Mixing and Decay Constants of Pseudoscalar Mesons
更新时间:2023-07-25 07:05:01 阅读量: 实用文档 文档下载
- mixing推荐度:
- 相关推荐
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
MixingandDecayConstantsofPseudoscalarMesons
Th.Feldmann ,P.Kroll
FachbereichPhysik,Universit¨atWuppertal,D-42097Wuppertal,Germany
B.Stech
Institutf¨urTheoretischePhysik,Universit¨atHeidelberg,D-69120Heidelberg,Germany
(Copyright1998byTheAmericanPhysicalSociety.)
Weproposeanewη–η′mixingschemewherewestartfromthequark avorbasisandassume
thatthedecayconstantsinthatbasisfollowthepatternofparticlestatemixing.Onexploiting
thedivergencesoftheaxialvectorcurrents–whichembodytheaxialvectoranomaly–allbasic
parametersare xedto rstorderof avorsymmetrybreaking.Thatapproachnaturallyleadsto
amassmatrix,quadraticinthemasses,withspeci edelements.Wealsotestourmixingscheme
againstexperimentanddeterminecorrectionstothe rstordervaluesofthebasicparametersfrom
phenomenology.Finally,wegeneralizethemixingschemetoincludetheηc.Againthedivergences
oftheaxialvectorcurrents xthemassmatrixand,hence,mixinganglesandthecharmcontentof
theηandη′.
PACS:14.40.Aq,11.40.Ha,11.30.Hv
arXiv:hep-ph/9802409v2 20 Jul 1998I.INTRODUCTIONη–η′mixingisasubjectofconsiderableinterestthathasbeenexaminedinmanyinvestigations,seee.g.[1–4]andreferencestherein.Asitiswell-known[5],theU(1)Aanomalyplaysadecisiverole.Fortheoctet-singletmixingangleθofthesepseudoscalarmesonsvaluesintherangeof 10 to 23 havebeenobtaineddependingondetailsoftheanalysis,seee.g.[3].Thephenomenologicalanalysisofteninvolvesdecayprocesseswhere,besidesstatemixing,alsoweakdecayconstantsappear.Thedecayconstantsarede nedbyii 0|Jµ5|P(p) = fPpµ(i=8,1;P=η,η′),(1.1)81whereJµ5denotestheSU(3)FoctetandJµ5theSU(3)Fsingletaxial-vectorcurrent,respectively.Frequently,itisassumedthatthedecayconstantsfollowthepatternofstatemixing:8=f8cosθ,fη8fη′=f8sinθ,1= f1sinθ,fη1fηf1cosθ.′=(1.2)However,recenttheoretical[6]aswellasphenomenological[7]investigationshaveshownthatEq.(1.2)cannotbecorrect.Adoptingthenewandgeneralparametrization[6]
8=f8cosθ8,fη8fη′=f8sinθ8,1= f1sinθ1,fη1fηf1cosθ1.′=(1.3)
θ1andθ8turnedouttodi erconsiderably.Thephenomenologicalanalysis[7],whichinvolvedthecombinedanalysisofthetwo-photondecaywidthsoftheηandη′,theηγandη′γtransitionformfactorsandtheadditionalconstraintfromtheradiativeJ/ψdecays,allowedtodeterminethefourquantitiesoccuringinEq.(1.3).Mostimportantly,thevaluesobtainedsatisfytheconstraints[6]fromchiralperturbationtheory(ChPT).
Theappearanceofthefourparametersf8,f1,θ8,θ1raisesanewtheproblemoftheirmutualrelationsandtheirconnectionwiththemixingangleoftheparticlestates.Thisangleisnecessarilyasingleonesincemixingwithhigherstates–theηcforinstance–canbeneglectedatthisstage.TherelationofthisanglewiththefourparametersinEq.(1.3)doesnotneedtobesimple:inapartonlanguage[8]thedecayconstantsarecontrolledbyspeci cFock
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
statewavefunctionsatzerospatialseparationofthequarkswhilestatemixingreferstothemixingintheoverallwavefunctions.
