Capacitance sensor for void fraction measurement in water steam
更新时间:2023-09-03 02:32:01 阅读量: 教育文库 文档下载
- capacitance推荐度:
- 相关推荐
FlowMeasurementandInstrumentation15(2004)317–324
http://www.77cn.com.cn/locate/ owmeasinst
Capacitancesensorforvoidfractionmeasurementinwater/steam
ows
A.JaworekÃ,A.Krupa,M.Trela
InstituteofFluidFlowMachinery,PolishAcademyofSciences,POBox621,Fiszera14,80-952Gdansk,Poland
Received17December2003;receivedinrevisedform25February2004;accepted16April2004
Abstract
AcapacitancesensoroperatingatRFrangeforvoidfractionmeasurementswasdeveloped.Twoelectrodesofthecapacitoraremountedontheoutersideofpipewalls.Thevariationsinthepercentageofphasesintwo-phase owcausechangesoftheequivalentpermittivityofthedielectricbetweentheelectrodes.Thecapacitorisconnectedinaresonantcircuitofanoscillatortunedtohighfrequencyof80MHz.Thechangesoffrequencygeneratedbytheoscillatorarethemeasureofthevoidfractioninthetwo-phase ow.Aneight-channelsystemwithcapacitancesensorsofthistypewasusedfordeterminationofthephasecon-versionalongasteaminjector.
#2004ElsevierLtd.Allrightsreserved.
Keywords:Two-phase ow;Voidfractionmeasurement;Steaminjector;Capacitancesensor
1.Introduction
Two-phase owsarefrequentlymetinmanytechni-calandenergyconversionprocesses.Avarietyofmeth-odshavebeendesignedforinsitudeterminingthegasvolumefractionintwo-phase owwithoutdistortingthe ow,ortheneedofusingaseparationtechnique.TheradiationmethodsarebasedonX-orc-rayextinc-tion,andallowmeasurementofareavoidfractioninaselectedcrosssectionofapipe.Electricalsensorsmea-surethepermittivityorresistanceoftheliquidphase,whichsigni cantlydi ersfromthatofvoids.Admit-tancesensorsmeasuretheconductivitybetweentwoparallelwiresstretchedacrossthepipe.Admittanceprobecanbeappliedforslugorbubble owswhenthesizeofbubbleislargerthanthewirespace.Theadvan-tageofsuchdevicesistheirhighsensitivity.Thistypeofprobe,however,distortsthe owandcanchangethe owpattern.
Electricalcapacitancesensorsweredevelopedfornon-invasivemonitoringofphasepercentageingas–liquidtwo-phase owsinpipelines.Thecapacitance
Correspondingauthor.Tel.:+48-58-346-0881;fax:+48-58-341-6144.
E-mailaddress:jaworek@imp.gda.pl(A.Jaworek).0955-5986/$-seefrontmatter#2004ElsevierLtd.Allrightsreserved.doi:10.1016/j. owmeasinst.2004.04.002
Ã
sensorsmeasurethephasepercentagedetermininganelectricalcapacitancebetweenoneormorepairsofelectrodesmountedinsideoroutsideofthepipewalls.Thecapacitancecanvaryintherangeof0.1–10pF,butinordertoachievehighmeasurementsensitivityandgoodsignal-to-noiseratiothee ectofstraycapacitancemustbeminimised.Theoutputsignalisnotproportionaltothephasevolumepercentage,andalsodependsonthe owpattern,andthereforethecalibrationofthesensorisneeded.Thistypeofdevicewasusedforgas–liquidsystemsormeasurementsofconcentrationofsolidparticlesingas[1–10].Thecapacitance-sensortechniqueswerereviewedbyHuangetal.[5].
Thecapacitancesensorsaresuccessfullyusedinthecapacitancetomography,atechniquethatisabletodeterminethe owpatternofgas–solid,gas–liquidortwo-liquidmixtureinrealtime[11–16].Thesinglecapacitancesensorallowsonlyroughdeterminationofthephasespercentagewithoutanyinformationonthe owpattern.However,incontrasttothecapacitancetomographythesinglecapacitancesensorissimpleindesignandinoperation.Itdoesnotrequireacomplexsoftwaresolvinganinverseproblem,andismuchcheaper.
