可见排在十大公式之首,理所应当!为了让大家更好地理解该方程,我们找到了一篇由 孙研 发表在知乎上的关于麦克斯韦方程的非常完美的讲解,呈现个大家。在文章的最后,我们还为大家附上了一段讲解麦克斯韦方程的英文动画视频,如果你英文比较好,不妨看一下。以下是正文:

有人要求不讲微积分来讲解一下麦克斯韦方程组?感觉到基本不太可能啊,你不知道麦克斯韦方程组里面每个方程都是一个积分或者微分么??那既然这样,我只能躲躲闪闪,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。 1. 力、能、场、势

经典物理研究的一个重要对象就是力force。比如牛顿力学的核心就是F=ma这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。很多时候,从能量的角度出发反而问题会变得简单很多。能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。

在电磁学里,我们通过力定义出了场field的概念。我们注意到洛仑兹力总有着F=q(E+v×B) 的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。具体到两个电荷间的库仑力的例子,就可以理解为一个电荷制造了电场,而另一个电荷在这个电场中受到了力,反之亦然。类似地我们也可以对能量做相同的事情,刨去能量中的电荷(或电荷×速度),剩下的部分便是势potential。 一张图表明关系: 积分

力--->能 ||

场<---势 微分

具体需要指出,这里的电场(标为E)和磁场(标为B)都是向量场,也就是说空间中每一个点都对应着一个向量。如果我们把xyz三个分量分开来看的话,这就是三个标量场。而能量和势是标量(电磁学中的势其实并不是标量,原因马上揭晓),放到空间中也就是一个标量场。在力/场和能量/势之间互相转化的时候,我们是在3<->1个标量场之间转化,必然有一些信息是丢掉了的。怎么办? 一个显而易见的答案是“保守力场”conservative force field。在这样一个场中,能量(做功)不取决于你选择什么样的路径。打个比方,你爬一座山,无论选择什么路径,只要起点和终点一样,那么垂直方向上的差别都是一样的,做的功也一样多。在这种情况下,我们对力场有了诸多限制,也就是说,我假如知道了一个保守力场的x一个分量,那么另两个分量yz就随之确定了,我没得选(自由度其实只有一个标量场)。有了保守力场这样的额外限制,向量场F(3个标量场)和(1个)标量场V之间的转化便不会失去信息了。具体而言,二者关系可以写作F=-?V。这里不说具体细节,你只要知道?是一种固定的、把一个标量场变成三个标量场的算法就可以了(叫做算符operator)。

那么我们想问,电场和磁场是不是保守力场呢?很不幸,不是。在静电学中,静止的电场是保守的,但在电动力学中,只要有变化的电场和磁场,电场就不是一个保守力场了;而磁场从来都不是保守力场。这也就是说明,在电磁学中,我们很少涉及能量这个概念,因为它不能完整地描述一个电磁场。我们更多时候只关注“场”这个概念,尽管因此我们不得不涉足很多向量微积分,但我们没有办法,这是不让信息丢掉的唯一办法。那么,既然势也是标量,它是否也是一个没什么用的概念呢?恰恰相反,在电动力学中我们定义出了“向量势”vector potential,以保留额外的自由度。后面我会更具体地谈到这一点。

总而言之,我想说明一点,那就是电磁学的主要研究对象是电场和磁场,而麦克斯韦方程组就是描述电场和磁场的方程。势(包括电势和磁向量势)也是有用的概念,而且不像引力势是一个标量,在电磁学中势不得不变成一个向量。 2. 麦克斯韦方程组

前边说到,麦克斯韦方程组Maxwell equations是描述电场和磁场的方程。前边也说到,因为电磁场不是保守力场,它们有三个标量场的自由度,所以我们必须用向量微积分来描述电磁场。因此,麦克斯韦方程组每个式子都出现了向量微积分,而整个方程组也有积分形式和微分形式两种。这两种形式是完全等价的,只是两种不同的写法。这里我先全部写出。

这里E表示电场,B表示磁场,ε0和μ0只是两个常数暂时可以忽略。积分形式中Q是电荷,I是电流,V表示一块体积,?V表示它的表面,而S表示一块曲面,?S表示它的边缘。微分形式中ρ是电荷密度(电荷/体积),J是电流密度(电流/面积),?·和?×是两个不同的算符,基本可以理解为对向量的某种微分。 先不说任何细节,我们可以观察一下等式的左边。四个方程中,两个是关于电场E的,两个是关于磁场B的;两个是曲面积分∫da或者散度?·,两个是曲线积分∫dl或者旋度?×。不要管这些术语都是什么意思,我后面会讲到。但光看等式左边,我们就能看出四个式子分别描述电场和磁场的两个东西,非常对称。 3. 电荷->电场,电流->磁场