Inthisworkweexpressηandη′aslinearcombinationsoforthogonalstatesηqandηswhichcanbegenerated
u+d2andsbytheaxialvectorcurrentswiththe avorstructureq
qands
2.Wewilldemonstratethattheproperuse
ofthisquark avorbasisprovidesfornewinsightsandsuccessfulpredictions.Wepointoutthatweemploy xed(momentum-independent)basisstates.Thus,ourstatemixingangleismomentumindependentandwell-de nedalsoinanyotherbasisobtainedbyanorthogonaltransformation.Thisdi ersfromotherpossibleapproachesinwhichmomentumdependentmassmatricesareintroduced(see,forinstance,[9]).Thedecayconstants,ontheotherhand,willingeneraldependonq2,i.e.theparticlestatesandmasses,andwillthusrequireaparametrizationbytwodi erentmixinganglesasin(1.3).Theseanglesdependonthebasiswhichisusedforthede nitionofthedecayconstants.Asdescribedbelow,thebasicassumptionwhichwewilluseinthispaperisthatthedecayconstantsfollowthestatemixingifandonlyiftheyarede nedwithrespecttothequarkbasis.Inthiscircumstancethetwoanglesforthedecayconstantsobtainedinthisbasisandthecorrespondingstatemixinganglecoincideandarethusmomentum-independent.
De ningnowdecayconstantsanalogoustoEq.(1.1)butwithi=q,sanddenotingtheη–η′mixinganglethatdescribesthedeviationfromidealmixing,byφ,wepropose
qfη=fqcosφ,qfη′=fqsinφ,sfη= fssinφ,
sfη′=fscosφ.(1.4)
Thatthedecayconstantsinthequark avorbasisfollowinthiswaythepatternofparticlestatemixingisourcentralassumption.Itisequivalenttotherequirementthatthecontributionfq(fs)tothedecayconstantsobtainedfromtheηq(ηs)componentsofthewavefunctionsisindependentofthemesoninvolved.Thisassumptionappearsplausiblebutwehavenorigorousjusti cationforitandhavetotestit.ItiscertainlyrestrictiveaswillbeshowninSect.II: rst,itreducesthenumberofparametersagaintothree.Secondly,byinvokingthedivergencesofthecurrents,theangleφisconnectedtofq/fs.Finally, avorsymmetry xesfqandfsto rstorderofSU(3)Fbreaking,leavingus–tothisorder–withnofreeparameter.Massmixingofthepseudoscalarmesonsisalsodiscussedinthissection.NumerousphenomenologicalchecksarepossibleandperformedinSect.III.WedeterminephenomenologicalvaluesforthethreeparametersfromthedataandcheckforconsistencywithChPTandtheearlierdetermination[7]ofthefourquantitiesf8,f1,θ8,θ1.OurschemewillthenbegeneralizedtoincludetheηcinSect.IV.Thegeneralizedapproachallowstocestimatethequarkcontentofthethreepseudoscalarmesons,themixinganglesandthecharmdecayconstantsfηcandfη′whichattractedmuchinterestinthecurrentdiscussion[10–13]oftheratherlargebranchingratiofortheprocessB→Kη′asmeasuredbyCLEO[14].OursummaryispresentedinSect.V.