318A.Jaworeketal./FlowMeasurementandInstrumentation15(2004)317–324
Thispaperpresentsacapacitancesensorusedforvoidfractionmeasurementsinwater/steamtwo-phase ow.Thisdevicedi ersfromthosepresentedintheliteratureinthatitisconnectedinaresonantcircuitofanelectronicoscillatortunedtoradiofrequency.Var-iationsinthecapacitanceofthesensorcausedbyvoidpercentagechangewithintheelectrodesleadtofre-quencydeviationsoftheoscillator.Thesedeviationsareusedfordeterminationofthevoidfractioninthe ow.Asetofsuchsensorswasusedfordeterminingthevoidfractiondistributionalonganozzleinthelab-scalesteaminjectorattheInstituteofFluidFlowMachinery.
2.Sensortheoryandcharacteristics
Thecapacitancesensorpresentedinthispaperdeter-minesameanvalueofphasepercentageintwo-phase ow.Themeasurementsofcapacitanceofacapacitor lledwithaconductingliquid,likewater,aredi cultbecauseequivalentresistanceoftheliquid,whichisusuallylow,isconnectedinparallelwithcapacitivecomponentoftheadmittance,providedthewatercomponentisthecontinuousphaseinthemixture.Forlowfrequencies,thisresistanceislikea‘short-circuit’tothecapacitance.Tocut-o thee ectoftheresist-ance,http://www.77cn.com.cnmerciallyavailablemeasuringdevicesareusuallyusedforcapacitancedeterminationofcapacitancesensors.Stottetal.[2]testedexternalandinternalcapacitanceofasensorbutonlyforlowfrequencyof1.6kHz.AbouelwafaandKendall[1]usedaradio-frequencybridgeoperatingatthefre-quencyof1MHz,however,itwasstilltoolowtoover-cometheliquidconductancecomponentofthesensorcapacitance.Huangetal.[4]excitedthecapacitancesensorwithfrequencyofupto5MHz.Thefrequencyof80MHzforexcitationofacapacitancesensorusedinlaboratorytestsofvoidfractionmeasurementwasproposedbyJaworek[7].Themethodofoscillationfrequencydeviationwasusedbytheauthorfordeter-minationofthesensorcapacitance.
Thefrequencyof80MHzwasalsousedfordetermi-nationofcapacitancevariationinthispaper.Atthisfre-quencythereciprocalofthetimeconstantofelectricalrelaxationprocessesintheliquid(tapwater)de nedasqe(qistheliquidresistivity,eitsabsolutepermittivity)isafewtimeslowerthantheexcitationfrequency.Thisreducesthee ectofliquidconductanceonthemeasur-ingresults.Forexample,whentheresistivityoftap
waterisq¼25Xmatthetemperatureof20v
C,anditselectricalpermittivitye¼7Á10À10C=Vm[17]thenthereciprocalofthetimeconstantis1=s¼8:9MHz.
Thecapacitancesensorusedintheexperimentscon-sistedofapairofbrasselectrodesmadeintheformof
stripsofwidthof10mm,whichweremountedaroundtheoutsidewallofapipemadeofpolycarbonate.Thecrosssectionofthepipeandthesensor,andalsoanelectricalschemeofthemeasuringcircuitareshowninFig.1.
Themeasurementsofvoidfractionwithcapacitancesensorarequasi-local,i.e.,thesensordeterminesthepercentageofbothphasesnotstrictlyinaselectedcrosssectionofthepipebutinacertainvolume,basedontheelectrodesheight.Theexactboundaryofthisvolumecannotbepreciselydrawnduetofringee ects.Tominimisethenon-locale ects,theheightoftheelectrodesmeasuredalongthepipeshouldbeasshortaspossible,butthee ectofthefringe eldcannotbeeliminated.Shortelectrodeshave,however,smallcapacitanceandlowsensitivity,andinthiscaseacompromiseisneeded.Thesensorwasshieldedtominimisethedistortione ectsduetoouterobjectsandelectromagnetic elds.Theshielddimensionsshouldbeaslargeaspossibleinordertominimisestraycapaci-tance.