这一部分和下一部分中,我来简单讲解四个式子分别代表什么意思,而不涉及任何定量和具体的计算。

我们从两个电荷之间的库仑力讲起。库仑定律Coulomb's Law是电学中大家接触到的最早的定律,有如下形式:

其中Q是电荷,r是电荷之间的距离,r是表示方向的单位向量。像我之前说的,把其中一个电荷当作来源,然后刨去另一个电荷,就可以得到电场的表达式。

高中里应该还学过安培定律Ampere's Law,也就是电流产生磁场的定律。虽然没有学过具体表达式,但我们已经能看出它与库仑定律之间的区别。库仑定律描述了“两个”微小来源(电荷)之间的“力”,而安培定律是描述了“一个”来源(电流)产生的“场”。事实上,电磁学中也有磁场版本的库仑定律,描述了两个微小电流之间的力,叫做毕奥-萨伐尔定律Biot-Savart Law;反之,也有电场版本的安培定律,描述了一个电荷产生的磁场,叫做高斯定律Gauss's Law。这四个定律之间有如下关系: 电场磁场

两个微小来源之间的力库仑定律毕奥-萨伐尔定律 单个来源产生的场高斯定律安培定律

数学上可以证明库仑定律(毕奥-萨伐尔定律)和高斯定律(安培定律)在静电学(静磁学)中是完全等价的,也就是说我们可以任意假设一个定律,从而推导出另一个定律。然而如果我们想从静止的静电学和静磁学推广到电动力学,前者是非常不便的而后者很却容易,所以尽管库仑定律在中学中常常提到,麦克斯韦方程组中却没有它,有的是高斯定律和安培定律。这两个定律分别是麦克斯韦方程组里的(1)和(4)的第一项,即:

高斯定律(积分、微分形式):

安培定律(积分、微分形式):

我们继续推迟讲解数学关系,单看这几个式子本身,就能看到等式的左边有电场E(磁场B),而右边有电荷Q(电流I)或电荷密度ρ(电流密度J)。看,电荷产生电场,电流产生磁场! 4. 变化磁场->电场,变化磁场->电场

然而这不是故事的全部,因为事实上电磁场是可以互相转化的。法拉第发现了电磁感应,也就是说变化的磁场是可以产生电场的,这就是法拉第定律Faraday's Law。类似地,麦克斯韦发现安培定律的描述并不完善,除了电流以外,变化的电场也可以产生磁场,这被称为安培-麦克斯韦定律Ampere-Maxwell Law。这两个定律分别是麦克斯韦方程组里的(2)和(4)的第二项,即: 法拉第定律(积分、微分形式):

安培-麦克斯韦定律(积分、微分形式):

同样地,等式的左边有电场E(磁场B),而右边有磁场B(电场E)的导数d/dt或偏导?/?t。看,变化磁场产生电场,变化电场产生磁场!

需要指出的是,我这样的说法其实是不准确的,因为并不是真的某一个场“产生”的另一个场。这两个定律只是描述了电场(磁场)和磁场(电场)的变化率之间的定量关系,而不是因果关系。

小结一下,我们已经搞清楚了麦克斯韦方程组里每一项的意思,基本就是指出了电磁场的来源和变化电磁场的定量关系。下一步便是往我们这些粗浅的理解中加

很直白,因为点乘就是标量)。如果一个点的散度为正,那么在这一点上F有向外发散的趋势;如果为负,那么在这一点上F有向内收敛的趋势。

旋度curl则指一个向量场旋转的程度。一个向量场F的旋度是一个向量场(向量场的每一点有一个自己的旋度,而且是一个向量;这是因为旋转的方向需要标明出来),写作?×F(这个写法也很直白,因为叉乘就是向量)。如果一个点的旋度不为0,那么在这一点上F有漩涡的趋势,而这个旋度的方向表明了旋转的方向。

举些例子,以下是两个向量场的例子。其中第一个向量场往外发散,但完全没有旋转扭曲的趋势;第二个向量场形成了一个标准的漩涡,但没有任何箭头在往外或往里指,没有发散或收敛的趋势。(显然这两个图都是用字符直接画的;大家凑合着看,有空我再搞张好看点的图) 散度不为0、但旋度为0的向量场: ↖ ↑ ↗ ← · → ↙ ↓ ↘