II.THEqsMIXINGSCHEME
Thetwostatesηqandηsarerelatedtothephysicalstatesbythetransformation
ηqη=U(φ),′ηηs
whereUisaunitarymatrixde nedby
U(α)= cosα
sinα sinαcosα .(2.1)(2.2)
Weassumethatthephysicalstatesareorthogonal,i.e.thatmixingwithheavierpseudoscalarmesons(e.g.theηc)canbeignored,see,however,Sect.IV.Westressthataslongasstate-mixingisconsidered,onemayfreelytransformfromoneorthogonalbasistotheother.Forexample,thestandardoctet-singletmixingangleisgivenbyθ=φ θideal.AccordingtoourcentralassumptiondescribedinSect.1,wetake
q s fηfηfq0=U(φ)F,F=.(2.3)qsfηfη0fs′′
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
Transformingthenon-strangeandstrange
axial-vector
currentsintooctetandsingletcurrents,onecanalsoconnectthedecayconstantsde nedinEq.(1.1)tofqandfs
81 fηfη=U(φ)FU (θideal)(2.4)81fη′fη′
withtheresult
f8=
f1=
andthus 2fs/fq),2fq/fs)
√(2.5)tan(θ1 θ8)=
q-s
4π .GG(2.7)
itsdual;midenotethecurrentquarkmasses.Thevacuum–mesonGdenotesthegluon eldstrengthtensorandG
transitionmatrixelementsoftheaxialvectorcurrentdivergencesaregivenbytheproductofthesquareofthemeson2mass,MP,andtheappropriatedecayconstant.Forinstance,
s2s 0| µJµ5|η =Mηfη.(2.8)
Themassfactors,whichnecessarilyappearquadraticallyhere,canbeconsideredastheelementsoftheparticlemassmatrix 2 M0ηM2=.(2.9)20Mη′
iWiththehelpofEq.(2.3)thematrixelementsof µJµ5(i=q,s)canthenbeidenti edasthoseofthematrixproduct
M2U(φ)F.Transformingittothequark avorbasisandsolvingforthemassmatrix
2M2qs=U(φ)MU(φ),(2.10)
oneeasily nds
M2qs= m2qq+
2√fq 0|4παsfs |ηs GG 0|1αsm2ss+4π |ηs GG(2.11)
whereweusetheabbreviations
√m2qq=fq¯iγ5d|ηq ; 0|muu¯iγ5u+mddm2ss=2
2 0|αs 0|αsfs
.(2.13)
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
Forlateruseitisalsoconvenienttointroducetheabbreviation
a2=αs1 0|2fq
2
y=22(Mη′ Mη)sin2φ,.(2.15)(2.16)2a2
ThecombinationofEqs.(2.13)and(2.16)providesaninterestingrelationbetweenfq/fsandthemixingangleφ.Alsoworthnotingistherelationbetweenφandθ8thatisobtainedbycombiningEq.(2.5)withEqs.(2.13)and(2.16)
cotθ8= 2Mη′
2 f2.2fKπ(2.19)
NotethatV-spinconsiderationsprovidealinearrelationbetweenthedecayconstantsfs,fπandfKwhich,totheconsideredorderof avorsymmetrybreaking,canbereplacedbytheabovequadraticrelation.AscanbeseenfromEq.(2.6),thesetheoreticalresultsforfqandfsleadtoasubstantialdi erencebetweenθ1andθ8.OnlyinthestrictSU(3)Flimitwherefq=fs(or,equivalently,fK=fπorf8=f1)onewouldhaveθ1=θ8=θ,withθbeingtheoctet-singletmixingangle.AccordingtoLeutwyler[6],ChPTprovidestworelations(upto1/Nccorrections)amongthedecayconstants
22 1fKf8=3
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
powercompletely1.Inthenextsectionwewillconfrontourapproachwithexperiment.Wedeterminethemixingangleφandthebasicdecayconstantsfqandfsphenomenologicallyandlookforconsistencyandfordeviationsfromthe rstorderofSU(3)Fbreaking.
III.THEPHENOMENOLOGICALVALUESOFφ,Fq,Fs
Severalpossibilitiestoextractthevalueofthemixinganglefromexperimenthavebeendiscussedintheliterature,see,forinstance,[1,3,15,16].Wecanpro tfromthesepapersbyproperlyadaptingthemtotheqsmixingscheme.Wenotethatinthephenomenologicalanalyses[1,3,15,16]someadditionalsimplifyingassumptionshadtobemade.Thus,forinstance,OZI-suppressedcontributionsormassdependenciesofformfactorsandcouplingconstantsareignored.Westartby rstdiscussingprocesseswhichareindependent(orinsensitive)tothedecayconstantsandallowaoneparameter toftheparticlestatemixingangleφ.