Inasimpletheoreticalmodel,thecomplexdistri-butionofliquidandvoidfractionsinapipecanberepresentedbyalumpedcapacitanceCeofunknownrelativepermittivityeeofthemediuminthepipe.Theequivalentcapacitanceinthissystemisthe
imaginary
Fig.1.Electricalschemeofthemeasuringcircuit.
A.Jaworeketal./FlowMeasurementandInstrumentation15(2004)317–324319
partofthee ectiveimpedanceoftheliquidwithinthepipeinserieswithtwovirtualcapacitances2Cwbetweenwaterandelectrodes,withthepipewallsasdielectric(Fig.1).TheparallelresistanceReqofwaterwithinthepipewasassumedtobenegligible.Thecon-ductanceofthepolycarbonatetubecanalsobeneglec-tedbecauseitisaperfectdielectric.Thee ectivecapacitanceofthesensoris:
C¼
CeCw
Cð1Þ
eþCw
ThecapacitanceCeisanidealisedcapacitance,whichvariesduetophasepercentagechanges.OtherstraycapacitancesincludingthattoagroundedshieldandgroundedelementsarerepresentedbyCc.Alsothecapacitanceduetofringee ects.i.e.,thatgeneratedby eldlinesnotpenetratingthemixturecanbeincludedtoCc.Thecapacitancevariationscausedbythechan-gesinphasepercentagearemeasuredbyfrequencymethod.TheelectrodesareconnectedasacapacitorinaLC-resonantcircuitoperatinginacircuitofaradio-frequency(RF)oscillator.TheRFoscillatorisverysensitivetothecapacitancevariationscausingfre-quencydeviations.Thesedeviationscanbeeasilydeterminedbycomparisonoftheactualfrequencyoftheoscillatorwithareferencefrequency.Theoscillatorandreferencegeneratorwereplacedonaprintedcir-cuitboardclosetotheelectrodestominimisestraycapacitanceandreduceexternaldistortions.Miniaturedimensionsofthisdevicewereachievedbyusingsur-facemounteddevices.Thedi erencefrequencywasnexttransmittedtoamicroprocessorsystemmeasuringlowfrequencyinupto4MHzrange.
TheelectricalcapacitanceCedependsonthee ectivepermittivity,ee,ofthemediumbetweentheelectrodes.Whentheproportionbetweentheliquidphaseofhighrelativepermittivityandgasphaseofdielectriccon-stantequalto1changes,thee ectivecapacitancevar-iesprovidinginformationonthegas/liquidcontent.Theproblemofe ectivepermittivityordielectricconstantofamediumcomposedoftwoimmiscibledielectricsofdi erentelectricpropertieswasstudiedbymanyauthors.Fourmodelscanbeapplicabletothesituationoftwo-phase ows(cf.Bruggeman[18]):1.Platevoidsplacedperpendicularlytotheelectrodesinacontinuousmedium,whichcanbereducedtotwovirtualcapacitancesconnectedinparallel,oneofpermittivityofwaterandtheotherofgaseousphase,inwhiche ectiverelativepermittivitywasgivenbyWienerformula[18]:ee¼dgegþdlel
ð2Þ
wheredg,anddlaregasandliquidfractions,respect-ively(dgþdl¼1),egandelaretherelativepermit-tivitiesofthegasandliquid,respectively.
