必修4第一章三角函数单元测试卷(含详细解答)
更新时间:2024-06-14 07:28:01 阅读量: 综合文库 文档下载
必修4第一章三角函数单元测试卷
一.选择题(共10小题,满分50分,每小题5分) 1.已知α为第三象限角,则
所在的象限是( )
D. 第二或第四象限 A.第一或第二象限 B. 第二或第三象限 C. 第一或第三象限 2.已知cosθ?tanθ<0,那么角θ是( ) A.第一或第二象限角 B. 第二或第三象限角 第三或第四象限角 C.D. 第一或第四象限角 3.下列各角中,与30°的角终边相同的角是( ) 60° 120° A.B. C. ﹣30° 4.已知 A.﹣1 B. ,则tanα=( ) C. 390° D. 1 D. 5. tan(﹣1410°)的值为( ) A.B. 6.若 A. B. C. =( )
D. C. D. 7.既是偶函数又在区间(0,π)上单调递减的函数是( ) y=sinx y=cosx y=sin2x A.B. C. 8.设 A.a<b<c 9.函数y=2sin( A.[0,] ,
,B. a<c<b ,则( )
C. b<c<a y=cos2x D. D. b<a<c ﹣2x),x∈[0,π])为增函数的区间是( )
B. [,] C. [,] D. [,π] 10.要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x 的图象( ) A.向左平移1个单位 B. 向右平移1个单位 C.D. 向左平移个单位 向右平移个单位 二.填空题(共5小题,满分25分,每小题5分) 11.已知点P(﹣3,4)在角α的终边上,则sinα= _________ . 12.若cosα=﹣,且α∈(π,
),则tanα= _________ .
13.已知f(x)=,则f()= _________ .
14.函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则实数k的取值范围是
_________ . 15.函数编号)
①图象C关于直线②图象C关于点
对称; 对称;
的图象为C,如下结论中正确的是 _________ .(写出所有正确结论的
③函数f(x)在区间
④由y=3sin2x的图角向右平移 三.解答题(共6小题) 16.已知扇形的周长是8, (1)若圆心角α=2,求弧长l(注(2)若弧长为6,求扇形的面积S.
17.已知cosa=﹣,a为第二象限角,求sina,tana. 18.已知
(1)求sinx﹣cosx的值; (2)求
的值.
. )
内是增函数;
个单位长度可以得到图象C.
19.已知函数分别为(
,2)(
,﹣2).
在某一个周期内的图象的最高点和最低点的坐标
(1)求A和ω的值; (2)已知α∈(0,
),且
,求f(α)的值.
20.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象的一部分如图所示:
(1)求f(x)的解析式;(2)写出f(x)的单调区间.
21.如图是函数
(I)求φ的值及函数f(x)的解析式; (II)求函数
的最值及零点.
的一段图象.