旋度不为0、但散度为0的向量场: ↗ → ↘ ↑ · ↓ ↖ ← ↙

因此,如你所见,散度和旋度描述的都是非常直观的几何性质。只要知道一个向量场的散度和旋度,我们就可以唯一确定这个向量场本身(这是亥姆霍兹定理,我要是有兴致可以以后简单谈谈)。

麦克斯韦方程组的微分形式,就是要描述电磁场的散度和旋度。我前边说到,微分形式和积分形式是完全等价的,我很也可以很轻松地从一个形式推导出另一个形式,用的是高斯定理(不要和高斯定律混淆、又叫散度定理)和斯托克斯定理。 高斯定理Gauss's Theorem:一个向量场F在闭合曲面?V上的通量,等于该曲面包裹住的体积V里的F全部的散度(F的散度的体积积分)。这是可以想象的,毕竟通量就是在计算有多少场从这个闭合曲面里发散出去了,也就是总共的散度(散度的积分)。

斯托克斯定理Stokes' Theorem:一个向量场F在闭合曲线?S上的环量,等于该曲线环住的曲面S上的F全部的旋度(F的旋度的曲面积分)。这也是可以想象的,毕竟环量就是在计算有多少场和这个环方向一样(有多少场在沿着这个环旋转),也就是总共的旋度(旋度的积分)。

总结如下表: 曲面积分曲线积分 积分形式通量环量 联系高斯定理斯托克斯定理 微分形式散度旋度

8. 麦克斯韦方程组的微分形式

了解了散度和旋度的概念之后,我们便可以读懂麦克斯韦方程组的微分形式了。

(1) 高斯定律:电场E的散度,等于在该点的电荷密度ρ(乘上系数1/ε0); (2) 法拉第定律:电场E的旋度,等于在该点的磁场B的变化率(乘上系数-1); (3) 高斯磁定律:磁场B的散度,等于0;

(4) 安培麦克斯韦定律:磁场B的旋度,等于在该点的电流密度J(乘上系数μ0),加上在该点的电场E的变化率(乘上系数μ0ε0)。

我们可以看出,电荷和电流对电场和磁场干的事情是不一样的:电荷的作用是给电场贡献一些散度,而电流的作用是给磁场贡献一些旋度。然而变化的电磁场对对方干的事情是一样的,都是给对方贡献一些旋度。

想看一些具体例子的同学要失望了。微分形式的例子比较难举,因为微分形式主要是让计算更加简便,在数学上比较有优势,而应用到具体的现象上则不那么显而易见。不过,至少静电磁场的例子还是可以举的。比如,我们知道电场线总是从正电荷出发、然后进入负电荷,这正是在说电场的散度在正电荷处为正,在负电荷处为负。再例如我们知道磁场线总是绕着电流,而不会进入或发源于电流,这也就是在说磁场有旋度而一定没有散度。 9. 电磁波

我刚刚提到,微分形式的主要好处是数学上处理起来很简便,我现在就给一个例子,也就是著名的光速。想象我们在真空中,周围什么都没有。这个时候,显然电荷密度和电流密度均为0,所以麦克斯韦方程组的微分形式变成了:

这四个公式简直太对称了!而且它们的含义也很清晰,基本就是说,变化的电场产生磁场,而变化的磁场产生电场。这就是电磁波electromagnetic wave的方程,电磁波也就是电场和磁场此消彼长、相互转化、向前传播的形式。 想要具体解出这个方程的解,还是需要玩儿一会儿微积分的,但是我们注意到两个式子分别有系数-1和μ0ε0。如果你了解波动方程的话,从这两个系数就可以算出这个波传播的速度,为

然而!μ0和ε0这两个常数是真空的性质(分别叫做真空电容率vacuum permittivity和真空磁导率vacuum permeability),是个定值。换句话说,电磁波传播的速度(光速)也是一个定值!也就是说,在任何参考系里观察,光速都应该是一样的c!这根据伽利略速度相加原理是不可能的(静止的你认为火车的速度是50 m/s,那么如果你以1 m/s的速度往前走你就会认为火车的速度只有49 m/s,显然不会仍然是50 m/s),但是电磁学却实实在在地告诉我们光速是不会变的。呐,这就是相对论的由来了。 10. 方向性

可能有同学已经发现,我们的讨论中似乎忽略了很重要的一部分就是方向性。毕竟初高中学电磁的时候,出现了各种左手、右手定则(插一句,请一定一定忘掉左手定则,使用左手简直反人类,在正统的向量微积分和电磁学里只有右手定则)。在之前对于麦克斯韦方程组的诠释中,我们似乎很少提及方向。麦克斯韦方程组描述了方向性吗?