2.Platevoidsplacedparalleltotheelectrodesinacon-tinuousmedium,whichcanbereducedtotwovir-tualcapacitancesconnectedinseries,alsoproposedbyWiener[18]:ee¼
1
dð3Þ
g=egþdl=el
3.Acontinuousmedium(water)withcylindricalvoidsplacedparalleltotheelectrodes,whichcouldbeamodelofannular ow[18]:
eðdÞðeq
gÀdlgÀelÞþðdgÀdlÞ2ðegÀelÞ2þ4egel
e¼
2
ð4Þ4.Acontinuousmediumwithsphericalvoids,whichcouldbeamodelofbubble ow[18]:
2ðddÞþq ð2ðd
egegþlelÞÀðdgelþdleggegþdlelÞÀðdgelþdlegÞÞ2þ8egel
e¼
ð5Þ
Forun-orderedplatevoids,Bruggemanproposedaformulaforrelativepermittivityasageometricmeanof(2)and(3):
s
e¼dgegþdleel
d=eeð6Þ
ggþdl=lAllmodelsofe ectiverelativepermittivityforagas–watermixtureareshowninFig.2aasafunctionofvoidfraction.Themodelbasedontwoparallel-capaci-tancesgivespermittivityproportionaltothecompo-nentsfraction.Othermodelsarenon-linear,andthepermittivityislowerthanthatfortheparallel-capaci-tancemodel.
Theequivalentcapacitanceofthemixturebetweentheelectrodescanbepresentedasacertainfunctionoftherelativepermittivityeeofthemedium:Ce¼Ce0fðeeÞ
ð7Þ
whereCe0istheequivalentcapacitancefora¼1,i.e.,forthepipewithoutwaterinside.
Theangularresonancefrequencyoftheoscillator,ingeneral,is:x2¼
1LC
ð8Þ
whereListheinductanceoftheresonantcircuit,Cisthetotalcapacitanceintheresonantcircuitcomprisingthecapacitanceofthesensor.ThecapacitanceCcanbewrittenasC¼C1
e
1þCþCð9Þ
e=Cw
c
whereCcisadditional(forexampleatrimmerusedfor
320A.Jaworeketal./FlowMeasurementandInstrumentation15(2004)317–324
Fig.2.(a)E ectiverelativepermittivityoftwo-phasemixturedeterminedfrommodels(2–6)).(b)Relativefrequencydeviationsofanoscillatorfordi erente ectivepermittivitymodels.
tuningtheresonantcircuit)andthestraycapacitanceofthewholecircuitinparallel(cf.Fig.1).
Takingintoaccount(7)and(9)in(8)theresonancefrequencyis:x2¼
1LCc
1
e0fðeeÞ1þ
1þðCe0=CwÞfðeeÞCc
deviations
ð10Þareð11Þ
oftheoscillatoris:
x2¼
1
LCc
1
1þ
e0ðaþelð1ÀaÞÞ
e0wlc
ð13Þ
Therelativeangularfrequencydeterminedfromtheequation:xgÀx1Àx=xg
¼
xgÀxl1Àxl=xg
inwhichxgistheangularfrequencyforthepipefreeofwater(aironly)i.e.,fora¼1,andxlforthepipetotally lledwithwater,whena¼0.
Allmodelsofe ectivepermittivity,givenbyEqs.(2–6),weretested,andrelativefrequencydeviationsforthesamevaluesofothercapacitancesarepresentedinFig.2b.Itwillbeshowninnextsectionthatonlypar-allel-capacitancemodel tstheexperimentaldata,whileotherpermittivityapproximationsgivequiteunreasonableresults.Forlowvaluesofvoidfraction,uptoabouta¼20%,parallel-capacitances,spherical-andcylindrical-voidmodelsgivesimilarresults.Fortheserial-capacitancesmodel,thepermittivityandrelativefrequencydeviationschangetoofastinthelowvoidfractionrange.
Theparallel-capacitancesmodelwill,therefore,beusedinthefollowing,andthee ectiverelativepermit-tivityoftheliquid–gasmixturewillbeapproximatedbyWienerformula(2).Foreg¼1,theequivalentcapacitanceCeis:Ce¼Ce0ðaþelð1ÀaÞÞ
ð12Þ
whereaisthevoidfraction.