必修4第一章三角函数单元测试卷
参考答案与试题解析
一.选择题(共10小题,满分50分,每小题5分) 1.(5分)(2005?陕西)已知α为第三象限角,则 A.第一或第二象限 B. 第二或第三象限 考点: 象限角、轴线角;角的变换、收缩变换. 分析: α为第三象限角,即所在的象限是( )
C. 第一或第三象限 D. 第二或第四象限 k∈Z,表示出,然后再判断即可. 解答: 解:因为α为第三象限角,即所以,k∈Z, k∈Z当k为奇数时它是第四象限,当k为偶数时它是第二象限的角. 故选D. 点评: 本题考查象限角,角的变换,是基础题.可以推广到其它象限. 2.(5分)(2007?北京)已知cosθ?tanθ<0,那么角θ是( ) A.第一或第二象限角 B. 第二或第三象限角 第三或第四象限角 C.D. 第一或第四象限角 考点: 象限角、轴线角. 专题: 计算题. 分析: 根据cosθ?tanθ<0和“一全正、二正弦、三正切、四余弦”来判断角θ所在的象限. 解答: 解:∵cosθ?tanθ<0,∴角θ是第三或第四象限角, 故选C. 点评: 本题的考点是三角函数值得符号判断,需要利用题中三角函数的不等式和“一全正、二正弦、三正切、四余弦”对角的终边位置进行判断. 3.(5分)(2007?怀柔区模拟)下列各角中,与30°的角终边相同的角是( ) 60° 120° 390° A.B. C. ﹣30° D. 考点: 终边相同的角. 专题: 计算题. 分析: 根据终边相同的角之间相差周角的整数倍,我们可以表示出与30°的角终边相同的角α的集合,分析题目中的四个答案,找出是否存在满足条件的k值,即可得到答案. 解答: 解:∵与30°的角终边相同的角α的集合为 {α|α=30°+k?360°,k∈Z} 当k=1时,α=390° 故选D 点评: 本题考查的知识点是终边相同的角,其中根据终边相同的角之间相差周角的整数倍,表示出与30°的角终边相同的角α的集合,是解答本题的关键. 4.(5分)(2012?辽宁)已知,则tanα=( )
A.﹣1 B. C. 1 D. 考点: 同角三角函数间的基本关系. 专题: 计算题. 分析: 由条件可得 1﹣2sinαcosα=2,即 sin2α=﹣1,故2α=,α=,从而求得tanα 的值. ,α=,解答: 解:∵已知tanα=﹣1. 故选A. ,∴1﹣2sinαcosα=2,即 sin2α=﹣1,故2α=点评: 本题主要考查同角三角函数的基本关系的应用,求得 α=,是解题的关键,属于基础题. 5.(5分)(2013?石家庄二模)tan(﹣1410°)的值为( ) A.B. C. 考点: 运用诱导公式化简求值. 专题: 三角函数的求值. 分析: 利用诱导公式把要求的式子化为tan30°,从而求得结果. 解答: 解:tan(﹣1410°)=tan(﹣180°×8+30°)=tan30°=, D. 故选A. 点评: 本题主要考查诱导公式的应用,属于基础题. 6.(5分)(2012?茂名一模)若 A. B. C. D. =( )
考点: 运用诱导公式化简求值. 专题: 计算题. 分析: 利用诱导公式化简已知等式的左边,求出cosα的值,再由α的范围,利用同角三角函数间的基本关系求出sinα的值,再将所求式子中的角度变形后,利用诱导公式变形后,将sinα的值代入即可求出值. 解答: 解:∵cos(π+α)=﹣cosα=, ∴cosα=﹣,又π<α<π, ∴sinα=﹣=﹣, . 则sin(5π﹣α)=sin[4π+(π﹣α)]=sin(π﹣α)=sinα=﹣故选D 点评: 此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,灵活变换角度,熟练掌握公式是解本题的关键. 7.(5分)(2013?上海)既是偶函数又在区间(0,π)上单调递减的函数是( ) y=sinx y=cosx y=sin2x y=cos2x A.B. C. D.