答案是肯定的。方向或者说手性(为什么是“右手”定则而不是“左手”定则?)来自于叉乘的定义和面积的向量微分元素的定义。我们定义叉乘u×v是一个向量,指的方向是垂直于u和v的方向;但显然有两个不同的方向均满足这个条件,而我们选择了其中特定的一个,把选择的这个规则叫做“右手定则”。类似地,一

个曲面S也有两个方向(即其微分元素da是向量)。注意到曲线积分也是有方向性的(即其微分元素dl也是向量),因此我们把S的da和?S的dl联系起来,这个联系的规则也叫做“右手定则”。

上面这些情况中,选择“右手”是非常随意的;原则上我也可以全部选择左手,那么我得到的数学体系和原来的是完全等价的。当然,磁场B会和原来的磁场指的方向完全相反,但是没有关系,因为我们又不能直接看到磁场,所有的定律的手性都变了之后,描述的物理是不变的。但是,选择右手是约定俗成的,也就没必要再纠结为什么了。 11. 梯度、二次导数

我在之前说到保守力场的时候,偷偷塞进来过这样一个式子:F=-?V。这里F是个向量场,V是个标量场。我们看到,这个神奇的倒三角不但可以表示散度(把向量变成标量)和旋度(把向量变成向量),还可以这样把一个标量场变成一个向量场!数学上这个倒三角叫Nabla算符,而?V叫做一个标量场V的梯度。 什么叫做梯度呢?其实相比于散度和旋度,这应该是更加熟悉的概念。梯度gradient就是一个标量场变化的程度。我们可以把一个标量场想象成一个山坡,每一点的梯度是一个向量,指的方向是上坡的方向,大小则是坡的陡峭程度。 总结一下我们见到的三种向量微分吧: 梯度散度旋度

作用在一个标量向量向量场上 表示这个场变化发散旋转的程度 得到一个向量标量向量场 写作?V ?·F?×F

于是从F=-?V这个公式我们看到,保守力场(比如引力场)可以表示为某个标量场(比如引力势能)的梯度。之前说过,保守力场的环量/旋度一定为0。这也就是说,梯度的旋度一定为0。这是可以想象的,梯度指的是上坡的方向,而如果它有旋度,就意味着它们的指向可以形成的一个环,在这个环上可以一直上坡。这就像彭罗斯楼梯,是不可能的情形。

还有一个类似的定理,是说旋度的散度一定为0。我们也来想一下几何上这意味着什么。如果旋度有散度,就意味着在某个球上散度都在往球外指,也就意味着在球上每个点这个场都是逆时针旋转的。想想也知道这是不可能的。所以我们得到了两个重要的结论:

1. 任意标量场V的梯度?V都是没有旋度的,也就是?×(?V)=0; 2. 任意向量场F的旋度?×F都是没有散度的,也就是?·(?×F)=0。

我说过,这些“X度”都可以认为是场的一种微分,那么这些“X度的X度”就可以认为是二次导数了。我们看到,有两种二次导数都自动为0,不必我们深究。还有一种二次导数也很有名,也就是梯度的散度,它甚至有了一个专门的花哨的名

字,叫“拉普拉斯算符”Laplacian。在此我不作展开,大家只要知道它挺重要的就行。 12. 电荷守恒

从麦克斯韦方程组中可以直接推出电荷守恒。这个推导十分简单,且颇为有趣,可以让大家看到向量微积分的方便之处,我就简要写一下: 首先我们有安培-麦克斯韦定律:

两边同时取散度:

注意到左边是磁场的旋度的散度,而旋度的散度一定为0,故左边为0。右边交换散度和时间导数,并约掉μ0,得:

使用高斯定律:

代入原式,约掉ε0,得:

这个就是电荷守恒的公式。用语言说,就是电流密度的散度加上电荷密度的变化率一定为0。如果这比较抽象,我们可以对两项同时体积积分,再对J那项使用高斯定律变成面积积分,则结论变成:

一块体积V内的电荷的变化率加上通过表面?V的电流一定为0。

举个栗子,如果一块体积内的电荷Q变少了,其变化率为负,根据上述结论,通过表面的电流一定为正,也就是说有电流从这块体积内流出去了。这就是非常明显的电荷守恒了,给出了电荷和电流的关系,这个公式也叫“连续性方程”continuity equation。连续性方程在流体力学里十分重要,甚至在量子力学里的概率也遵守这个方程(电荷->概率,电流->概率流)。 S1. 附录:省略掉的各种公式和定义 库仑定律:

本文来源:https://www.bwwdw.com/article/6v9v.html

Top