Thismodelisequivalenttotwolumpedcapacitancesinparallel,onecontaininggasasthedielectric,andthesecond lledwithwater.Theresonancefrequency(10)
Characteristicsofthecapacitancesensorarenon-lin-ear,andcalibrationisrequiredfordeterminationoftherelationbetweenthefrequencydeviationsandvoidfraction.Thecalibrationcurvewasobtainedforthebubble ow,andforannular ow.Thebubble- owvoidfractionwasobtainedonlyupto15%intheseexperimentsbyinjectinggasbubblesonalowerpartofthepipeline.Theaveragegascontentinsidethepipeforbubbles owingupwardswasdeterminedfromanincreaseinthewaterlevelinameasuringcylinderonwhichtheelectrodesweremounted.Cylindricallyshapedvoidssimulatingannular owwereobtainedbyplacingend-closedglasspipesco-axiallyintothepipe-line lledwithwater.FrequencydeviationsforthesemeasurementsareplottedinFig.3.Thereisalittledif-ferencebetweenbubble owandsimulatedannular ow.
Forcomputationalpurposes,thecalibrationdatacanbeapproximatedbythefollowingpolynomialof6thorder:
df¼À12:927a6þ26:636a5À19:361a4
þ5:0284a3À0:1129a2À0:2641aþ1
ð14Þ
wheredfistherelativefrequencydeviationde nedasdf¼
fgÀffgÀfl
ð15Þ
ThislineisshowninFig.3ascontinuousline.
Thetheoreticalcurvewasalsoplottedinthis gure.Allcapacitancesin(13)cannotbeexactlydetermined,andthefrequencydeviations(11)canbepredictedthe-oreticallyonlywithacertainerror.Inthesystem
used,
A.Jaworeketal./FlowMeasurementandInstrumentation15(2004)317–324321
Fig.3.Relativefrequencydeviationvs.voidfraction(continuouslineinthe6thorderpolynomialapproximation).
thepipewallcapacitanceCwwasestimatedtoCw¼5pF,theequivalentcapacitancefora¼1toCe0¼0:5pF,andtheadditionalcapacitanceCc¼10pF.ThecapacitanceCwwasmeasuredbetweenthesensorelectrodesafterplacingametalsheetontotheinnerpipewall.ThecapacitanceCewaseliminatedbythisway.ThecapacitanceCcwasestimatedbymeasuringfrequencydeviationsafterreplacingthesensorbylumpedcapacitancesofknownvalues.Therelativefre-quencydeviationsweredeterminedfromEq.(11)andobtainedcurveisshowninFig.3asdashedline.Thedi erencebetweentheexperimentalandtheoreticalresultsisnotverylarge,andcanbeexplainedbyane ectofstraycapacitanceandwaterconductanceonfrequencydeviations.
3.Experiments
Theareavoidfractioninacertaincrosssectionofapipeisde nedastheratioofthesurfaceoccupiedbyvoidstothesurfaceofthecrosssectionofthepipe:að2Þ¼
Svoid
ð16Þ
S
Thevolumevoidfractioninacertainsegmentofapipeistheratioofthevolumeoccupiedbyvoidstothetotalvolumeofthesegment:að3Þ¼
Vvoid
ð17Þ
V
Thecapacitancesensorunderconsiderationmea-suresonlythevolumevoidfractionbecauseofthefringee ectsinacapacitorwithwide-spacedelectro-des.Thevolumeofthesegmentcan,however,notbedeterminedunambiguously.Thecharacteristicsofthe
sensorweredeterminedbymeasurementsoffrequencyresponseoftheoscillatorfordi erentvoidpercentage.Thecapacitancesensorsofthistypewereusedformeasurementofvoidfractioninselectedcrosssectionsofasupercriticalsteaminjector.TheexperimentalstandisschematicallyshowninFig.4.Steaminjectorisadeviceinwhichkineticenergyofsteamisusedforwatersuction.Thesteaminjectorconsistsofasteamnozzle,mixingchamberanddi user[19].Twopipeinstallationscanbedistinguishedinthescheme:thewaterandthesteam.Superheatedsteam owingthroughtheLaval-typenozzleexpandstosupersonicvelocitythatcauseslowstaticpressureattheinlettothemixingchamber.Thepressurebelowatmosphericdrawsthewaterthroughtheannularslotsurroundingthesteamnozzleintothemixingchamber,wherethesteamtransfersitsmomentumandheattothewater.Duetotheshockwave,whichdevelopsinthedi userdownstreamofthethroat,thetwo-phase owofwaterandsteamiscompressed,andthesteamcondenses,sothatonlywaterleavestheinjector.Thesteaminjectorwasequippedwiththermocouples,pressuretransdu-cers,andvoid-fractioncapacitancesensorsfordetermi-nationofthermodynamicparametersofthephaseexchangeprocesses(cf.Fig.4).Thepipeinthisstandwasmadeofpolycarbonatetoeliminatescreeninge ectthatcouldbecausedbyametalpipe.Thepipewasplacedvertically,withthesteaminjectorfacingdownwardsfromtheupperpartofthemixingcham-ber.Aphotographofoneofthesensorswithelectro-nicsisshowninFig.5.