ThedecayJ/ψ→Pρ:WeconsidertheratioofthedecaywidthsΓ[J/ψ→η′ρ]andΓ[J/ψ→ηρ].IntheseprocessesG-parityisnotconserved,theyproceedthroughavirtualphoton(seeFig.1a).Contributionsfromtheisospin-violatingpartofQCDaresupposedlyverysmallascanbeinferredfromthesmallnessoftheJ/ψ→φπwidthandwillbeneglected.Thecalculationofthedecaywidthsrequirestheknowledgeoftheρ–Ptransition2formfactorsatmomentumtransferq2=MJ/ψ.Onaccountofthe avorcontentoftheρmeson,thistransitionformfactoronlyprobestheηqcomponentsoftheηandη′ifOZI-suppressedcontributionsareneglected.Hence,
Fρη(q2)=cosφFρηq(q2),
Fρη′(q2)=sinφFρηq(q2).
andtherefore
Γ[J/ψ→η′ρ]
kηρ
where
222kPV=MJ/ψ[1 (MP+MV)/MJ/ψ]/2.(3.1) 3(3.2)(3.3)
Fromtheexperimentalvalue0.54±0.11forthisratioofdecaywidths[17]weobtainφ=39.9 ±2.9 .Almostthesamevalueforφhasbeenfoundinananalysisofallisospin-1J/ψ→PVdecays(includingpions)[16].Aglobal ttoallJ/ψ→PVdecaymodesonthebasisofaparticularmodel,yieldsφ=37.8 ±1.7 [16].Becauseofitsmodeldependencewewillnotusethelatterresultinevaluatingtheaverageofthemixingangle.SinceinthederivationofEq.(3.2)onlythemixingangleoftheparticlestatesenters,onemayfreelytransformfrom
sbasistotheoctet-singletoneaswasdone,forinstance,in[16].Nevertheless,thesimplerelationtheq
betweentheratioofdecaywidthsandthemixingangle,independentofthedynamics,isanadvantageoftheqsbasisusedhere.Intheoctet-singletmixingschemeonewouldhavetodealwithalinearcombinationoftwoaprioridi erentformfactors.Wewillpro tfromthisadvantagealsointhefollowing veprocesses.
Thedecaysη′→ργandρ→ηγ:Thetransitionmatrixelementscontrollingtheseprocessescanbedecomposedcovariantly[18]
( )νλσ γP(pP)|T|ρ(pρ) = egρPγ µνλσpµpρερ,Pεγ(3.4)
leadingtothefollowingexpressionsforthedecaywidths
23Γ[η′→ργ]=αgρη′γkρ,Γ[ρ→ηγ]=α
Usingthephenomenologicalparametersfoundin[7],andtranslatingthemintothequark avorbasiswithadmissionoftwomixingangles,φqandφs,de nedinanalogytoEq.(1.3),one ndsfq=1.09fπ;fs=1.38fπ;φq=39.4 andφs=38.5 .ThefactthatthetwoanglesnearlycoincidegivedirectsupporttothevalidityofEq.(1.4).1
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
where
kf=Mi[1 Mf2/Mi2]/2,(3.6)
beingthe3-momentaofthe nalstatemesonf.
M
i
denotes
the
mass
of
the
decaying
meson.
αisthe nestructureconstant.
Using
state
mixing(2.1),one nds
gρη′γ
Γ[a2→ηπ]=tan2φ kη′π
σ(π p→ηn)2=tan2φ(s MP)(3.9)
Thetwoexperimentsleadtoφ=36.5 ±1.4 [21]and39.3 ±1.2 [22].Sincethetworesultsarenotfully¯.consistentwitheachotherwewilldoubletheerrorsintheevaluationoftheaveragedvalueφ
Annihilationprocessespp¯→PM(M=π0,η,ω):TheCrystalBarrelCollaboration[23]measuredtheratiosforannihilationintoηMandη′Mandquotedavalueofφ=37.4 ±1.8 forthemixingangle.However,sincetheexperimentwascarriedthroughatlowenergies,theresultforφisrathersensitivetophasespacefactorsandtothemomentumdependenceoftheannihilationamplitudes.Wethereforediscardthatvalueofφinthedeterminationoftheaveragedmixinganglealthoughitwillturnouttobeconsistentwithit.