考点: 余弦函数的奇偶性;余弦函数的单调性. 专题: 三角函数的图像与性质. 分析: 根据函数的奇偶性排除A、C,再根据函数的单调性排除D,经检验B中的函数满足条件,从而得出结论. 解答: 解:由于函数y=sinx和 y=sin2x都是奇函数,故排除A、C. 由于函数y=cosx是偶函数,周期等于2π,且在(0,π)上是减函数,故满足条件. 由于函数y=cos2x是偶函数,周期等于π,在(0,)上是减函数,在(,π)上是增函数,故不满足条件. 故选B. 点评: 本题主要考查余弦函数的奇偶性和单调性,属于中档题. 8.(5分)(2008?天津)设
,
,
,则( )
A.a<b<c B. a<c<b C. b<c<a D. b<a<c 考点: 正弦函数的单调性;不等式比较大小;余弦函数的单调性;正切函数的单调性. 专题: 压轴题. 分析: 把a,b转化为同一类型的函数,再运用函数的单调性比较大小. 解答: 解:∵,b=. 而所以<,sinx在(0,)是递增的, , 故选D. 点评: 此题考查了三角函数的单调性以及相互转换. 9.(5分)(2004?天津)函数y=2sin( A.[0, 考点: 正弦函数的单调性;函数y=Asin(ωx+φ)的图象变换. 专题: 计算题. 分析: 先根据诱导公式进行化简,再由复合函数的单调性可知y=﹣2sin(2x﹣﹣2x),x∈[0,π])为增函数的区间是( ) ] C. [,] D. [,π] ] B. [,)的增区间可由y=2sin(2x﹣)的减区间得到,再由正弦函数的单调性可求出x的范围,最后结合函数的定义域可求得答案. 解答: 解:由y=2sin(即2kπ+∴kπ+令k=0,≤2x﹣≤x≤kπ+≤x≤﹣2x)=﹣2sin(2x﹣≤2kπ+,k∈Z. , ,k∈Z )其增区间可由y=2sin(2x﹣)的减区间得到, 故选C. 点评: 本题主要考查三角函数诱导公式的应用和正弦函数的单调性.考查基础知识的综合应用和灵活能力,三角函数的知识点比较多,内容比较琐碎,平时要注意积累基础知识.
10.(5分)(2012?安徽)要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x 的图象( ) A.向左平移1个单位 B. 向右平移1个单位 C.D. 向左平移个单位 向右平移个单位 考点: 函数y=Asin(ωx+φ)的图象变换. 专题: 常规题型. 分析: 化简函数y=cos(2x+1),然后直接利用平移原则,推出平移的单位与方向即可. 解答: 解:因为函数y=cos(2x+1)=cos[2(x+)], 所以要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x 的图象向左平移个单位. 故选C. 点评: 本题考查三角函数的图象的平移变换,注意平移时x的系数必须是“1”. 二.填空题(共5小题,满分25分,每小题5分)
11.(5分)(2012?顺义区二模)已知点P(﹣3,4)在角α的终边上,则sinα= .
考点: 任意角的三角函数的定义. 专题: 三角函数的求值. 分析: 由于已知点P(﹣3,4)在角α的终边上,可得 x=﹣3,y=4,r=|OP|=5,再由sinα=,求得结果. 解答: 解:∵已知点P(﹣3,4)在角α的终边上,∴x=﹣3,y=4,r=|OP|=5, 则sinα==, 故答案为. 点评: 本题主要考查任意角的三角函数的定义,属于基础题. 12.(5分)(2011?重庆)若cosα=﹣,且α∈(π,
),则tanα= .
考点: 任意角的三角函数的定义. 专题: 计算题. 分析: 根据α∈(π,),cosα=﹣,求出sinα,然后求出tanα,即可. 解答: 解:因为α∈(π,),cosα=﹣,所以sinα=﹣,所以tanα== 故答案为: 点评: 本题是基础题,考查任意角的三角函数的定义,注意角所在的象限,三角函数值的符号,是本题解答的关键.
13.(5分)(2012?宿州三模)已知f(x)= 考点: 运用诱导公式化简求值. 专题: 计算题. 分析: 由题意可得 f()=f(﹣)=sin(﹣,则f()= ﹣ .
),利用诱导公式求出结果. 解答: 解:∵已知f(x)=,则f()=f(﹣)=sin(﹣)=﹣sin=﹣, 故答案为﹣. 点评: 本题主要考查利用诱导公式求三角函数值,属于基础题. 14.(5分)(2005?上海)函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则实数k的取值范围是 (1,3) . 考点: 正弦函数的图象. 专题: 压轴题;数形结合. 分析: 根据sinx≥0和sinx<0对应的x的范围,去掉绝对值化简函数解析式,再由解析式画出函数的图象,由图象求出k的取值范围. 解答: 解:由题意知,, 在坐标系中画出函数图象: 由其图象可知当直线y=k,k∈(1,3)时, 与f(x)=sinx+2|sinx|, x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点. 故答案为:(1,3). 点评: 本题的考点是正弦函数的图象应用,即根据x的范围化简函数解析式,根据正弦函数的图象画出原函数的图象,再由图象求解,考查了数形结合思想和作图能力. 15.(5分)(2007?安徽)函数所有正确结论的编号) ①图象C关于直线
对称;
的图象为C,如下结论中正确的是 ①②③ .(写出
②图象C关于点③函数f(x)在区间
④由y=3sin2x的图角向右平移 考点: 函数y=Asin(ωx+φ)的图象变换;正弦函数的单调性;正弦函数的对称性. 专题: 综合题;压轴题;整体思想. 分析: 把代入求值,只要是的奇数倍,则①正确,把横坐标代入对称;
内是增函数;
个单位长度可以得到图象C.