Thevoidfractioninthissystemwasdeterminedinfourcrosssectionsofthemixingchamberandfourindi user.Schematicdiagramofmicroprocessorcon-trolledmeasuringsystemforthecapacitancesensorispresentedinFig.6.SignalofhighfrequencyUisin(xt
)
322A.Jaworeketal./FlowMeasurementandInstrumentation15(2004)317–324
Fig.4.Schemeoftheexperimentalstandforinvestigationofsupercriticalsteaminjector.
Fig.5.Aphotographofcapacitancesensorwithelectronics.
fromeachsensorwasmixedwiththereferencefre-quencysignalU0sin(x0t):umðtÞ¼
UiU0
ðcosðx0ÀxÞtÀcosðx0þxÞtÞ2
ð18Þ
Fig.6.Schematicdiagramofthemeasuringsystemforthecapaci-tancesensors.
Theproductwas lteredbyalow-passelectronic ltertoobtainlowfrequencysignal:uoutðtÞ¼Usinðx0ÀxÞt
ð19Þ
Thefrequencydeviationsweremeasuredbyamicro-processorsystemandconvertedtodigitalsignal,whichisnextstoredandprocessedbyacomputer.Thevoidfractionineachcrosssectionofthepipewasdeterm-inedfromthefrequencydeviationsbythecomputer.
Originallydevelopedprogramwasusedformeasure-mentcontrolanddataprocessing.
Anexampleofvoidfractionmeasurementsduringa3-hexperimentwitheight-channelsystemispresentedinFig.7.Thevariationinsignallevelsisduetochan-gesinexperimentalconditionssuchas owrates,tem-peraturesandpressures.Apeakoccurringinthechannel-2wastheresultofunexpected oodingwithwateroneoftheelectrodepairoutsidethepipe.
Voidfractiondistributionalongthemixingchamber–
system,startingfromthemixingchamberinlet,
A.Jaworeketal./FlowMeasurementandInstrumentation15(2004)317–324323
Fig.7.Variationsofvoidfractionina3-hexperimentatthesteaminjectorstand.Changesinvoidfractionrefertodi erentexperimentalcon-ditionssuchas owrate,temperature,and
pressure.
wasdeterminedfromthedatarecordedinFig.7,andareshowninFig.8.TheexperimentalconditionsforthisplotarelistedinTable1.Theactualfrequencydeviationswerenormalisedtothemaximumfrequency
di erence,xgÀxl(cf.Eq.(11)).Thereferencefre-quencyxl,withwholesteaminjector oodedwithwater,wasdeterminedjustafterallmeasurementsintheserieswerecompleted,andthewatertemperaturewasasthatduringthemeasurements.Itwasnecessarybecausewaterchangesitsproperties(conductivity,permittivity)withtemperature[17].The ood-frequencymeasuredintheseconditionsismoreappropriatethanthatdeterm-inedbeforetheinjectorsystemwasrunning,andwatertemperaturewaslower.Themeasurementaccuracybythismethodisestimatedtobeoftheorderofmagnitudeof10%.