ThedecayJ/ψ→Pγ:Accordingto[24,15]thephotonisemittedbythecquarkswhichthenannihilateintolighterquarkpairsthroughthee ectoftheanomaly.Thus,thecreationofthecorrespondinglightmesonsiscontrolledbythematrixelement 0|αs
Γ[J/ψ→ηγ]=tan2φ4Mη′
kη 3=cot2θ8 kη′
Onemayextendthisanalysistotheωandφcases.Ignoringthesmalle ectduetotheω φmixing,onederivesgωη′γ/gωηγ tanφandgφη′γ/gφηγ cotφ,respectively.Fromthemeasuredvalues/bounds[17]weobtainφ 37 ±8 andφ>21 ,respectively.2
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
Fromthemeasuredvalue
[17]RJ/ψ=5
.
±
.6themixingangleφbecomes39.0 ±1.6 .Obviously,Eq.(3.10)isnotequivalenttothenaivesingletdominancepredictionforwhichthefactorcotθ8wouldhavetobereplacedbycotθ.AswelearnedinSect.II,θ8markedlydi ersfromtheoctet-singletmixingangle.
FIG.1.a)ElectromagneticcontributiontoJ/ψ→ρη,η′.b)PoleansatzfortheDs→P νsemi-leptonicdecay.
Aweightedaverageoftheabovesevenhigh-lightedvaluesyields
2,Cs=1/9)
Γ[η→γγ]=9α2
fq
16π3
andsolvingforfqandfs,wearriveat
fq=3Cqα
sinφΓ[η→3γγ]/Mη3Mη′ Cssinφ 2 Cqsinφfs,(3.13)+sinφ Γ[η′→3γγ]/Mη′4π3/2 1.(3.14)
WeevaluateEq.(3.14)withthemixingangleaccordingtoEq.(3.11)andthefollowingexperimentalvaluesforthedecaywidthsΓ[η→γγ]=(0.51±0.026)keVandΓ[η′→γγ]=(4.26±0.19)keV[17].Thevalueof0.324±0.046keV,obtainedfromthePrimako productionmeasurementofη→γγ,isnotincluded.Itturnsoutthatfsisnotwelldeterminedthisway,itacquiresaratherlargeerrorfs=(1.42±0.16)fπ.Wethereforeevaluatefsalsofromfqandthephenomenologicalvalueoftheratioyandformtheweightedaverageofbothvaluesto ndamoreprecisevalueforfs.Bythismeansweobtain
fq=(1.07±0.02)fπ,
fs=(1.34±0.06)fπ.(3.15)
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
Thesevaluesforthebasicdecayconstantsdi erfromthetheoreticalvalues(2.19)onlymildly.Since,withintheerrors,boththevaluesoffsdeterminedhereagreewitheachother,theexperimentalvaluesof
the
two-photondecaywidthsarewellreproducedbytheparameterset(3.11),(3.15).
Asanimmediatetestoftheparameters(3.11)and(3.15)wecomputethePγtransitionformfactorsalongthelinesdescribedindetailin[7].We ndexcellentagreementbetweentheoryandexperiment[14].Thenewresultsarepracticallyindistinguishablefromthe tperformedin[7](χ2/d.o.f.is28/34ascomparedto26/33in[7]).TheformfactoranalysisisbasedonapartonFockstatedecompositionofthephysicalmesons.ThewavefunctionsofthevalenceFockstates,providingtheleadingcontributiontotheformfactoraboveQ2=1GeV2,areassumedtohavetheasymptoticform.Thevaluesofthesewavefunctionsattheoriginofcon gurationspacearerelatedtothedecayconstants[7].