求值,只要是π的倍数,则②对;同理由x的范围求出平移故把x=x﹣解答: 解:①、把②、把x=③、当④、有条件得,故答案为:①②③. 点评: 代入代入代入得,时,求得的范围,根据正弦函数的单调区间判断③是否对,因为向右进行化简,再比较判断④是否正确. 得,,故①正确; ,故②正确; ,故③正确; ,故④不正确. 本题考查了复合三角函数图象的性质和图象的变换,把进行求解以及判断,考查了整体思想. 作为一个整体,根据条件和正弦函数的性质 三.解答题(共6小题) 16.已知扇形的周长是8, (1)若圆心角α=2,求弧长l(注
)
(2)若弧长为6,求扇形的面积S. 考点: 扇形面积公式;弧长公式. 专题: 计算题. 分析: (1)直接利用,求出扇形的弧长. (2)求出扇形的半径,利用面积公式求出扇形的面积. 解答: 解:扇形的周长是8, (1)若圆心角α=2,弧长l,所以l=2r,l+2r=8,所以l=4,; (2)若弧长为6,半径r=1,所以扇形的面积S=. 点评: 本题是基础题,考查扇形的周长与面积的计算问题,正确利用公式是解题的关键. 17.已知cosa=﹣,a为第二象限角,求sina,tana. 考点: 同角三角函数间的基本关系;象限角、轴线角.
专题: 计算题. 分析: 先根据α所在的象限,判断出sinα的正负,进而根据同角三角函数的基本关系,利用cosα的值求得sinα,进而求得tanα的值. 解答: 解:∵a为第二象限角, ∴sinα>0 ∴sinα=tanα== =﹣ 点评: 本题主要考查了同角三角函数基本关系的应用.注意根据角的范围确定三角函数的正负号. 18.已知
(1)求sinx﹣cosx的值; (2)求 考点: 运用诱导公式化简求值;同角三角函数间的基本关系. 专题: 三角函数的求值. 分析: (1)利用同角三角函数基本关系式直接求出sinx和cosx的值,进而求出结果. 2(2)先利用诱导公式化简所求的式子,将原式分子分母同除以cosx,转化成tanx的表达式去解. 解答: 解:∵ .
的值.
sinx=﹣2cosx,又sinx+cosx=1,∴5cosx=1, ∴(1) 222(2)原式= =…(12分) 点评: 本题考查同角三角函数基本关系式的应用和三角函数的诱导公式,计算要准确,属于中档题. 19.(2012?广州二模)已知函数和最低点的坐标分别为((1)求A和ω的值; (2)已知α∈(0,
),且
,求f(α)的值.
,2)(
,﹣2).