4.Conclusions
Amethodofvoidfractionmeasurementintwo-phase owbasedonmeasurementoffrequencydevia-tionsgeneratedbyahighfrequencyoscillatorwithacapacitancesensorinitscircuitwaspresentedinthispaper.ThecapacitancevariationsduetopercentagechangesoftwophasesweremeasuredinaLC-resonantcircuit,whichisverysensitivetosmallcapacitancechanges.Characteristicsofthecapacitancesensorarenon-linear,andcalibrationisneededfordeterminationoftherelationbetweenthefrequencydeviationsandvoidfraction.Thefrequencydeviationsweredeterm-inedbycontinuouscomparisonofgeneratedfrequencywithareferencefrequencyofaquartzgenerator.Thedi erencefrequencywasmeasuredbyamicroprocessorsystemandconvertedtodigitalsignal,whichwasnextstoredbyacomputer.Thesystemwasdesignedfordeterminationofsteamcontentinawater-vapourtwo-phase owalongasupercriticalsteaminjector.Thisisasimple,lowcostandnon-invasivemethod,whichallowsdeterminingvoidfractionandavoiding owdis-tortionbecausenomechanicalelementisputinto
the
Fig.8.Examplesofvoidfractiondistributionalongthesteaminjector.
Table1
MeasuringconditionstoFig.8Lineno.
Steam
temperaturev
(C)142142142
Steam owrate(kg/h)132134132
Water owrate(kg/h)340028403400
Throatpressure(kPa)13.964.1130.3
123
324A.Jaworeketal./FlowMeasurementandInstrumentation15(2004)317–324
pipe.Whenaninvasiveprobewouldbeused,thephasetransitionscouldbepromoted.Althoughtheradiativemethodsarealsonon-invasive,theyare,however,ex-pensiveandrequireprecautionswhenused.References
[1]M.S.A.Abouelwafa,E.J.M.Kendall,Theuseofcapacitance
sensorsforphasepercentagedeterminationinmultiphasepipe-lines,IEEETrans.Instrum.Meas.29(1)(1980)24–27.
[2]A.L.Stott,R.G.Green,K.Seraji,Comparisonoftheuseof
internalandexternalelectrodesforthemeasurementofthecapacitanceandconductanceof uidsinpipes,J.Phys.E:Sci.Instrum.18(1985)587–592.
[3]S.M.Huang,R.G.Green,A.B.Pla skowski,M.S.Beck,Conduc-tivitye ectsoncapacitancemeasurementsoftwo-component
uidsusingthechargetransfermethod,J.Phys.E:Sci.Instrum.21(1988)539–548.
[4]S.M.Huang,J.Fielden,R.G.Green,M.S.Beck,Anewcapaci-tancetransducerforindustrialapplications,J.Phys.E:Sci.Instrum.21(1988)251–256.
[5]S.M.Huang,A.L.Stott,R.G.Green,M.S.Beck,Electronic
transducersforindustrialmeasurementoflowvaluecapaci-tances,J.Phys.E:Sci.Instrum.21(1988)242–250.
[6]A.J.Jaworski,T.Dyakowski,G.A.Davies,Acapacitanceprobe
forinterfacedetectioninoilandgasextractionplant,Meas.Sci.Technol.10(3)(1999)L15–L20.
[7]A.Jaworek,Pojemnosciowametodapomiaruzawartoscifazw
dwufazowym(Acapacitancemethodformeasure-mentofphase-percentageintwo-phase ow),Pom.Autom.Kontr.40(11)(1994)258–260,(InPolish).
[8]L.Xu,A.P.Weber,G.Kasper,Capacitance-basedconcentration
measurementforgas-particlesystemwithlowparticlesloading,FlowMeas.Instrum.11(3)(2000)185–194.
[9]X.Liu,X.Qiang,H.Qiao,G.Ma,J.Xiong,Zh.Qiao,Atheor-eticalmodelforacapacitancetoolanditsapplicationtopro-ductionlogging,FlowMeas.Instrum.9(4)(1998)249–257.
[10]J.Tollefsen,E.A.Hammer,Capacitancesensordesignforreduc-ingerrorsinphaseconcentrationmeasurements,FlowMeas.Instrum.9(1)(1998)25–32.