AcomparisonbetweenthetheoreticalandphenomenologicalvaluesofthemixingparametersismadeinTableI.Ascanbenoticedthereisnosubstantialdeviationbetweenbothsetofvalues,i.e.higherorder1/Nccorrections,absorbedinthephenomenologicalvalues,seemtobereasonablysmall.InTableIIwelistthevaluesoftheparametersde nedinEq.(1.3),i.e.intheparametrizationintroducedbyLeutwyler[6],asobtainedfromvarioussources.Thetheoreticalvaluesoff8,f1,θ8arecomputedfromthedecayconstantsgiveninEq.(2.19)andthetheoreticalmixinganglelistedinTableIwhilethephenomenologicalvaluesfollowfromEqs.(3.11)and(3.15).Ascanbeseentheresultsobtainedfromtheanalysesperformedinthisworkandin[6,7]agreeratherwellwitheachother.Theconventionalanalyses,e.g.[3,15],arenotincludedinthetablebecausethedi erencebetweenθ8andθ1isnotconsidered.
IV.GENERALIZINGTOη–η′–ηcMIXING
Fromtheprevioussectionswelearnedthatourcentralassumption(1.4)combinedwiththedivergencesoftheaxialvectorcurrentsleadstoavarietyofinterestingpredictionswhichcomparewellwithexperiment.Thereasonforthissuccessislikelytheratherlargedi erencebetweenthecurrentmassesofthestrangeandtheup/downquarks.Sincethecharmquarkmassisevenheavierthanthestrangeone,itistemptingtogeneralizetotheqs–c
q–scbasisreads(i,j=q,s,c),
222M2qsc=U(φ,θy,θc)diag(Mη,Mη′,Mηc)U(φ,θy,θc).(4.3)
Ontheotherhand,generalizingEq.(2.11)andusingtheabbreviations(2.12),(2.13)and(2.14)introducedinSect.II,wemaywritethemassmatrixasfollows
√ 2 222ay2amqq00√2 .+M2=0m0(4.4)yqscss200mcc2a2yza2z2a2
OnexploitingagainthedivergencesoftheaxialvectorcurrentsandthepropertiesofthemassmatrixanumberofconsequencesfollowsfromwhichallnewparametersappearinginEq.(4.4)canbe xed
z=fq/fc,θy=θ8,
222=m2Mηcc+zac(4.5)
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
and
θc= z 2Mηc(4.6)
witha2asgiveninEq.(2.15).UsingthephenomenologicalparametervaluesquotedinTableI,we ndthefollowing2=m2numericalresults:z=0.35±0.03;θc= 1.0 ±0.1 .Sincez2a2=0.03GeV2wehaveMηcctoaverygoodc′approximation.Thecharmdecayconstantsoftheηandtheηtakethevalues
cfη= (2.4±0.2)MeVcfη′= (6.3±0.6)MeV(4.7)
Theirvaluesareinroughagreementwiththeresultspresentedin[13,27,28]butindramaticcon ictwiththevaluescquotedin[10,11].fη′lieswellwithintheboundestimatedin[7].Ouranalysissupportstheconclusionsdrawnin[13]thatthecharmcontentoftheη′isnotthesolutionfortheabnormallylargeB→Kη′decaywidth,theexplanationofwhichremainsanopenproblem.
Usingtheabovevaluesforthemixinganglesφ,θyandθc,we ndforthequarkcontentofthephysicalmesons
|η =0.77|ηq 0.63|ηs 0.006|ηc0 |η′ =0.63|ηq +0.77|ηs 0.016|ηc0 |ηc =0.015|ηq +0.008|ηs +|ηc0 .(4.8)
Thecharmadmixturestotheηandη′aresomewhatsmallerthanestimatedin[1]butslightlylargerthanquotedin
[28].Apossibletestfortheηc0contentisprovidedbytheradiativeJ/ψdecays.ForthedecaysJ/ψ→ηγ,η′γweusedalreadytheactionofthegluonsasdescribedbythematrixelementsoftheanomaly(notethatθ8=θy).Sincetheη′hastheηc0contentθccosθ8whiletheηc0contentofηcispracticallyone,weexpect
3 αs 3′ 0|Γ[J/ψ→ηγ]√=(4.9)kηckηc
Theexperimentalnumberforthisratio,0.33±0.10[17],givesusanother–admittedlylessreliable–determinationofthecharmadmixtureinη′.Theresult|θccosθ8|=0.014±0.002isingoodagreementwiththenumbercontainedinEq.(4.8).