在某一个周期内的图象的最高点
考点: 由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值. 专题: 计算题. 分析: (1)由函数图象最高点和最低点纵坐标可得振幅A值,相邻最高和最低点间的横坐标之差为半个周期,即可求得函数的周期,进而得ω的值
(2)先利用同角三角函数基本关系式和二倍角公式计算sin2α、cos2α的值,再利用(1)中结论,将f(α)化简,代入sin2α、cos2α的值求值即可 解答: 解:(1)∵某一个周期内的图象的最高点和最低点的坐标分别为(∴A=2,T=2×(∴ω==2 ﹣)=π ,2)(,﹣2). ∴A=2,ω=2 (2)∵α∈(0,∴sin2α=由(1)知∴=sin2α﹣==+ cos2α ),且2,∴cosα= ,cos2α=1﹣2sinα=﹣点评: 本题主要考察了y=Asin(ωx+φ)型函数的图象和性质,三角变换公式在三角化简和求值中的应用,属基础题 20.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象的一部分如图所示: (1)求f(x)的解析式;(2)写出f(x)的单调区间.
考点: 由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的单调性. 专题: 计算题. 分析: (1)由图象直接求出A和T,可求ω,根据特殊点(,2)求出φ,即可求函数f(x)的解析式; (2)根据正弦函数的单调性直接求出函数的单调增区间和单调减区间即可. 解答: 解:(1)由图可知A=2T=π∴ω=2 当时f(x)取最大值∴)(6分) (9分) (12分) φ=∴φ=符合条件 ∴f(x)=2sin(2x+(2)f(x)的单调递增区间为f(x)的单调递减区间为点评: 本题考查三角函数y=Asin(ωx+φ)的图象及其解析式,三角函数的单调性,考查计算能力,是基础题.
21.如图是函数
(I)求φ的值及函数f(x)的解析式; (II)求函数
的最值及零点.
的一段图象.
考点: 由y=Asin(ωx+φ)的部分图象确定其解析式;函数的零点. 专题: 计算题. 分析: (I)利用三角函数的图象直接求出A,推出函数的周期,利用周期公式求出ω,图象过点,结合φ的范围求φ的值,即可得到函数f(x)的解析式; (II)通过函数,求出它的表达式,利用正弦函数的最值以及x的取值,求出函数的最值,利用正弦函数的零点求出函数的零点. 解答: 解:(I)由图可知,A=2.…(2分) 函数的周期因为图象过点所以所以(II)依题意,当当因为所以,函数g(x)零点为,即,即时,g(x)=0, .…(12分) ,所以.因为.…(7分) . 时,y取得最大值,且最大值等于2. 时,y取得最小值,且最小值等于﹣2.…(10分) ,所以,所以.…(4分) ,即. . 点评: 本题是中档题,考查三角函数的解析式的求法,函数的图象的应用,正弦函数的基本知识,考查计算能力.
正在阅读:
公文(格式字体符号)规范04-14
2014年福建省漳州市高三毕业班教学质量检查语文试卷(带解析)03-08
Noise Analysis and Characterization of a Sigma-Delta04-14
个人履行岗位职责情况(范本)04-04
府保特大桥施组12-13
高州市中小学第二届“百佳班主任”候选人申报表 - 图文01-29
PS字体怎么安装02-09
可爱的弟弟作文700字07-10
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 三角函数
- 必修
- 试卷
- 单元
- 解答
- 详细
- 浅谈企业人才招聘存在的问题与对策毕业设计论文
- 2009年全国硕士研究生入学统一考试数学三试题及详解
- 2017华南理工网络学院-电路与电子技术-随堂练习-参考答案
- 4-工艺文件
- 《服装制作工》理论考试试卷
- 英语零模-苏州市2015届高三调研测试
- 2018人教版历史八年级下册单元测试题(一二单元)
- 年产5万立方米聚苯乙烯泡沫塑料板材生产项目可行性研究报告
- 义务教育教科书英语(Go for it!)七年级上册tapescripts
- 安徽省合肥市2017届高三第一次教学质量检测
- LTE(混合组网)系统设备技术要求-PGW(试行)
- 餐厨垃圾收集、运输和处置监管责任书
- 习题答案
- 组织公平
- 文言文倒装句复习教案
- 卫生部办公厅关于开展单病种质量管理控制工作有关问题的通知
- 《会计报表分析》试题库
- 在2012年上学期家长会的讲话
- 长沙市行政事业单位定点印刷企业名单
- 政府门户网站群建设方案