[11]T.Loser,R.Wajman,D.Mewes,Electricalcapacitancetom-ography:imagereconstructionalongelectrical eldlines,Meas.Sci.Technol.12(8)(2001)1083–1091.
[12]L.Borcea,Electricalimpedancetomography,InverseProbl.18
(6)(2002)R99–R136.
[13]B.T.Hjertaker,Staticcharacterizationofadualsensor owima-gingsystem,FlowMeas.Instrum.9(3)(1998)183–191.
[14]E.A.Hammer,R.G.Green,Thespatial lteringe ectofcapaci-tancetransducerelectrodes( owmeasurement),J.Phys.E:Sci.Instrum.16(5)(1983)438–443.
[15]E.A.Hammer,G.A.Johansen,Processtomographyintheoil
industry;stateoftheartandfuturepossibilities,Meas.Control30(7)(1997)212–216.
[16]R.B.White,Usingelectricalcapacitancetomographytomonitor
gasvoidsinapackedbedofsolids,Meas.Sci.Technol.13(12)(2002)1842–1847.
[17]J.Antoniewicz,PropertiesofDielectrics.TablesandPlots
´cidielektryko´w.TabliceiwykresyWNT,Warsaw,1971,(InPolish).
[18]D.A.G.Bruggeman,Berechnungverschiedenerphysikalischer
KonstantenvonheterogenenSubstanzen,AnnalenPhys.24(5)(1935)636–664.
[19]M.Trela,R.Kwidzinski,M.Bula,Maximumdischargepressure
ofsupercriticaltwo-phasesteaminjector,Arch.Thermo-dynamics25(1)(2004)41–52.
正在阅读:
Capacitance sensor for void fraction measurement in water steam09-03
断裂与损伤力学试题04-19
晶体光学试题答案03-20
自适应均衡器的设计04-29
天津财经大学商学院04-20
审计学 一种整合方法 Auditing& Assurance Services An integrat03-25
如何计算相电流与相电压的相位角?04-11
会议纪要格式及范文05-22
《建筑供配电与照明》课程设计任务书04-07
- 1INTEGRATION AND EVALUATION OF SENSOR MODALITIES FOR POLAR RO
- 2TL9000 Measurement Handbook.
- 3Measurement of Lagrangian velocity in fully developed turbulence
- 4Prediction of methane and carbon dioxide solubility in water
- 5Transverse Averaging Technique for Depletion Capacitance of Nonuniform PN-Junctions
- 6少儿编程教育的新“玩法”STEAM教育
- 7Three-Phase V-I Measurement
- 8Approximate distributed Kalman filtering in sensor networks with quantifiable performance
- 9Japan_Asks_Russia_for_Help_in_Disposing_of_Radioactive_Water
- 10Full-scale measurement of Akashi-Kaikyo Bridge during typhoo
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- Capacitance
- measurement
- fraction
- sensor
- water
- steam
- void
- 罕见的高雅名花,免费下载,32种罕见的名花图片,与爱好的朋友分享。
- 七年级生物下册复习提纲(人教版)
- 电力隧道施工方案
- 联通网格经理综合营销技能
- 五年级小数加减乘除混合运算计算题练习题
- 2019年行政事业单位个人会计工作总结(精选多篇)-范文模板 (12页)
- 中国智能冰箱行业销售现状及发展趋势预测报告2018-2023年(目录)
- 海信集团校园招聘新员工报到通知书-8月份报到
- 王利明《民法》笔记和课后习题(含考研真题)详解(民法总论-民事行为)
- 国际航空货物运输的案例一
- 公路隧道施工质量安全控制要点——继续教育
- 随机信号分析与处理习题解答
- 孵化器合作意向书
- A 盐酸林可霉素(无菌粉)工艺验证
- 学校统计工作规章制度 范本
- 篮球挑战赛赞助策划方案
- 雷磁电导率仪 DDS-307A标准操作规程
- 服装品牌森马
- LINUX下服务器安装oracle10g数据库教程
- iphone 5s点位图(1)