V.SUMMARY
Inthedescriptionofη-η′mixingthereare veparametersinvolved,themixingangleoftheparticlestatesandfourdecayconstants.Motivatedbytheobservationofnearlyidealmixinginvectorandtensorparticleswetakeasourbasisthestatesaccordingtotheirquark avorcompositions.Ourcentralassumptionisthenthatinthisparticularbasisthemixingofthedecayconstantsfollowsthatofstatemixing.Thisnewmixingschemeisveryrestrictive.It xesthestructureofthemassmatrixandpredictsthemixingangleandthefourdecayconstantsupto rstorderin avorsymmetrybreaking:
i)Thefourdecayconstantsareimmediatelyreducedtotwoconstantsfqandfsandasingleangleφthatisidenticaltothestatemixingangleanddescribesthedeviationfromidealmixing.
ii)Thedivergencesoftheaxialvectorcurrentsprovideuswithamassmatrixquadraticintheparticlemasseswitho diagonalelementsentirelydeterminedbytheanomaly.Theoldproblemofquadraticversuslinearmassmatriceshasfounditsanswer.
iii)ingthisresultthemixingangleφcanbecalculatedfromfq/fs.iv)SU(3)Frelations xfqandfsintermsoffπandfKto rstorderin avorsymmetrybreaking,and xthose22partsofthemassmatrixwhichcontainthecurrentquarkmassesintermsofMπandMK.Thedecayconstantsobtainedthiswayobeytherequirementsofchiralperturbationtheorywhichareknownuptoorder1/Nccorrections.v)Withtheseingredientsandbyusingtheknownmassesofthephysicalstatesthemassmatrixisover-determined.Althoughsizeablecorrectionstothe avorsymmetryresultscouldhavebeenexpected,theresultingparameter-freede-terminationofthemixingangleandthedecayconstantsisinreasonableagreementwithapreviousphenomenologicalanalysiswithunconstrainedparameters.
vi)Weperformedanewanalysisanddeterminedphenomenologicallyφandfqandfsfromseveralindependentexperiments.Allresultswereconsistentwitheachother.Thus,theweightedaveragevalueforthemixingangleis
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
ratherprecise:weobtainedφ=39.3 ±1 whichgivesasingle-octetmixingangleofθ= 15.4 .Fortheangleθ8whichisresponsiblefortheη,η′ratioinradiativeJ/ψdecayswefoundavalueof 21.2 .Thevaluesforfqandforfsdi erfromthetheoreticalpredictions(to rstorderof avorsymmetrybreaking)onlymildly.
vii)Itisstraightforwardtogeneralizethenewmixingschemetoincludethemixingwiththeηcwhichisofparticularrecentinterest.HerethedecayconstantfcenterswhichwetakeequaltofJ/ψ.Withthisingredientthec
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]H.FritzschandJ.D.Jackson,Phys.Lett.66B(1977)365.N.Isgur,Phys.Rev.D13(1976)122.F.J.GilmanandR.Kau man,Phys.Rev.D36(1987)2761.V.Dmitrasinovic,Phys.Rev.D56(1997)247.E.Witten,Nucl.Phys.B149(1979)285;G.Veneziano,ibid.B159(1979)213.H.Leutwyler,Nucl.Phys.Proc.Suppl.64(1998)223;R.Kaiser,diplomawork,BernUniversity1997.T.FeldmannandP.Kroll,tobepublishedinEur.Phys.J.C(1998),hep-ph/9711231.S.J.BrodskyandG.P.Lepage,Phys.Rev.D22(1980)2157.D.U.JungnickelandC.Wetterich,Eur.Phys.J.C1(1998)669.H.Y.ChengandB.Tseng,Phys.Lett.B415(1997)263.I.HalperinandA.Zhitnitsky,Phys.Rev.D56(1997)7247.A.AliandC.Greub,Phys.Rev.D57(1998)2996.A.Ali,J.Chay,C.GreubandP.Ko,Phys.Lett.B424(1998)161.CLEOcollaboration,B.H.Behrensetal.,Phys.Rev.Lett.80(1998)3710.P.Ball,J.M.FrereandM.Tytgat,Phys.Lett.B365(1996)367.A.Bramon,R.EscribanoandM.D.Scadron,Phys.Lett.B403(1997)339;A.Bramon,R.EscribanoandM.D.Scadron,hep-ph/9711229.ParticleDataGroup,R.M.Barnettetal.,Phys.Rev.D54(1996)1.O.Dumbrajsetal.,Nucl.Phys.B216(1983)277.M.Wirbel,B.StechandM.Bauer,Z.Phys.C29(1985)637.CLEOcollaboration,G.Brandenburgetal.,Phys.Rev.Lett.75(1995)3804.Serpukhov-CERNcollaboration,W.D.Apeletal.,Phys.Lett.83B(1979)131.N.R.Stantonetal.,Phys.Lett.92B(1980)353.CrystalBarrelcollaboration,C.Amsleretal.,Phys.Lett.B294(1992)451.V.A.Novikovetal.,Nucl.Phys.B165(1980)55.CLEOcollaboration,J.Gronbergetal.,Phys.Rev.D57(1998)33;L3collaboration,M.Acciarrietal.,Phys.Lett.B418(1998)399.T.FeldmannandP.Kroll,Phys.Lett.B413(1997)410;M.NeubertandB.Stech,hep-ph/9705292.A.Petrov,hep-ph/9712497.K.Chao,Nucl.Phys.B317(1989)597,Nucl.Phys.335(1990)101;F.YuanandK.Chao,Phys.Rev.D56(1997)2495.
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the
source
1.00
1.071.411.3442.4 39.3 12.3 15.4 0.780.810.2810.265f8/fπ
1.28
[6]
1.28
phenomenologyf1/fπ1.151.20θ8 21.0 22.2 θ1 2.7 9.1
正在阅读:
Mixing and Decay Constants of Pseudoscalar Mesons07-25
基于OGRE的海量三维模型动态调度技术的研究与实现 - 李雷04-14
2014级机械原理复习解析06-15
感谢那个为我提灯的人作文700字06-22
教你怎样看一个人03-25
D6_1微分方程及其求解(4)08-29
感 受 美 国 人 水 关系05-21
我的回忆作文600字初二记叙文优秀9篇03-22
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Pseudoscalar
- Constants
- Mixing
- Mesons
- Decay
- 幼儿园食品安全宣传知识
- 低钾血症的鉴别诊断
- 天津2015年上半年幼儿保教知识与能力:幼儿教育考试试题
- 现代汉语单元练习四(语法)
- 新人教版16.1二次根式(1)
- 实小教研片0910学年小学语文四年级上册期末质量检测
- 车辆动力学(第六章)
- 母婴保健技术考核试题母婴保健法试题
- 注册建造师执业工程规模标准(公路工程)
- 2013届高考理科数学第一轮复习测试题12
- 人教版四年级数学上册及教学反思
- 2015-2016学年度北京课改版二年级上册语文期末试题及答案
- 3D图原理及观看方法
- 幼儿园消防安全知识宣传教育
- 高中英语语法连词和介词【30题】
- 国际商务谈判准备1
- 幼儿园教师防火知识培训内容及幼儿防火知识
- 加强实验室建设与管理提高实验教学质量
- 关心支持国防建设双十佳人物事迹材料
- 幼儿园消防安全知识幼儿